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Abstract. We study the rate with which sequences of interpolating rational functions,
whose poles are partially fi ed, approximate Markov-type analytic functions. Applica-
tions to interpolating quadratures are given.

1. Introduction

Let μ be a finit positive Borel measure whose support supp(μ) is contained in B =
[−1, 1]. Set

μ̂ =
∫ dμ(x)

z − x
, z ∈ C\B.

Let {bn}, n ∈ N, be a sequence of monic polynomials whose zeros lie in B and has
constant sign on that interval. Assume that deg Bn = m(n) ≤ n. Therefore,

Bn(z) =
m(n)∏
k=1

(z − βn,k), βn,k ∈ B.

Let us fi a compact set A ⊂ C̄\B that is symmetric with respect to the real line and a
table of points

{αn,i }, i = 1, 2, . . . , 2n − m(n), n ∈ N,

contained in A that is also symmetricwith respect to the real line (countingmultiplicities).
Set

An(z) =
2n−m(n)∏

i=1
(z − αn,i ), n ∈ N.

In the case that for some i , αn,i = ∞, we omit the corresponding factor. By symmetry
all the coefficient of An are real and since A ∩ B = ∅, An has constant sign on B. It
is easy to verify that for each n ∈ N, there exists a unique rational function of the form
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Rn = Pn/Bn Qn , where Pn and Qn are polynomials satisfying:

(a) deg Pn ≤ n − 1; deg Qn ≤ n − m(n); and Qn �≡ 0.

(b)
Qn Bnμ̂ − Pn

An
∈ H(C\B).

(c)
Qn Bnμ̂ − Pn

An
(z) = O

[
1

zn−m(n)+1

]
as z → ∞.

The determination of Pn and Qn may be reduced to the solution of a homogeneous
system of 2n − m(n) equations in 2n − m(n) + 1 unknowns, thus a nontrivial solution
(Qn �≡ 0) always exists. We will take Qn monic.
When, for all n ∈ N, m(n) = 0, all the poles of Rn are free and this construction

coincides with that of the diagonal multipoint Padé approximant which interpolates μ̂ at
the zeros of An . In this case, the convergence of the corresponding sequence of rational
functions {Rn} has been well studied and estimates of the rate of convergence have been
given (see, e.g., [3] and [8]). When m(n) = n all the poles are fi ed and the study of the
convergence of such approximants parallels in great degree the theory of approximation
of analytic functions by means of polynomials (this situation is extensively treated in
[9]). We will discuss the intermediate cases when m(n) poles are fi ed and n − m(n) are
left free.
The object of this paper is to fin conditions on (μ, {An}, {Bn}, {m(n)}) so that there

exists

lim
n

‖μ̂ − Rn‖1/n
K ,(1)

where ‖ · ‖K denotes the sup-norm on a compact set K contained in C̄\(A ∪ B) and
determine the limit value (see Theorem 1 below).
In the classical setting, when interpolation is carried out at infinit (An ≡ 1, n ∈ N), a

firs paper on this subject was provided by [5]. The authors consider the situation when
limn m(n)/n = 0; that is, nearly Padé approximation. Later, in the same framework, we
studied the problem when limn m(n)/n = θ ∈ [0, 1] (see [2]). Recently, we received a
preprint of A. Ambroladze and H. Wallin [1] where they consider, also in the classical
setting, the problem of upper estimates for

lim
n

‖μ̂ − Rn‖1/n
K .

They also considerably weaken the condition μ′ > 0 a.e. that we required on μ in [2] in
order that (1) takes place.
A key question in the solution of the problems above is the study of equilibrium

distributions in the presence of exterior fields Our paper is particularly influence by the
results contained in [4] which are ready to use for our purpose.We also refer the reader to
the excellent monograph [8] whose methods may also be applied to obtain similar results
to the ones we give here under weaker assumptions (this is the main strategy of [1] in
contrast with [2]). The results in [8 (see Section 3.3)] must be adapted in order that they
cover the type of varying weights we consider here. Therefore, we restrict generality in
favor of simplicity. Nevertheless, our restrictions are sufficientl general to include the
most interesting applications (see the corollaries below). In the following, we maintain
the notations introduced above and the conditions on (μ, {An}, {Bn}, {m(n)}).
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2. Some Lemmas

First let us show that the polynomials Qn satisfy certain orthogonality relations with
respect to a varying measure and fin an integral expression for the error in the approx-
imation.

Lemma 1. We have∫
x j Qn(x)

Bn(x) dμ(x)

An(x)
= 0, j = 0, 1, . . . , n − m(n) − 1,(2)

and

(μ̂ − Rn)(z) = An(z)
(Bn Qnh)(z)

∫
(Bn Qnh)(x)

An(x)

dμ(x)

z − x
, z ∈ C̄\B,(3)

where h is any polynomial of degree ≤ n − m(n).

Proof. Multiply (c) times z j , j = 0, 1, . . . , n − m(n) − 1, and integrate along any
contour � which surrounds B (B ⊂ Int(�)) in such a way that A lies outside the closed
domain determined by � (A ⊂ Ext(�)). From Cauchy’s theorem, Fubini’s theorem, and
Cauchy’s integral formula, it follows that

0 =
∫

�

z j Qn Bnμ̂ − Pn

An
(z) dz =

∫
�

z j Qn Bnμ̂

An
(z) dz

=
∫ ∫

�

z j Qn Bn

An
(z)

dz
z − x

dμ(z) = 2π i
∫

x j Qn Bn

An
(x) dμ(x).

This proves (2).
On the other hand, if z ∈ Ext(�) and h is an arbitrary polynomial of degree≤ n−m(n),

using Cauchy’s integral formula and Fubini’s theorem we obtain

h(z)
Qn Bnμ̂ − Pn

An
(z) = 1

2π i

∫
�

h(ζ )
Qn Bnμ̂ − Pn

An
(ζ )

dζ

z − ζ

= 1
2π i

∫
�

(hQn Bnμ̂)(ζ )

An(ζ )

dζ

z − ζ

=
∫

1
2π i

∫
�

(hQn Bn)(ζ )

An(ζ )(z − ζ )

dζ

ζ − x
dμ(x)

=
∫

(hQn Bn)(x)

An(x)(z − x)
dμ(x).

Therefore, (3) is proved.

Denote

Nn =
(∫ ∣∣∣∣ (Q2Bn)(x)

An(x)

∣∣∣∣ dμ(x)

)1/2

, qn = Qn

Nn
.

Taking h = Qn/N 2
n in (3), we obtain

(μ̂ − Rn)(z) = An(z)
(Bnq2

n )(z)

∫
(Bnq2

n )(x)

An(x)

dμ(x)

z − x
, z ∈ C\B.(4)
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From (4) it is easy to check the following bounds for the error formula (see [8,
(6.1.34)]):

Lemma 2. There exist two positive continuous functions d1(z) > 0 and d2(z) < ∞ on
C̄\B such that

d1(z)
∣∣∣∣ An(z)
(Bnq2

n )(z)

∣∣∣∣ ≤ |(μ̂ − Rn)(z)| ≤ d2(z)
∣∣∣∣ an(z)
(Bnq2

n )(z)

∣∣∣∣ .(5)

Since d1(z) and d2(z) are bounded from below and from above on each compact set
contained in C\B, formula (5) guarantees that the nth root asymptotic behavior of the
error is completely determined by that of the sequence {|An(z)/(Bnq2

n )(z)|}.
Notice (see (2)) that qn is the polynomial of degree n−m(n) orthonormal with respect

to the varying measure

dμ(x) = Bn(x)dμ(x)

An(x)
.

The nth root asymptotic behavior of such polynomials has been well studied (see [4]
and [8]). It depends on the asymptotic behavior of the functions (|Bn(x)/An(x)|)1/n as
n → ∞ and the limit is described in terms of the solution of an equilibriumproblem in the
presence of an exterior field For convenience in the reading, we give the corresponding
result as presented in [4] under the restrictions with which we are working.
Without loss of generality we will assume in the following that A is compactly con-

tained inC\B (see, e.g., Section 6.1 in [8]). This assumption simplifie the consideration
of the measures and their corresponding potentials and any problem of type (1) may be
reduced to this situation by means of a simple Möbius transformation. In particular, in
the following, deg An = 2n − m(n). Let αn denote the counting measure for the zeros
of An and βn the counting measure for the zeros of Bn . For any measure σ , we denote
its logarithmic potential by

Vσ (z) =
∫

log |z − t |−1 dσ(t).

Set

fn(x) = 1
2(n − m(n))

[Vβn (x) − Vαn (x)].

Assume that the following limit exists

f (x) = lim
n

fn(x), x ∈ B,(6)

where f is not identically equal to +∞ on B. From the known results of potentials it
immediately follows that the following properties take place (see, e.g., [4] and [6]):

(a′) Each fn as well as f is lower semicontinuous on B.
(b′) Each fn as well as f is weakly approximatively continuous on B. A function g is

weakly approximatively continuous at a point x0 ∈ B, if there exists a set e(x0)
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(depending on g) of positive density at x0 such that

lim
x→x0
x∈B

g(x) = lim
x→x0

x∈e(x0)

g(x) = g(x0).

(c′) limn→∞ minB fn(x) = minB f (x).

Due to (a′)–(c′), from Theorem 1 in [4], we have:

Lemma 3. If μ′ > 0 a.e. on B and (6) takes place, then

lim
n

N 1/(n−m(n))
n = exp{−ω},(7)

and

lim
n

|Qn(z)|1/(n−m(n)) = exp{−Vλ(z)}(8)

uniformly on each subset of C\B, where ω is the extremal constant and λ the unit
equilibrium measure on B which are uniquely determined and characterized by the
relations

Vλ(x) + f (x) = ω, x ∈ supp(λ),

≥ ω, x ∈ B.
(9)

Lemmas 2 and 3 allow us to obtain a result of type (1) in terms of f , λ, and ω.
Unfortunately, under such general conditions, it is not possible to fin explicitly the
extremal constant and the equilibrium measure. Therefore, we will restrict our attention
to a sufficientl general case which contains the more interesting applications.
Assume that

lim
n

m(n)

n
= θ ∈ [0, 1].(10)

Wewill also assume the existenceof unitmeasuresα andβ (supp(α) ⊂ A, supp(β) ⊂ B),
such that

lim
n

1
n
αn = (2− θ)α, lim

1
n
βn = θβ,(11)

where limn in connection with measures stands for convergence in the weak-star topol-
ogy. Notice that (11) (on account of (10)) simply means that the corresponding sequence
of measures have limit. For further reference, we indicated the form that such limit
measures must have.
Let use denote by ω∗ and λ∗ the extremal constant and the equilibriummeasure which

solve the extremal problem (9) when f (x) = −Vα(x). λ∗ is the balayage on B of α and
it is well known that supp(λ∗) = B (see [6]). We have the explicit expressions (see [4]
and [7])

ω∗ =
∫

gB(t, ∞) dα(t)(12)

and

dλ∗(x) = dx
π(1− x2)1/2

∫
(t2 − 1)1/2

|x − t | dα(t),(13)
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where gB(t, ∞) denotes Green’s function for the region C̄\B with singularity at ∞.
Finally, we will assume that the measures α and β are such that

(2− θ)λ∗ − θβ ≥ 0.(14)

By this we indicate that such a difference is a positive measure. This last condition is
rather restrictive if θ = 1, since then β is forced to be equal to λ∗, but we are still free
to select any sequence of polynomials {An} which have nth root asymptotics.

Lemma 4. Let μ′ > 0 a.e. on B. Assume that (10), (11), and (14) take place. Then,

lim
n

N 1/n
n = exp

{
−2− θ

2
ω∗

}
,(15)

and

lim
n

|Qn(z)|1/n = exp{− 1
2V(2−θ)λ∗−θβ(z)},(16)

uniformly on each compact subset of C\B, where ω∗ and λ∗ are as indicated above (and
equal to (12) and (13) when A is a segment contained in R\B).

Proof. First let us consider that θ ∈ [0, 1). In this case, we have

f (x) = 1
2(1− θ)

[θVβ(x) − (2− θ)Vα(x)].(17)

Thus (6) takes place. According to (7) and (8)

lim
n

N 1/n
n = exp{−(1− θ)ω},(18)

and

lim
n

|Qn(z)|1/n = exp{−(1− θ)Vλ(z)},(19)

where ω and λ solve the extremal problem on B in the presence of the exterior fiel
given by (17). That is,

Vλ(x) + θ

2(1− θ)
Vβ(x) − 2− θ

2(1− θ)
Vα(x) = ω, x ∈ supp(λ),

≥ ω, x ∈ B.

Notice that λ + [θ/2(1 − θ)]β and [(2 − θ)/2(1 − θ)]α are measures on B and
A, respectively, each of which has total mass (2 − θ)/2(1 − θ). Therefore, from the
uniqueness of the solution of this extremal problem and that when f (x) = −Vα(x), it
follows that if (14) takes place (notice that supp(λ∗) = B ⊃ supp(λ)), then

ω = 2− θ

2(1− θ)
ω∗,

and
λ = 1

2(1− θ)
[(2− θ)λ∗ − θβ].

Substituting these formulas into (18) and (19), we obtain (15) and (16), respectively.
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Let us consider θ = 1. Now condition (14) requires that β = λ∗. Thus (16) reduces
to proving that

lim
n

|Qn(z)|1/n = 1.

But this is obvious because on each compact subset K of C\B
(d(K , B))n−m(n) ≤ ‖Qn(z)‖K ≤ (diam(K ∪ B))n−m(n),

where d(K , B) denotes the distance between the nonintersecting compact sets K and B,
while diam(K ∪ B) denotes the diameter of their union.
In connection with (15), from the definitio it immediately follows that

Nn ≤ 2n−m(n)

∥∥∥∥ Bn

An

∥∥∥∥
1/2

B
|μ|1/2.

Let ε > 0. Set
�ε = {z ∈ C : Vλ∗(z) − Vα(z) = ω∗ − ε}.

Take ε sufficientl small so that �ε surrounds B and A ⊂ Ext(�ε). From the maximum
principle, (10) and (11), we obtain

lim
n

N 1/n
n ≤ lim

n

∥∥∥∥ Bn

An

∥∥∥∥
1/2n

�ε

= exp{− 1
2ω

∗}.

Taking ε → 0, we obtain
lim

n
N 1/n

n ≤ exp{− 1
2ω

∗}.(20)

On the other hand, Bn(x) has constant sign on B; therefore,
Bn(x) = (B∗

n (x))2tn(x),

where tn is a polynomial of degree at most two, whose zeros should they exist must lie
at the endpoints of B. Thus B∗

n Qn is a monic polynomial such that

n − m(n)

2
− 1 ≤ m∗(n) = deg(B∗

n Qn) ≤ n − m(n)

2
.(21)

Denote by Ln the monic polynomial of degree m∗(n) orthogonal with respect to the
measure |tn(x)/An(x)| dμ(x). This polynomial is of minimal L2-norm with respect to
this measure between all monic polynomials of degree m∗(n). Therefore,

N ∗
n =

{∫
|Ln(x)|2

∣∣∣∣ tn(x)

An(x)

∣∣∣∣ dμ(x)

}1/2

(22)

≤
{∫

|(B∗
n Qn)(x)|2

∣∣∣∣ tn(x)

An(x)

∣∣∣∣ dμ(x)

}1/2

= Nn.

Since |tn(x)| dμ(x) > 0 a.e. on B, from Lemma 3 as applied to the sequence of polyno-
mials {Ln} (see also Theorem 1 in [4]), we obtain

lim
n

(N ∗
n )1/m∗(n) = exp{− 1

2ω
∗}.(23)

From (21)–(23), it follows that
lim

n
N 1/n

n ≥ exp{− 1
2ω

∗}.
This inequality together with (20) give (15) for θ = 1. With this we conclude the
proof.
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3. Main Results

We are ready for the proof of

Theorem 1. Let μ′ > 0 a.e. on B. Assume that (10), (11), and (14) take place. Then,
on each compact subset K ⊂ C\(A ∪ B), we have

lim
n

‖μ̂ − Rn‖1/n
K = sup

z∈K
exp{(θ − 2)[ω∗ − Vλ∗−α(z)]}.(24)

Moreover, on each compact subset K ⊂ C\B such that cap(K ) > 0,

lim
n

‖μ̂ − Rn‖1/n
K = sup

z∈K
exp{(θ − 2)[ω∗ − Vλ∗−α(z)]},(25)

where cap(·) denotes the logarithmic capacity of the indicated set.

Proof. Take K as indicated above depending on whether it is contained in C\(A ∪ B)

or C\B. According to (5), on account of the properties which d1(z) and d2(z) satisfy on
C\B, we have

lim
n

‖μ̂ − Rn‖1/n
K = lim

n

∥∥∥∥ An

Bnq2
n

∥∥∥∥
1/n

K
,(26)

for K ⊂ C\(A ∪ B), and

lim
n

‖μ̂ − Rn‖1/n
K = lim

n

∥∥∥∥ An

Bnq2
n

∥∥∥∥
1/n

K
,(27)

for K ⊂ C\B, should the limits on the right-hand side of (26) and (27) exist.
Each factor under the norm sign on the right-hand sides have nth root asymptotics.

From (11) and the Lower Envelope Theorem (see [6, Theorem 3.8])

lim
n

|An(z)|1/n = exp{(θ − 2)Vα(z)},(28)

uniformly on each compact subset of positive capacity of C, with the existence of limit
in case that the compact set is contained in C\A without the requirement that it have
positive capacity. From (11), (15), and (16)

lim
n

|(Bnq2
n )(z)|1/n = exp{(θ − 2)[ω∗ − Vλ∗(z)]},(29)

uniformly on each compact subset of C\B.
Notice that the right-hand side of (28) is bounded away from +∞ on each compact

subset ofC, while the right-hand side of (29) is bounded away from zero on each compact
subset of C\B. From (26)–(29), readily follow (24) and (25).

Remark 1. We have supp(λ∗) = B; therefore, from (9) we know that Vλ∗−α(z) ≡ ω∗

on B. Since Vλ∗−α(z) is subharmonic on C̄\B, from the maximum principle, we have
that Vλ∗−α(z) < ω∗ on C̄\B (equality is not possible at any point of C̄\B since Vλ∗−α(z)
cannot be constantly equal to ω∗ on all C̄). Therefore, (24) and (25) indicate that the
Padé-type approximants converge uniformly to μ̂ with geometric rate on each compact
subset of C\(A ∪ B) and the exact rate is attained.
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Corollary 1. Let μ′ > 0 a.e. on B. Assume that (10), (11), and (14) take place with
limn∈� in place of limn , where � ⊂ N is an infinite sequence of indexes. Then, on each
compact subset K ⊂ C\(A ∪ B), we have

lim
n∈�

‖μ̂ − Rn‖1/n
K = sup

z∈K
exp{(θ − 2)[ω∗ − Vλ∗−α(z)]}.(30)

On each compact subset K ⊂ C\B such that cap(K ) > 0,

lim
n∈�

‖μ̂ − Rn‖1/n
K = sup

z∈K
exp{(θ − 2)[ω∗ − Vλ∗−α(z)]}.(31)

Proof. It is an immediate consequence of the fact that in the proof of Theorem 1 no use
is made of the fact that the limits are taken following the complete sequence of natural
numbers.

Let � ⊂ N be an infinit sequence of indexes and τ and a measure. We say that

lim
n∈�

(1/n)βn ≤ τ

if any convergent subsequence {(1/n)βn},n ∈ �′ ⊂ �, satisfie that τ−limn∈�′(1/n)βn ≥
0 (is a positive measure on B). In all that follows

θ1 = lim
n

m(n)

n
and θ2 = lim

n

m(n)

n
.

From Corollary 1 the following generalization of Theorem 1 is easy to obtain.

Corollary 2. Let μ′ > 0 a.e. on B. Assume that there exists a fixed unit positive Borel
measure α such that for each sequence of indexes � ⊂ N for which {(1/n)αn}, n ∈ �,
is convergent, there exists θ� such that

lim
n∈�

1
n
αn = (2− θ�)α and lim

n∈�

1
n
βn ≤ (2− θ�)λ∗.(32)

Then, on each compact subset K ⊂ C\(A ∪ B), we have

lim
n

‖μ̂ − Rn‖1/n
K = sup

z∈K
exp{(θ1 − 2)[ω∗ − Vλ∗−α(z)]},(33)

and
lim

n
‖μ̂ − Rn‖1/n

K = sup
z∈K

exp{(θ2 − 2)[ω∗ − Vλ∗α(z)]}.(34)

On each compact subset K ⊂ C\B such that cap(K ) > 0,

lim
n

‖μ̂ − Rn‖1/n
K = sup

z∈K
exp{(θ2 − 2)[ω∗ − Vλ∗−α(z)]}.(35)

Additionally, if (10) takes place, then (24) and (25) hold true.

Proof. Let θ be any one of the accumulation points of the sequence {m(n)/n}, n ∈ N,
then there exists a sequence of indexes � ⊂ N such that

lim
n∈�

m(n)

n
= θ = θ� (∈ [θ1, θ2]).
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The family of measures {(1/n)αn}, {(1/n)βn}, are relatively compact in the weak-star
topology; therefore, using (32), there exists a subsequence of indexes �′ ⊂ �, such that

lim
n∈�′

1
n
αn = (2− θ�)α, lim

n∈�′

1
n
βn = θ�β�, (2− θ�)λ∗ − θ�β� ≥ 0.

From Corollary 1, we conclude that:

(a) On each compact subset K ⊂ C\(A ∪ B), we have

lim
n∈�′

‖μ̂ − Rn‖1/n
K = sup

z∈K
exp{(θ� − 2)[ω∗ − Vλ∗−α(z)]}.(36)

(b) On each compact subset K ⊂ C\B such that capK > 0,

lim
n∈�′

‖μ̂ − Rn‖1/n
K = sup

z∈K
exp{(θ� − 2)[ω∗ − Vλ∗−α(z)]}/(37)

The sequence {m(n)/n}, n ∈ N, is also relatively compact in the usual topology of
R, therefore the limsup and liminf in (33)–(35) must be equal to some expression as
in the right-hand side of (36) and (37) where θ� is one of the accumulation points of
the sequence {m(n)/n}, n ∈ N. Since the factor [ω∗ − Vλ∗−α(z)] does not depend on
�, (33)–(35) follow. The last statement in Corollary 2 is an immediate consequence of
(33)–(35).

The next two corollaries are particular cases of special interest.
Assume that A reduces to a single point a of the real line. Denote by δa the Dirac

measure with mass at {a}. δa will play the role of α in Corollary 2. Obviously, {(1/n)αn},
n ∈ �, is convergent, if and only if there exists θ� such that

lim
n∈�

1
n
αn = (2− θ�)δa .(38)

In this case,−Vα(z) = −Vδa (z) = − log |z − a|−1, and using (12)–(13), we can fin the
corresponding ω∗ and λ∗. In fact,

ω∗ = gB(a, ∞) and dλ∗(x) = (a2 − 1)1/2

|x − a|
dx

π(1− x2)1/2
.(39)

But in this simple case, in order to obtain a reduced expression of the right-hand sides
in (33)–(35) it is better to proceed differently. Equation (9) indicates that

ω∗ − Vλ∗(x) + log |x − a|−1 ≡ 0, x ∈ B.

Sinceω∗−Vλ∗(z)+log |z−a|−1 is harmonic in C̄\(B∪{a}) and behaves like log |z−a|−1
on a neighborhood of {a}, it follows that

ω∗ − Vλ∗−α(z) = ω∗ − Vλ∗(z) + log |a − z|−1 ≡ gB(z, a),

where gB(z, a) denotes Green’s function for the region C̄\B with singularity at point
{a}. It is well known and easy to verify that

gB(z, a) = − log |ϕ(z, a)|,
where ϕ(z, a) is any conformal representation of C̄\B onto the interior of the unit disk
which transforms point a into 0.
In the following corollary θ� is as indicated in (38) and λ∗ as in (39).
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Corollary 3. Let μ′ > 0 a.e. on B and A = {a}. Assume that

lim
n∈�

1
n
βn ≤ (2− θ�)λ∗.(40)

Then, on each subset K ⊂ \(A ∪ B), we have

lim
n

‖μ̂ − Rn‖1/n
K = sup

z∈K
|ϕ(z, a)|2−θ1 ,

and

lim
n

‖μ̂ − Rn‖1/n
K =

∑
z∈K

|ϕ(z, a)|2−θ2 .

On each compact subset K ⊂ C\B such that cap(K ) > 0,

lim
n

‖μ̂ − Rn‖1/n
K = sup

z∈K
|ϕ(z, a)|2−θ2 .

Remark 2. Corollary 3 reduces to the theorem and corollary in [2] when a = ∞. In
this case, condition (40) is replaced by

lim
n∈�

1
n
βn ≤ (2− θ�)

dx
π(1− x2)1/2

,

where θ� = limn∈� m(n)/n is any one of the accumulation points of the sequence
{m(n)/n}, n ∈ N, and

|ϕ(z, ∞)| = |z − (z2 − 1)1/2|.

In the next application A is a compact set with connected complement which is regular
with respect to Dirichlet’s problem. Let h(z) be the harmonic function in C̄\(A ∪ B)

which can be continuously extended to all C̄ with constant value 0 on B and 1 on
A. Let C = C(A, B) be the capacity of the condenser (A, B) (also called Green’s
capacity of A in the region C̄\B; see, e.g., [6, Chap. II, No. 18], also [3]). Denote
H(z) = (1/C)(h(∞) − h(z)).
From Green’s formula it is possible to obtain the following representation:

H(z) = VλB and ω∗ = 1
C

h(∞),

when we take on B the exterior fiel induced by α = λA.

Corollary 4. Let μ′ > 0 a.e. on B. Assume that for each sequence of indexes � ⊂ N
for which {(1/n)αn}, n ∈ �, is convergent, there exists θ� such that

lim
n∈�

1
n
αn = (2− θ�)λA and lim

n∈�

1
n
βn ≤ (2− θ�)λB .
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Then, on each compact subset K ⊂ C\(A ∪ B), we have

lim
n

‖μ̂ − Rn‖1/n
K = sup

z∈K
exp

{
θ1 − 2)h(z)

C

}
,

and

lim
n

‖μ̂ − Rn‖1/n
K = sup

z∈K
exp

{
(θ2 − 2)h(z)

C

}
.

On each compact subset K ⊂ C\B such that cap(K ) > 0,

lim
n

‖μ̂ − Rn‖1/n
K = sup

z∈K
exp

{
(θ2 − 2)h(z)

C

}
.

Remark 3. A version of Corollary 4 for multipoint Padé approximants is Theorem 2
in [3] (we also refer to Theorem 6.1.6 in [8]).

Remark 4. The restriction μ′ > 0 a.e. comes exclusively from Lemma 3 which as
pointed out above is an immediate consequence of Theorem 1 in [4]. Following their
proof, it is not hard to verify that the same result holds if B is a finit union of intervals,
supp(μ) ⊂ B and μ′ > 0 a.e. on B. It is harder to prove, but still true that Lemma 3
remains valid if μ is a measure with compact support contained in R and μ ∈ Reg (for
the definitio see [8]). We limit ourselves to pointing out that a sufficien condition for
μ ∈ Reg is that

cap(supp(μ)) = cap({x ∈ supp(μ) : μ′ > 0})
(see Theorem 4.1.4 in [8]). If μ ∈ Reg the only additional assumption to the ones
imposed above in order that Theorem 1 (and its corollaries) take place is that A ⊂
C\conv(supp(μ)),where conv(supp(μ))denotes the smallest interval containing supp(μ).

4. Applications to Quadratures

Notice that (3) implies that (μ̂ − Rn)/An is holomorphic in C\B and

μ̂ − Rn

An
(z) = O

(
1

z2n−m(n)+1

)
as z −→ ∞.(41)

Consider the partial fraction decomposition of Rn

Rn(z) =
N∑

i=1

Mj∑
j=1

j!An
i, j

(z − xn,i ) j+1 .(42)

N denotes the total number of distinct poles of Rn . The points xn,i are zeros of Qn Bn .
Though the zeros of Qn are simple (see (2)) theymay coincidewith zeros of Bn; therefore,
for given xn,i any value of Mj is possible. Obviously, N = N (n) and Mj = Mj (n, i),
but in order to simplify the notation, we omit the explicit reference to this dependence.

12



Lemma 5. For any polynomial p of degree ≤ 2n − m(n) − 1, we have∫ p
An

(x) dμ(x) =
N∑

i=1

Mj∑
j=1

An
i, j

(
p

A)n

)( j)

(xn,i ).(43)

Proof. If p is a polynomial of degree≤ 2n−m(n)−1, then due to (41), p(μ̂− Rn)/An
has a zero at infinit of order at least two and is holomorphic in C\b. Proceedings as in
the proof of (2), and using (42), we obtain

0 =
∫

�

p(μ̂ − Rn)

An
(z) dz =

∫
�

pμ̂

An
(z) dz −

∫
�

pRn

An
(z) dz

= 2π i

[∫ p
An

(x) dμ(x) −
n∑

i=1

Mj∑
j=1

An
i, j

(
p
An

)( j)

(xn,i )

]
.

This formula is equivalent to (43).

Let f be a continuous function on B such that the operations indicated in the following
expressions have sense. Denote

I ( f ) =
∫

f (x) dμ(x), In( f ) =
N∑

i=1

Mj∑
j=1

An
i, j f ( j)(xn,i ).

Formula (43) indicates that for any polynomial p of degree ≤ 2n − m(n) − 1

In

(
p
An

)
= I

(
p
An

)
.

As we show below, if f is analytic on a neighborhood V of B, then
lim

n
In( f ) = I ( f ).

From the definition of I ( f ), In( f ) and using arguments similar to those in the proofs
of Lemmas 1 and 5, it is easy to verify

Lemma 6. Let f ∈ H(V ). Then, for any contour � contained in V such that B ⊂
Int(�), we have

I ( f ) − In( f ) = 1
2π i

∫
�

f (z)(μ̂ − Rn)(z) dz.(44)

Now, we can prove

Theorem 2. Let f ∈ H(v). Under the conditions of Theorem 1, we have
lim

n
|I ( f ) − In( f )|1/n ≤ sup

z∈∂V
exp{(θ − 2)[ω∗ − Vλ∗−α(z)]}.(45)

Denote
qn( f ) = |I ( f ) − In( f )|,

then
sup

f
lim

n
qn( f )1/n = sup

z∈∂V
exp{(θ − 2)[ω∗ − Vλ∗−α(z)]},(46)

where cap(∂V ) > 0.
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Proof. Take � as indicated in Lemma 6. From (44) and (25), it follows that

lim
n

|I ( f ) − In( f )|1/n ≤ sup
z∈�

exp{(θ − 2)[ω∗ − Vλ∗−α(z)]}.

We can take � as close to ∂V as we please; therefore, (45) immediately follows.
Since the right side of (45) does not depend on f ∈ H(V ), it follows that

sup
f
lim

n
q1/n

n ≤ sup
z∈∂V

exp{(θ − 2)[ω∗ − Vλ∗−α(z)]}.

For the lower bound it is sufficien to notice that fz(x) = (z − x)−1, z ∈ C\V , belongs
to H(V ), and

I ( fz) − In( fz) = μ̂(z) − Rn(z).

Therefore, by use of (25), we conclude with (46).

We leave to the reader the statement of the corresponding results when the conditions
of Corollaries 1–4 are imposed.
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