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Abstract

The concepts of definite and determinate Sobolev moment problem are introduced.
The study of these questions is reduced to the definiteness or determinacy, respectively,
of a system of classical moment problems by means of a canonical decomposition of the
moment matrix associated with a Sobolev inner product in terms of Hankel matrices.
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1. Introduction

In the past two decades, there has been a growing interest in the study of the so called
Sobolev inner products and the orthogonal polynomials defined by them. Such inner
products are of the form

〈f, g〉S =
d∑

k=0

〈f (k), g(k)〉k , (1)

where d ∈ IN is a fixed nonnegative integer,

〈f, g〉k =
∫

Σk

f(x)g(x)dµk(x) , k = 0, 1, . . . , d,

and (µ0, . . . , µd), µd 6= 0, is a system of positive measures whose supports satisfy

supp(µk) ⊂ Σk ⊂ IR , k = 0, 1 . . . , d .

For a survey on recent advances of the algebraic aspect of the theory, inner products
defined with classical weights, and the so called coherent pairs of measures see [1] and [5].
Recently, some important steps have been taken in the study of the asymptotic properties
of Sobolev orthogonal polynomials defined through general measures. An account on this
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grant from Agencia Española de Cooperación Internacional.

1

Nota adhesiva
Published in: Journal of Approximation Theory, 1999, vol. 100, n. 2, p. 364-380



matter may be found in [4]. Nevertheless, to our knowledge, the moment theory of Sobolev
inner products has not been treated so far. The object of this paper is to fill this absence.

We consider the following question (in the sequel S-moment problem). Given

(M ; Σ0,Σ1, . . . , Σd) ,

where M = (ci,j)
∞
i,j=0 is an infinite matrix of real numbers, and Σk , k = 0, 1, . . . , d , are

subsets of the real line, find a system of d + 1 positive measures (µ0, µ1, . . . , µd) with
supp(µk) ⊂ Σk , k = 0, 1, . . . , d, µd 6= 0, such that

ci,j = 〈xi, xj〉S ∈ IR , i, j = 0, 1, . . . , (2)

takes place. In the sequel, the values ci,j are called S-moments. When Σk = IR , k =
0, 1, . . . , d , we drop Σk from the notation and refer to the SH-moment problem (Sobolev-
Hamburger moment problem) for M .

Definition 1 We say that the S-moment problem for (M ; Σ0, Σ1, . . . ,Σd) , is definite if it
has at least one solution. This problem is said to be determinate if the solution is unique.

It is easy to see that when d = 0 a necessary and sufficient condition for the corre-
sponding S-moment problem to be determinate is that: 1) M be a Hankel matrix, and 2)
that the ordinary moment problem for the sequence {ci} of numbers given by the first row
of M be determinate. In this sense, the S-moment problem extends the classical moment
problem. Thus, in the sequel, we refer indistinctly to the (M ; Σ) or the ({ci}; Σ) moment
problem. We reduce the study of the S-moment problem to a system of d + 1 classical
moment problems.

Before stating the main result, let us introduce some necessary notation. Let us as-
sume that the S-moment problem (M ; Σ0, . . . , Σd) has for solution the system of measures
(µ0, . . . , µd). Denote by M = (ci,j)

∞
i,j=0 the infinite matrix whose entry at the position

(i, j) is the S-moment ci,j given by (2). Due to (1) and (2), we have

ci,j =
δ∑

k=0

i!
(i− k)!

j!
(j − k)!

∫

Σk

xi+j−2kdµk(x) , δ = min{i, j, d} , i, j = 0, 1, . . . . (3)

Let M (k) =
(
ck
i

)∞
i=0

be the moment matrix associated to the measure µk , k = 0, 1 , . . . , d,

where
ck
i =

∫

Σk

xmdµk .

M (k) , k = 0, 1, . . . , is a Hankel matrix. From (3), it follows that

ci,j =
δ∑

k=0

i!
(i− k)!

j!
(j − k)!

ck
i+j−2k , i, j = 0, 1, . . . , (4)

with δ = min{i, j, d}. Set Sk =
(
sk
i,j

)∞
i,j=0

, with

sk
i,j =





i!
(i− k)!

, i− j = k , k = 0, . . . , d ,

0 otherwise.
(5)
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Notice that Sk equals the k-th power of the matrix S1 and, in particular, S0 is the infinite
identity matrix. In the sequel, At denotes the transpose of (the finite or infinite) matrix A.
Considering the formal product between infinite matrices (which is well defined because
Sk and (Sk)t have in each row and column at most one element different from zero), from
(4) we have

M =
d∑

k=0

SkM (k)(Sk)t . (6)

This equality is the matrix form of relations (4).
Let us return to the general problem. We have

Theorem 1 Given (M ; Σ0, . . . , Σd), the S-moment problem is definite (determinate) if
and only if M admits a decomposition of the form (6), where M (k), k = 0, . . . , d, are
Hankel matrices, Sk is defined by (5), and the moment problems (M (k); Σk) are definite
(determinate) for each k.

The paper is divided as follows. In section 2, we obtain some auxiliary results. We
show that a matrix M admits only one decomposition of type (6) if any. Then we give some
criteria which allows to determine when M can be decomposed in such form. Theorem 1 is
proved in section 3 and some corollaries are given which follow from the classical moment
theory. Section 4 is devoted to the connection between the moment matrix M and the
recurrence relation which satisfy Sobolev orthogonal polynomials.

2. Auxiliary results

In this section, our main object is to study when an infinite matrix M is decomposable
in the form (6) for some set {M (k) : k = 0, 1, . . . , d},M (d) 6= 0, of Hankel matrices and
Sk as defined above. This question has an algebraic character. We will assume that M
is a real symmetric matrix because obviously this is a necessary condition for (6) to take
place since Hankel matrices are symmetric. The following lemma is the key to all further
considerations.

Lemma 1 Let M = (ci,j)
∞
i,j=0 be an infinite symmetric matrix and M (k) , k = 0, 1, . . . , d ,

infinite Hankel matrices such that (6) takes place and M (d) 6= 0. Then this is the unique
decomposition of this form of M .

Proof. Assume that M̃ (0), M̃ (1), . . . , M̃ (d′) are also infinite Hankel matrices with respect
to which (6) takes place, M̃ (d′) 6= 0. We must prove that d = d′ and M (k) = M̃ (k) , k =
0, . . . , d .

For definiteness, we can assume that d′ ≤ d (if d ≤ d′ the proof follows the same
arguments). If d′ < d, we complete the matrices M̃ (k) with zero matrices for k = d′ +
1, . . . , d.

Notice that for any matrix A, the first k rows (and columns) of SkA(Sk)t are identically
equal to zero. Since

M = S0M (0)(S0)t +
d∑

k=1

SkM (k)(Sk)t = S0M̃ (0)0(S0)t +
d∑

k=1

SkM̃ (k)(Sk)t (7)
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and
M (0) = S0M (0)(S0)t , M̃ (0) = S0M̃ (0)(S0)t

it follows that the first row of M (0) and M̃ (0) coincide with the first row of M . Since M (0)

and M̃ (0) are Hankel matrices, we obtain that M (0) = M̃ (0). From this and (7),

M − S0M (0)(S0)t = S1M (1)(S1)t +
d∑

k=2

SkM (k)(Sk)t = S1M̃ (1)(S1)t +
d∑

k=2

SkM̃ (k)(Sk)t .

The second row of
∑d

k=2 SkM (k)(Sk)t and
∑d

k=2 SkM̃ (k)(Sk)t are identically zero; there-
fore, the second row of S1M (1)(S1)t and S1M̃ (1)(S1)t coincide with the second row of
M −S0M (0)(S0)t. From this, it immediately follows that the first row of M (1) is identical
to that of M̃ (1). Since these are Hankel matrices they are equal. Repeating the same
arguments, we obtain that M (k) = M̃ (k) , k = 0, . . . , d . Therefore, d′ < d is not possible
because then M̃ (d) = 0 6= M (d). Thus d = d′ and consequently M (k) = M̃ (k) , k = 0, . . . , d .

The proof of the previous lemma gives a practical method for finding the matrices
M (k) if one knows in advance that M is decomposable in the form (6). One needs some
necessary and sufficient condition in terms of the elements of M to determine if such a
decomposition is possible. Before proving the corresponding result (Theorem 2 below), we
need some auxiliary relations.

Lemma 2 For i, j ∈ IN and d ∈ {0, 1, . . .} fixed, we have

i∑

k=ν

(−1)k−ν

(k − ν)!
(i + j − ν − k − 1)!

(i− k)!(j − k)!
= 0 , ν = 0, 1, . . . , j ≥ i . (8)

and
d∑

k=ν

(−1)d−k

(k − ν)!(d− k)!
i + j − 2k

(i− k)(j − k)
(i + j − k − d− 1)!

(i + j − k − ν)!
=

(i− d− 1)!(j − d− 1)!
(i− ν)!(j − ν)!

, ν = 0, 1, . . . , d , i, j > d . (9)

Proof. Let us prove (8). Consider the polynomial

p(z) := (1 + z)i−ν−1 = (1 + z)i+j−2ν−1(1− z

1 + z
)j−ν .

Taking into account the binomial formula,

p(z) =
j−ν∑

n=0

(−1)n

(
j − ν

n

)
zn(1 + z)i+j−2ν−n−1 =

j−ν∑

n=0

(−1)n

(
j − ν

n

) i+j−2ν−n−1∑

m=0

(
i + j − 2ν − n− 1

m

)
zm+n . (10)

Since deg p = i−ν−1, the coefficient corresponding to zi−ν in (10) must be equal to zero.
That is,

0 =
i−ν∑

n=0

(−1)n

(
j − ν

n

)(
i + j − 2ν − n− 1

i− ν − n

)
.
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Taking n = k − ν , we obtain (8).
In order to prove (9), first let us consider the case when ν = 0; that is,

d∑

k=0

(−1)d−k

k!(d− k)!

(
1

i− k
+

1
j − k

)
(i + j − k − d− 1)!

(i + j − k)!
=

(i− d− 1)!(j − d− 1)!
i!j!

. (11)

Notice that

si(i + j, d) :=
d∑

k=0

(−1)d−k

k!(d− k)!
1

i− k

(i + j − k − d− 1)!
(i + j − k)!

=

1
Γ2(d + 1)

d∑

k=0

(−1)d−k

i− k

(
d

k

)
Γ(i− k + j − d)Γ(d + 1)

Γ(i− k + j + 1)
=

1
Γ2(d + 1)

d∑

k=0

(−1)d−k

(
d

k

)
1

i− k
β(i− k + j − d, d + 1) , (12)

where Γ(m) = (m−1)! , m ∈ ZZ , and β(m,n) = Γ(m)Γ(n)/Γ(m+n) are, respectively, the
usual Gamma and Beta functions. Using in (12) the integral representation of the Beta
function, we obtain

si(i + j, d) =
1

Γ2(d + 1)

d∑

k=0

(−1)d−k

(
d

k

) ∫ 1

0

xi−k

i− k
xj−d−1(1− x)ddx =

1
Γ2(d + 1)

d∑

k=0

(−1)d−k

(
d

k

) ∫ 1

0
xj−d−1(1− x)d

∫ x

0
ti−k−1dtdx =

1
Γ2(d + 1)

∫ 1

0
xj−d−1(1− x)d

∫ x

0
ti−d−1

(
d∑

k=0

(−1)d−k

(
d

k

)
td−k

)
dtdx =

1
Γ2(d + 1)

∫ 1

0
xj−d−1(1− x)d

∫ x

0
ti−d−1(1− t)ddtdx . (13)

Analogously, one proves that

sj(i + j, d) =
1

Γ2(d + 1)

∫ 1

0
ti−d−1(1− t)d

[∫ t

0
xj−d−1(1− x)ddx

]
dt . (14)

Formulas (13) and (14) (after interchanging integrals in (14)) allow us to rewrite the left
hand of (11) as

si(i + j, d) + sj(i + j, d) =

1
Γ2(d + 1)

[∫ 1

0
xj−d−1(1− x)ddx

] [∫ 1

0
ti−d−1(1− t)ddt

]
=

1
Γ2(d + 1)

β(j − d, d + 1)β(i− d, d + 1) =
Γ(j − d)Γ(i− d)
Γ(j + 1)Γ(i + 1)

,

which proves (9) for ν = 0.
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Now, let ν ∈ {1, 2, . . . , d}. The change of parameters k = k + ν , d = d + ν , i =
i + ν , j = j + ν allow to reduce the left hand of (9) to the case just studied. That is, the
left hand of (9) equals

d∑

k=0

(−1)d−k

k!(d− k)!
i + j − 2k

(i− k)(j − k)
(i + j − k − d− 1)!

(i + j − k)!
=

(i− d− 1)!(j − d− 1)!
i!j!

, i , j > d ,

which is equivalent to the expression on the right hand of (9). With this we conclude the
proof.

The next result gives us conditions under which an infinite matrix M verifies (6).

Theorem 2 Let M = (ci,j)
∞
i,j=0 be an infinite real matrix. A necessary and sufficient con-

dition in order that there exist infinite Hankel matrices M (0) , M (1) , . . . , M (d) satisfying
(6) is

ci,j =
d∑

k=0

αk(i, j)ck,i+j−k , ∀i, j ∈ IN , i, j > d,

ci,j = cj,i , ∀i, j = 0, 1, . . . ,





(15)

where

αk(i, j) =
(−1)d−k

k!(d− k)!
i + j − 2k

(i− k)(j − k)
(i + j − k − d− 1)!

(i + j − k)!
i!j!

(i− d− 1)!(j − d− 1)!
. (16)

Proof. First we prove that condition (15) is necessary. Since the Hankel matrices
M (0),M (1), . . . ,M (d) are symmetric, from (6) we have that M is a symmetric matrix
and the second part of (15) holds. Moreover, if (6) holds with M (k) =

(
ck
i,j

)∞
i,j=0

, for

each k = 0, 1, . . . , d , then since M (k) is a Hankel matrix there exists a sequence of numbers
{ck

p} , p = 0, 1, . . . , such that ck
i,j = ck

p whenever i + j = p. With this definition of the
numbers ck

p, it follows from (6) that (4) takes place for all ci,j . In particular, for each
k = 0, 1, . . . , d fixed and i, j ≥ d,

ck,i+j−k =
k∑

ν=0

k!
(k − ν)!

(i + j − k)!
(i + j − k − ν)!

cν
i+j−2ν . (17)

Moreover, from (4), (9) and (16), for i, j > d we obtain

ci,j =
d∑

ν=0

i!
(i− ν)!

j!
(j − ν)!

cν
i+j−2ν =

d∑

ν=0

i!
(i− d− 1)!

j!
(j − d− 1)!

cν
i+j−2ν

[
(i− d− 1)!(j − d− 1)!

(i− ν)!(j − ν)!

]
=
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d∑

ν=0

i!
(i− d− 1)!

j!
(j − d− 1)!

cν
i+j−2ν×

[
d∑

k=ν

(−1)d−k

(k − ν)!(d− k)!
i + j − 2k

(i− k)(j − k)
(i + j − k − d− 1)!

(i + j − k − ν)!

]
=

d∑

k=0

αk(i, j)
k∑

ν=0

k!
(k − ν)!

(i + j − k)!
(i + j − k − ν)!

cν
i+j−2ν , i, j > d .

Then, using (17), we arrive to (15).
Now, we prove that condition (15) is sufficient. We may define the Hankel matrices

M (k) =
(
ck
m,n

)∞
m,n=0

for k = 0, 1, . . . , d , where ck
m,n = ck

j if m + n = j, and ck
j is defined

as

ck
j :=

k∑

ν=0

(−1)k−ν

ν!(k − ν)!
(j + 2k − 2ν)(j + k − ν − 1)!

(j + 2k − ν)!
cν,j+2k−ν . (18)

We wish to show that (6) holds. For this purpose, take

M̃ =
d∑

k=0

SkM (k)(Sk)t . (19)

If M̃ = (c̃i,j), from (19) we obtain

c̃i,j =
δ∑

k=0

i!
(i− k)!

j!
(j − k)!

ck
i+j−2k , i, j = 0, 1, . . . , (20)

where δ = min{i, j, d}. Using the expression for ck
i+j−2k given by (18) and substituting in

(20), we find that

c̃i,j =
δ∑

k=0

i!
(i− k)!

j!
(j − k)!

k∑

ν=0

(−1)k−ν

ν!(k − ν)!
(i + j − 2ν)(i + j − k − ν − 1)!

(i + j − ν)!
cν,i+j−ν =

δ∑

ν=0

i!j!(i + j − 2ν)
ν!(i + j − ν)!

δ∑

k=ν

(−1)k−ν

(k − ν)!
(i + j − k − ν − 1)!

(i− k)!(j − k)!
cν,i+j−ν . (21)

We must prove that c̃i,j = ci,j , i, j = 0, 1, . . . . Since M and M̃ are symmetric matrices
(see (15) and (20)) it is sufficient to consider that i ≤ j. If i ≤ d, we have that δ = i and
(21) can be expressed as

c̃i,j = ci,j +
i−1∑

ν=0

i!j!(i + j − 2ν)
ν!(i + j − ν)!

i∑

k=ν

(−1)k−ν

(k − ν)!
(i + j − k − ν − 1)!

(i− k)!(j − k)!
cν,i+j−ν .

Because of (8) in Lemma 2, we obtain

c̃i,j = ci,j . (22)

If d < i, since c̃k,i+j−k = ck,i+j−k for k ≤ d (see (22)), from (15) and (20) we have

ci,j =
d∑

k=0

αk(i, j)c̃k,i+j−k =
d∑

k=0

αk(i, j)
k∑

ν=0

k!(i + j − k)!
(k − ν)!(i + j − k − ν)!

cν
i+j−2ν =
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d∑

ν=0

d∑

k=ν

αk(i, j)
k!(i + j − k)!

(k − ν)!(i + j − k − ν)!
cν
i+j−2ν =

d∑

ν=0

i!
(i− d− 1)!

j!
(j − d− 1)!

d∑

k=ν

(−1)d−k

(d− k)!
i + j − 2k

(i− k)(j − k)
(i + j − k − d− 1)!

(i + j − k − ν)!(k − ν)!
cν
i+j−2ν .

Thus, from (9)

ci,j =
d∑

ν=0

i!
(i− ν)!

j!
(j − ν)!

cν
i+j−2ν ,

which is c̃i,j according to (20).

A consequence of the sufficiency proof of Theorem 2 and Lemma 1 is

Corollary 1 Assume that M = (ci,j)
∞
i,j=0 admits a decomposition of form (6), then for

each k = 0, . . . , d the sequence {ck
j } , j = 0, 1, . . . , which determines the Hankel matrix

M (k) =
(
ck
m,n

)∞
m,n=0

, where ck
m,n = ck

j , if m + n = j, is given by formula (18).

Proof. In fact, if M satisfies (6) for some (M (0), . . . ,M (d)) then (15) holds. In this case,
in the proof of Theorem 2, it was shown that M also satisfies (6) for M̃ (0), . . . , M̃ (d), where
M̃ (k) =

(
ck
m,n

)∞
m,n=0

and

ck
m,n = ck

j =
k∑

ν=0

(−1)k−ν

ν!(k − ν)!
(j + 2k − 2ν)(j + k − ν − 1)!

(j + 2k − ν)!
cν,j+2k−ν , if m + n = j .

But according to Lemma 1 the decomposition of M in form (6) is unique, thus M (k) = M̃ (k)

and the elements of M (k) are given by formula (18).

Remark 1 Formula (9) for ν = 0 indicates that

d∑

k=0

αk(i, j) = 1

for each pair (i, j) of indices. That is, from Theorem 2, we know that it is possible to write
each entry ci,j of an anti-diagonal of M as a linear combination (15) of the first d + 1
elements in this anti-diagonal whose coeffients sum one, c0,i+j , c1,i+j−1, . . . , cd,i+j−d. In
this sense these matrices generalize Hankel matrices.

3. The S-moment problem

We are ready for the study of the definiteness and determinacy of the S-moment
problem (M ; Σ0, . . . ,Σd).

Proof of Theorem 1. Assume that the S-moment problem is definite. As we saw in the
introduction (6) takes place with M (k) the moment matrix associated with the measure µk.
Therefore, the ordinary moment problems (M (k); Σk) are definite for each k = 0, . . . , d.
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If for some k the moment problem (M (k); Σk) is indeterminate, then obviously the S-
moment problem is indeterminate because we would have two measures µ1

k , µ2
k giving the

same moment matrix M (k) without affecting relations (4) (equivalent to (6)) and thus
(2) would take place for the sets of measures (µ0, . . . , µ

1
k, . . . , µd) and (µ0, . . . , µ

2
k, . . . , µd).

This settles the necessity.
Conversely, if for each k = 0, . . . , d the moment problem (M (k); Σk) is definite then

there exist measures µ0, . . . , µd whose moment matrices are M (0), . . . , M (d) respectively.
From (6), we have that the elements ci,j of M are related with the elements of the Hankel
matrices M (0), . . . , M (d) through relations (4) which imply (2). That is, the S-moment
problem is definite. Suppose that the S-moment problem is not determinate. Then there
exist two distinct systems of measures (µ1

0, . . . , µ
1
d) , (µ2

0, . . . , µ
2
d) , supp(µi

k) ⊂ Σk , i ∈
{1, 2} , k = 0, . . . , d , whose Hankel matrices (M (0)

1 , . . . ,M
(d)
1 ) , (M (0)

2 , . . . , M
(d)
2 ) are re-

lated with M through (6). According to Lemma 1, M
(k)
1 = M

(k)
2 , k = 0, . . . , d . But at

least for some k , µ1
k 6= µ2

k and supp(µi
k) ⊂ Σk , i = 1, 2 . This means that the moment

problem (M (k); Σk) is indeterminate. With this we conclude the proof.

From Theorems 1 and 2, we obtain

Corollary 2 Given (M ; Σ0, . . . , Σd) the S-moment problem is definite (determinate) if
and only if

i) (15) holds

ii) for each k = 0, 1, . . . , d , the ordinary moment problem (
{
ck
j

}
; Σk) is definite (deter-

minate), where ck
j is given by (18).

Proof. It is sufficient to point out that according to Theorem 2, (6) and (15) are equiv-
alent. On the other hand, from Corollary 1 we have that under (6) the elements ck

i of
the first row of the Hankel matrix M (k) are given by formula (18). The rest of the proof
follows directly from Theorem 1.

Theorem 1 is the link needed in order to translate results from the classical theory of
moments into the context of the Sobolev moment problem. Before stating some of these
consequences, let us introduce some new notation. For all n ∈ IN, set

∆k
n :=

∣∣∣∣∣∣∣∣∣∣

ck
0 ck

1 · · · ck
n−1

ck
1 ck

2 · · · ck
n

...
...

. . .
...

ck
n−1 ck

n · · · ck
2n−2

∣∣∣∣∣∣∣∣∣∣

,
(
∆k

n

)(1)
:=

∣∣∣∣∣∣∣∣∣∣

ck
1 ck

2 · · · ck
n

ck
2 ck

3 · · · ck
n+1

...
...

. . .
...

ck
n ck

n+1 · · · ck
2n−1

∣∣∣∣∣∣∣∣∣∣

where ck
j , j = 0, 1, . . . , is given by (18).

Corollary 3 The SH-moment problem is definite if and only if

i) (15) holds
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ii) for each k ∈ {0, 1, . . . , d} , either

∆k
n > 0 for all n = 1, 2, . . .

or for some m ∈ IN we have

∆k
1,∆

k
2, . . . , ∆

k
m > 0 and ∆k

j = 0 j = m + 1, m + 2, . . . .

Proof. It is immediate from Theorem 1 and the classical condition for determinacy of the
Hamburger moment problem (see [6], p. 5).

The following two corollaries are also consequences of Theorem 1 and known results
for definiteness in moment theory (see [6] pp. 5-9 and [2] p. 64).

Corollary 4 A definite S-moment problem (M ; Σ0, . . . , Σd) has a solution with

supp(µk) ⊂ [0,+∞)

for some k ∈ {0, 1, . . . , d} if and only if either

∆k
n > 0 ,

(
∆k

n

)(1)
> 0 for all n = 0, 1, . . . ,

or for some m ∈ IN we have

∆k
n > 0 ,

(
∆k

n

)(1)
> 0 , n = 0, 1, . . . , m and ∆k

n =
(
∆k

n

)(1)
= 0 , n = m + 1, . . . .

Corollary 5 A definite S-moment problem (M ; Σ0, . . . , Σd) has a solution with

supp(µk) ⊂ [a, b]

for some k ∈ {0, 1, . . . , d} if and only if

∞∑

i,j=0

ck
i+jxixj ,

∞∑

i,j=0

[
(a + b)ck

i+j−1 − abck
i+j − ck

i+j−2

]
xixj

are two non-negative infinite quadratic forms.

Regarding determinacy, we have (see [6], p. 19)

Corollary 6 A definite S-moment problem (M ; Σ0, . . . ,Σd) such that each set Σk, k =
0, . . . , d, is a bounded interval of the real line is determinate.

Corollary 7 A definite SH-moment problem is determinate if for each k = 0, . . . , d

∞∑

n=0

|ck
2n|

−1/2n
= ∞. (23)

In particular, this is true if
∞∑

n=d

|cd,2n−d|−1/2n = ∞. (24)
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Proof. From (23), we have that Carleman’s sufficient condition for determinacy of the
moment problem is satisfied for each (M (k),Σk), k = 0, . . . , d. Hence, according to Theorem
1, the Sobolev moment problem is determinate.

From (4), we obtain

cd,2n−d =
d∑

k=0

d!
(d− k)!

(2n− d)!
(2n− d− k)!

ck
2n−2k , n = d, d + 1, . . . .

Since the terms on the right hand of this equality are all positive, it follows that

ck
2n−2k ≤ cd,2n−d , k = 0, . . . , d.

Therefore, using (24), we have that for each k = 0, . . . , d

∞ =
∞∑

n=d

|cd,2n−d|−1/2n ≤
∞∑

n=d

|ck
2n−2k|

−1/2n
,

which is equivalent to what we needed to prove.

Notice that analogous sufficient conditions for the determinacy of the SH-moment
problem may be stated in terms of any of the rows of matrix M below row d + 1.

4. S-moment matrices and recurrence relations of Sobolev orthogonal
polynomials

In the following, we assume that the S-moment problem (M ; Σ0, . . . , Σd) is definite.
Let (µ0, µ1, . . . , µd) be a solution. We also assume that supp(µk) is an infinite set for some
k ∈ {0, 1, . . . , d}. The n-th principal section Mn of M is formed by the S-moments

ci,j = 〈zi, zj〉S , i, j = 0, . . . , n− 1 .

From definition (1) and the fact that ∪d
i=0supp(µi) contains infinitely many points, it is

obvious that 〈· , ·〉S defines a real positive definite quadratic form on the space of polyno-
mials of degree ≤ n−1 and thus its matrix representation Mn in the basis {1, z, . . . , zn−1}
is a real positive definite matrix. In particular, from Sylvester’s Theorem, for each n ∈ IN,
we have that the determinant of Mn is greater than zero for all n. Thus, for each n, the
following system of equations has a unique solution (an,0, an,1, . . . , an,n−1) ,

n−1∑

k=0

an,k〈xk, xi〉S = −〈xn, xi〉S , i = 0, 1, . . . , n− 1 .

In other words, there exists a unique monic polynomial Pn of degree n,

Pn(x) = xn +
n−1∑

k=0

an,kx
k ,

such that
〈Pn, xi〉S = 0 , i = 0, 1, . . . , n− 1 .
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Then {Pn} , n = 0, 1, . . . , is the sequence of (monic) orthogonal polynomials with respect
to the inner product given by (1).

Let ‖Pj‖2
S = 〈Pj , Pj〉S , j = 0, 1, . . . . We introduce the sequence {pn} , n = 0, 1, . . . , of

orthonormal polynomials

pn(z) =
Pn(z)
‖Pn‖S

, n = 0, 1, . . . .

Obviously, the polynomial zpn−1(z) can be expressed in the form

zpn−1(z) =
n∑

j=0

〈zpn−1, pj〉Spj(z) , n ≥ 1. (25)

Let

D =




〈zp0, p0〉S 〈zp1, p0〉S 〈zp2, p0〉S · · ·
〈zp0, p1〉S 〈zp1, p1〉S 〈zp2, p1〉S · · ·

〈zp1, p2〉S 〈zp2, p2〉S · · ·
. . . . . . . . .




(26)

and Dm,m = 1, 2, . . . , be the m-th principal section of D. By Dt
m we denote the transpose

of Dm. For each z ∈ IC such that pm(z) = 0, relations (25) can be expressed in matrix
form as

(Dt
m − zIm)vm(z) = 0

where
vm(z)t = (p0(z), p1(z), . . . , pm−1(z)) .

Thus, the zeros of pm are the eigenvalues of Dm. That is

σ(Dm) = {z : pm(z) = 0} . (27)

For each n = 1, 2, . . . , Mn is a symmetric positive definite matrix; therefore, there
exists a unique Cholesky factorization

Mn = TnT t
n . (28)

(see [3]), where Tn is a lower triangular matrix of order n. It is well known and easy to
verify that Tn is the n-th principal section of Tn+1. Thus, Tn is the n-th principal section
of an infinite lower triangular matrix T given by

T =




τ0,0

τ1,0 τ1,1
...

...
. . .

τi,0 τi,1 · · · τi,i
...

...
. . .




, (29)

τi,j ∈ IR , i, j = 0, 1, . . . and τi,i > 0 , i = 0, 1, . . . .
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Theorem 3 For each n = 1, 2, . . . , we have

Tn




p0(z)
p1(z)

...
pn−1(z)




=




1
z
...

zn−1




, for all z ∈ IC. (30)

and
Dn = T−1

n M ′
n(T−1

n )t ,

where M ′
n is the n-th principal section of the infinite matrix

M ′ =




c0,1 c0,2 · · ·
c1,1 c1,2 · · ·
...

...
. . .




which is obtained eliminating the first column from M .

Proof. Let zm =
m∑

k=0

βm,kpk(z) , m = 0, 1, . . . . Notice that βm,m > 0, for all m = 0, 1, . . . .

Then

ci,j = 〈zi, zj〉S =
i∑

k=0

j∑

r=0

βi,kβj,r〈pk, pr〉S

where 〈pk, pr〉S = δk,r , k, r = 0, 1, . . . . Thus

ci,j =
min{i,j}∑

k=0

βi,kβj,k.

On the other hand, from (28) and (29), we obtain

ci,j =
min{i,j}∑

k=0

τi,kτj,k.

Thus, because of the uniqueness of the factorization (28), we have that βi,k = τi,k , i, k =
0, 1, . . . . That is,

zi =
i∑

k=0

τi,kpk(z) , i = 0, 1, . . . ,

which is equivalent to (30).
Set

pi(z) =
i∑

h=0

γi,hzh , i = 0, 1, . . . .

From (30), we have

T−1
n =




γ0,0

γ1,0 γ1,1
...

...
. . .

γn−1,0 γn−1,1 · · · γn−1,n−1




.
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Therefore, for any fixed j = 0, 1, . . .,

zpj(z) =
j∑

r=0

γj,rz
r+1 .

Let n ≥ i, j. The entry (i, j) of Dn which is given by 〈zpj , pi〉S satisfies

〈pi, zpj〉S =
i∑

h=0

j∑

r=0

γi,hγj,r〈zh, zr+1〉S =
i∑

h=0

j∑

r=0

γi,hγj,rcr+1,h .

Therefore, it is the (i, j) entry of matrix T−1
n M ′

n(T−1
n )t for any n ≥ i, j .

An immediate consequence of Theorem 3 is

Corollary 8 Let zn ∈ σ(Dn) and Dnwn = znwn with ‖wn‖ = 1. Then

zn = 〈M ′
n(T−1

n )twn, (T−1
n )twn〉 .
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