
Working Paper 99-78 

Statistics and Econometrics Series 30 

October 1999 

Departamento de Estadfstica y Econometrfa 

Universidad Carlos III de Madrid 

Calle Madrid, 126 

28903 Getafe (Spain) 

Fax (34-91) 624-9849 

NONSENSE REGRESSIONS DUE TO TIME-VARYING MEANS. 

Uwe Hassler. * 

Abstract --------------------------------------------------------
Regressions of two independent time senes are considered. The variables are 

covariance stationary but display time-varying although not trending means. Two 

prominent examples are mean shifts due to structural breaks and seasonally varying 

means. If the variation of the means is not taken into account, this induces nonsense 

correlation. The asymptotic treatment is supplemented by experimental evidence. 

Keywords: Structural breaks; deterministic seasonality; spurious correlation. 

*Free University of Berlin. Institute of Statistics and Econometrics. Boltzmannstr. 20 

D-14195 Berlin Germany, e-mail: uwe@wiwiss.fu-berlin.de.This work was carried 

out while visiting Universidad Carlos III de Madrid. Financial support from the 

European Commision through the Training and Mobility of Researchers programme is 

gratefully acknowledged. 



1 Introduction 

Since the early paper by Yule (1926) statisticians are aware of the danger of 

nonsense correlation between unrelated random walks. Granger and Newbold 

(1974) followed his work and established experimentally that stochastically 

independent random walks give rise to spurious regressions. l They coined the 

latter term to describe the fact that testing for the true null of no correlation 

one observes a much higher rejection rate than the nominal level. Phillips 

(1986) provided an asymptotic treatment of spurious regressions that arise 

whenever random walks are not cointegrated, see also the discussion e.g. in 

Banerjee, Dolado, Galbraith and Hendry (1993). His results were extended 

to the cases of cointegrated regressors and of stationary covariates by Choi 

(1994) and Hassler (1996), respectively. Similar findings were established in 

the presence of trending variables integrated of order two or higher orders, 

see Haldrup (1994) and Marmol (1996), respectively, or in the presence of 

linear time trends, cf. Hassler (1996a). 

This note demonstrates that nonsense correlation, or spurious regressions, 

may arise even if the series are not trending. It is motivated by Perron 

(1990) who showed that the distinction between trending series integrated 

of order one and stationary series with a mean shift may be difficult as long 

as the shift is not taken into account. His finding suggests that independent 

covariance stationary time series with mean shifts may give rise to nonsense 

regression. Indeed, this will be proven here. Hence this paper contributes 

to a field of growing interest recently surveyed in Maddala and Kim (1998). 

1 I use the terms nonsense or spurious regressions interchangeably and speak as well of 

nonsense or spurious correlation. 
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In fact, I consider the more general case that the means of two independent 

series are time-varying although not trending. This includes e.g. series with 

deterministic seasonality where the mean varies from season to season. 

Section 2 becomes precise on the model and establishes the general result 

which is illustrated by the example of quarterly varying means. Section 

3 turns to the case of mean shifts due to structural breaks that is more 

relevant in practice. The asymptotic formulae are confronted with Monte 

Carlo evidence. The final section contains a more detailled summary. 

2 The general case 

The simple model considered here consists of two covariance stationary series 

Ult and U2t that are stochastically independent of each other and that are 

added to a deterministic mean function, 

Xit = dit + Uit, t = 1,2, ... ,T, i = 1,2. (1) 

The stochastic components are assumed to be zero mean processes with vari­

ance a; independent of each other. The deterministic components are sup­

posed to be not trending. They are bounded and square summable, more 

precisely, 

JditJ ~ Di < 00, t = 1,2, ... ,T, i = 1,2, (2) 

(3) 
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where .!... denotes convergence in probability. For the stochastic series I as-

sume in contrast 
_ 1 T 

(Ui' u;, U1 U2) = T 2:)Uit? U;t, Ult U2t) .!... (0, al, 0), 
t=1 

and that they satisfy the central limit theorem, which implies 

T 

L Uit = Op(TO.5
). 

t=1 

Given (I), (2) and (3) it is straightforward to prove as T ---* 00 

1 T 

T L(Xit - Xi)2 u; + d; - d/ + Op(T-O.5
) 

t=1 

.!... a; + "d - 0;, i = 1,2, (4) 

(5) 

Please note that (2) and (3) allow for the special case of constant means, 

dit = di · In this case 0i = di , "/f = d; = 0; and /12 = d1d2 = 0102 so that 

(4) and (5) reproduce the standard case of independent series with constant 

means. 

The limits from (4) and (5) render themselves to determine the probability 

limit of the ordinary least squares (OLS) estimator from 

Xlt = 0: + ;3X2t + Et, t = 1,2, ... ,T, (6) 

where the variable nature of dit is not taken into account. We obtain under 

the assumptions made so far 

A p /12 - 0102 -
;3 ---* 2 2 02 =: ;3. 

a2 + /2 - 2 
(7) 
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With (7) the behaviour of the standard error of regression (6), 

becomes obvious. It is needed to construct the t-statistic tf3 testing for f3 = o. 
To establish the divergence of tf3 it is convenient to normalize as 

T-O.5tf3 = ~JT-l L
A

(X2t - X2")2 
s 

Moreover, the limit of the coefficient of determination can be derived from 

A2 
R2 = 1 _ _ --=~s __ _ 

T-l 2:(Xl - Xl)2 

vVith (4), (5) and (7) the following results are easily established. 

Proposition 1 (Nonsense regression) Let Xlt and X2t from (1) be stochas­

tically independent of each other. Under the assumptions of this section it 

then holds for the OLS statistics from (6) as T ---+ 00: 

A 2 P 2 2 );"2 f3~ ( );" );" ) ~ 2 
S ---+ (Jl + 11 - vI - 112 - vlv2 =: s , 
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Just as in the case of random walks, see Phillips (1986), we observe that 

in general /3, T-O.5t(3 and R2 have non-zero limits, only that the limits are 

deterministic in the present setup of deterministic time-varying means. Such 

nonsense correlation of course only occurs if the righthand side in (5) and 

hence fJ is different from zero. Consider e.g. the case of additive outliers 

where dit is zero except for a finite number of times. This clearly entails 

/12 = Di = 0, and therefore does not lead to spurious regression results. 

As a first application of Propostion 1 I consider series with seasonally 

varying means. A beysinghe (1991) observed spurious regression effects if 

seasonally integrated series are regressed on each other, where the regression 

includes seasonal dummies. Here the series are not integrated but display 

deterministic seasonality that is ignored in the regression. I restrict the 

treatment to quarterly varying means with observations over n years, 

Sli, t = 4j + 1 

dit = 
S2i, t = 4j + 2 

j = 0,1, ... ,n - 1, (8) , 
S3i, t = 4j + 3 

S4i, t = 4j + 4 

where T = 4n is assumed. It is again simple to check that 

Hence Proposition 1 can be applied to the situation of quarterly series with 

deterministic seasonality. 

Corollary 2 (Deterministic seasonality) Let Xlt and X2t from (1) and 

(8) satisfy the assumptions of this section. Then the results from Proposition 
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1 hold with 

Please note that quarterly varying means like in (8) do not necessarily 

imply spurious regressions. For instance 

(su, 0, 0, -SU), 

yield ')'12 = 0, 151 = ° and hence do not give rise to nonsense correlation, /3 = 

0. Moreover, regressing seasonal series on each other empirical researchers 

typically include seasonal dummies accounting for seasonally varying means. 

That is why the nonsense regression situation underlying Corollary 2 will 

not be encountered often in practice. Therefore, I provide a more thorough 

discussion only for the more relevant example of mean shifts due to structural 

breaks. 

3 Mean shifts 

As a second example of model (1) I consider mean shifts, 

(9) 

where E(Xit) = 0 is assumed without loss of generality for t ::; AiT. Both 

observed series Xlt and X2t are subject to a break in the mean at possibly 

different times \T where \ E [0,1] is the proportion when this shift occurs. 
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It is easily verified that 

where Amax = max(A1' A2) . Propositon 1 hence provides the following corol­

lary_ 

Corollary 3 (Mean shifts) Let Xlt and X2t from (1) and (9) satisfy the 

assumptions of the previous section. Then the results from Proposition 1 

hold with 

It is not difficult to supplement Corollary 3 with a statement referring 

to the Durbin-Watson statistic. To simplify matters I assume now that Ult 

and U2t are white noise series. With /3 and s defined in Proposition 1 it then 

follows 

T -1 ""r A A 2( 2 f3~2 2) 
d = Dt=2 Utt ~ 0"1 + 0"2 

W A2 ~2· 
S S 

We observe that dw does not tend to zero as with spurious regressions of 

random walks. However, its probability limit will in general differ from 2 

even if the stochastic components are white noise. 

Please note that nonsense correlation according to Corollary 3 arises if 

and only if both series are subject to a structural break, bi ~ 0 and 0 < Ai < 1 

for i = 1,2. This is true because for Amax = max(A1' A2) 

implies j3 ~ 0 with 

j3 = b1b2(1 - Amax) - b1b2(1- A1)(1 - A2) 

O"~ + b~(l - A2)A2 
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Furthermore, certain symmetries appear. Looking closely at the limits in 

Proposition 1, Corollary 3 reveals the following symmetries about the line 

A = 0.5. 

Corollary 4 (Symmetries) Let Xlt and X2t from (1) and (9) satisfy the 

assumptions of Corollary 3 with bi =I 0 and 0 < Ai < 1 for i = 1,2. Then it 

holds for the limits in Proposition 1: 

• if Al = 1 - A2 then all limits are symmetric about A2 = 0.5; 

• if Al = 0.5 then all limits are symmetric about A2 = 0.5; 

• if A2 = 0.5 then all limits are symmetric about Al = 0.5; 

• if Al = A2 = :\ then all limits are symmetric about :\ = 0.5. 

Bearing in mind the German unification in 1990 the last case in Corollary 

4 of a common breakpoint :\ may be of particular interest. It is straightfor­

ward to show that 1;31 has a maximum at :\ = 0.5, i.e. the spurious effect is 

strongest if the breakpoint is in the middle of the sample. 

To verify the relevance of the asymptotic results a Monte Carlo experi­

ment was performed. Two independent white noise series with means shift 

were simulated according to (1) and (9) with Uit f"V N(O, 1). The number of 

observations was T = 100. From 5000 replications done with GAU8832 the 

mean values of the OL8 statistics were computed. In Tables 1 and 2 they 

are compared with the probability limits according to Corollary 3. More­

over, I report the frequency of rejection when testing with tf3 for the true 

null hypothesis f3 = 0 at the 5% level, Itf31 > 1.96. As one would expect the 

nonsense correlation becomes more severe as the breaks bi > 0 are increasing. 
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Throughout we observe that the asymptotic values well explain the experi­

mental means already for T = 100. The asymptotic symmetry according to 

Corollary 4 was also found to be well reproduced experimentally. That's why 

I do not report tables for symmetric cases. 

Table 1 is restricted to the situation of different breakpoints. With Al = 

0.25, A2 = 0.75 only moderate spurious results arise. As the breakpoints 

move closer, Al = 0.5, A2 = 0.25 or Al = 0.25, A2 = 0.5, the problem of 

nonsense regressions becomes more severe. In Table 2 results for common 

breakpoints are collected. If Al = A2, the feature of nonsense correlation is 

stronger in comparison with Table 1, and it is strongest if the break occurs 

in the middle of the sample. 

Very low values of the coefficient of determination are common to Tables 

1 and 2. This suggests to detect spurious regressions due to mean shifts by 

means of the R2. Alternatively one might of course avoid nonsense correlation 

from the beginning by testing the univariate series for a break and eventually 

removing it prior to regression. 

4 Summary 

It is widespread textbook knowledge that nonsense regressions may arise 

between independent time series that are trending. Moreover, there is a grow­

ing literature concerned with the effect of structural breaks. In this paper the 

two topics are related. It is shown that the danger of nonsense correlation, 

or spurious regression, is present even if the independent series are covari­

ance stationary. This is true if their means are time-varying functions and 
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Table 1: Mean values and limits, )'1 =1= '\2 

11 11 s 1 t~/TO.5 1 R2 1 dw 11 5% 11 

Al = 0.25, A2 = 0.75 (AI = 0.75, A2 = 0.25) 

b1 = 1 0.050 0.050 0.013 1.709 8.06 

b2 = 1 (0.053) (0.053) (0.003) (1.694) 

bl = 1 0.071 0.087 0.017 1.722 14.02 

b2 = 2 (0.071) (0.087) (0.008) (1.706) 

b1 = 2 0.107 0.089 0.017 1.194 13.02 

b2 = 1 (0.105) (0.087) (0.008) (1.164) 

b1 = 2 0.146 0.1.46 0.029 1.220 29.30 

b2 = 2 (0.143) (0.144) (0.020) (1.190) 

Al = 0.5, A2 = 0.25 (AI = 0.5, A2 = 0.75) 

b1 = 1 0.108 0.105 0.020 1.644 18.42 

b2 = 1 (0.105) (0.103) (0.011) (1.635) 

b1 = 1 0.144 0.173 0.037 1.698 39.28 

b2 = 2 (0.143) (0.171) (0.029) (1.681) 

h =2 0.212 0.166 0.035 1.103 37.00 

b2 = 1 (0.211) (0.164) (0.026) (1.073) 

b1 = 2 0.287 0.279 0.079 1.195 82.22 

b2 = 2 (0.286) (0.277) (0.071) (1.165) 

Al = 0.25, A2 = 0.5 (AI = 0.75, A2 = 0.5) 

h = 1 0.103 0.106 0.021 1.738 17.84 

b2 = 1 (0.100) (0.103) (0.011) (1.719) 

b1 = 1 0.125 0.164 0.035 1.778 38.06 

b2 = 2 (0.125) (0.164) (0.026) (1.757) 

b1 = 2 0.202 0.173 0.038 1.256 41.90 

b2 = 1 (0.200) (0.1711 (0.029) (1.224) 

b1 = 2 0.255 0.283 0.081 1.343 80.78 

b2 = 2 (0.250) (0.277) (0.071) (1.308) 

For notes see Table 2. 



Table 2: Mean values and limits, Al = A2 = :x 

11 dw " 5% 11 

~ = 0.25 (~= 0.75) 

b1 = 1 0.159 0.162 0.034 1.785 36.22 

b2 = 1 (0.158) (0.159) (0.025) (1.770) 

b1 = 1 0.215 0.270 0.076 1.904 77.72 

b2 = 2 (0.214) (0.269) (0.067) (l.889) 

b1 = 2 0.319 0.272 0.077 l.374 76.62 

b2 = 1 (0.316) (0.269) (0.067) (1.348) 

b1 = 2 0.431 0.479 0.191 l.682 99.78 

b2 = 2 (0.429) (0.474) (0.184) (l.657) 

~ = 0.5 

b1 = 1 0.202 0.206 0.049 l.750 54.76 

b2 = 1 (0.200) (0.204) (0.040) (l.733) 

b1 = 1 0.250 0.335 0.107 l.905 92.40 

b2 = 2 (0.250) (0.333) (0.100) (l.888) 

b1 = 2 0.405 0.337 0.109 l.310 92.68 

b2 = 1 (0.400) (0.333) (0.100) (l.289) 

b1 = 2 0.505 0.583 0.257 1.686 100 

b2 = 2 (0.500) (0.577) (0.250) (l.666) 

Simulated white noise series with mean shifts as in (9). Given are mean values from 5000 

replications of regression (6) with T = 100 observations (asymptotic values according to 

Corollary 3 in brackets). Moreover, the column denoted '5%' contains the frequency of 

rejecting the true null f3 = 0 when performing a two-sided test based on t{3 at the nominal 

5% level. 
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if this is not taken into account when regressing them on each other. The 

first example are series with deterministic seasonality where the means differ 

from season to season. Nonsense regressions are avoided by simply including 

seasonal dummies in the regression, which is of course standard practice. 

The second example discussed at some length are mean shifts due to 

structural breaks. The following asymptotic results are well supported by 

finite sample evidence. The closer the breakpoints of the two series are, the 

more severe is the problem of nonsense correlation. The strongest spurious 

regression effects occur for a common breakpoint in the middle of the sam­

ple. Depending on the magnitude of the breaks the true null of no correlation 

will be rejected with very high probability. This clearly highlights the im­

portance of testing for structural breaks and removing them before running 

regressions. 
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