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1. INTRODUCTION 

The aim of this paper is twofold. On the one hand, we provide conditions to establish a 

functional central limit theorem (FCLT) and weak convergence of stochastic integrals for 

non stationary fractionally integrated (NFJ) multivariate processes with memory parameter 

d E () = {d E 911 d > t , d ;;f:. t , t , t , ... }. On the other hand, these theoretical results are 

applied to the analysis of inference in linear time series models with some fractional unit roots. 

Statistical analysis of time series data exhibiting high power at very low frequencies, in 

general, and fractionally integrated processes (Granger and Joyeux, 1980, Hosking, 1981), in 

particular, have attracted the attention of both macroeconomists and econometricians and the 

field is unusually active with both theoretical and empirical research moving forward together. 

See, e.g., Robinson (1994a) and Baillie (1996) for recent overviews of the subject. In this 

sense, most of the recent empirical studies seem to locate the memory parameter of these 

fractionally integrated processes in the non stationary (d > t) range. 

As is well-known, when dealing with non stationary data, the asymptotic analysis requires 

different techniques from those used in the standard stationary case. Indeed, in the 

nonstationary case, the asymptotic analysis involves the combined use of a multivariate FCLT 

along with the Continuous Mapping Theorem (CMT) to establish the weak convergence of 

those processes to functionals of Brownian motions or related Gaussian processes. Invariance 

principles for multivariate integrated processes have been derived, among others, by Phillips 

and Durlauf (1986), Chan and Wei (1988) and more recently by de Jong and Davidson (1999). 

As a first contribution, we provide in this paper a FCLT for multivariate NFl processes under 

the assumption that the innovations are fairly general 1(0) linear processes. Our invariance 

principle nests as particular cases most of the previously derived FCLT for integrated 

processes. At this stage it is important to remark that ours is not the only attempt to obtain a 

multivariate FCLT for NFl processes. Indeed, Davidson and de Jong (1999) and Marinucci and 

Robinson (1998) have recently derived two invariance principles for fractionally integrated 

processes which may look similar to ours. However, our FCLT differs from the ones obtained 

in those papers in two significant ways. On the one hand, the FCLT derived in Davidson and de 

Jong (1999) assumes that the innovations are NED processes and that the multivariate 

fractional process is stationary, i.e., Idl < t. Such a process, suitably normalized, converges 

weakly to a multivariate fractional Brownian motion with stationary increments (a Type 1 

fractional Brownian motion in Marinucci and Robinson's, 1999, sense). Inference for NFl 

processes is then conducted using the CMT by means of partial sums of the underlying 

stationary fractionally integrated process as in the unit root literature. However, as pointed out 
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by Marinucci and Robinson (1998), partial sum processes can be restrictive for many 

applications and more general forms of dependence may be considered, for instance the 

nonstationary fractional integration in Heyde and Yang's (1997) sense. By contrast, our FCLT 

is explicitly derived for NFI processes and includes the extended version of nonstationary long 

range dependence proposed by Heyde and Yang. We show that, after a suitable normalization, 

a NFI process converges weakly to a fractional Brownian motion with nonstationary 

increments and defined for all d E (} (a so-called Type II fractional Brownian motion). 

On the other hand, Marinucci and Robinson (1998) derive the FCLT assuming that the 

fractionally integrated process is nonstationary as we do, but they assume different initial 

conditions and moment requirements on the innovations driving the multivariate NFI 

processes. See Remark 5 below for further details. Therefore we consider that none of the 

invariance principles derived by those authors make our results redundant. On the contrary, our 

analysis nicely complements theirs since comparison of their invariance principles with ours 

highlights the existing trade-off between alternative assumptions and/or definitions of a 

fractionally integrated process and the requirements to achieve the desired results. 

Another result in the paper relates the asymptotic properties of statistics which are functions 

of sample moments in which the data is a mixture of nonstationary and stationary processes, 

where the corresponding limits appear to be (Ito) stochastic integrals. Under the assumption 

that the non stationary data is composed by integrated processes, this weak convergence has 

been studied, for example, by Chan and Wei (1988), Phillips (1988), Hansen (1992) and de 

Jong and Davidson (1999) under different conditions on the amount and form of dependence 

allowed in the innovations. As a second contribution, herein we prove the stochastic integral 

convergence for NFI processes with respect to weakly dependent integrator processes. As 

before, this question has also been handled by Davidson and de Jong (1999). However, their 

use of a Type I fractional Brownian motion makes their results different from ours. 

Finally, as a third contribution, we have considered a generalization of the results in Sims et 

al. (1990) (hereinafter denoted SSW) regarding inference in VAR models with integer unit 

roots, to the more general case where variables include NFI processes. In particular, we analyze 

under which conditions their conclusions regarding the asymptotic distribution of causality 

tests, lag length selection tests and estimation of cointegrating vectors remain valid in this more 

general framework. We show how their main conclusions remain valid in this more general 

framework, namely, that whenever a block of coefficients can be written as coefficients on zero 

mean 1(0) regressors in a model that includes a constant term, they will have a joint asymptotic 

normal distribution, so that the corresponding restrictions can be tested using standard 
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asymptotic chi-square distribution theory. Otherwise, in general, the associated statistics will 

have nonstandard limiting distributions. 

The rest of the paper is structured as follows. In Section 2 we derive the multivariate FeLT 

for NF1 processes, whereas in Section 3 we are concerned with issues on stochastic integration 

of NF1 processes with respect to fairly general 1(0) linear processes. In Section 4 we use the 

previous theoretical results to extend SSW set-up by allowing for VAR models with NF1 

processes. Next, some applications of this extension are provided in Section 5. In particular, we 

prove that the Granger causality test statistic will have a limiting chi-square distribution 

whenever the NF1 processes in the VAR system are CI( d, d), d E {}, while the test statistic 

for lag length selection does not have, in general, a limiting chi-square distribution in our set

up, where d E {} and the only stationary terms considered are 1(0), except in the particular case 

where d is an integer number, i.e., the situation considered by SSW. Lastly, we prove that the 

OLS estimators of cointegrating vectors in triangular representations are 0 p ( T- d
) if d ~ 1 and 

o p (T I
-

2d
) if t < d < 1. Indeed, when the regressors are strongly exogenous with respect to 

the corresponding parameters of the cointegrating vector, then OLS is 0 p ( T- d
) for all d E [}. 

Furthermore, in this particular case, the limiting OLS distribution is a mixture of normals from 

which standard inference can be implemented. Finally, some conclusions are summarized in 

Section 6. Proofs of all the theoretical results are collected in the Appendix. The notation 

throughout the paper is as follows: [Tr] denotes the greatest lesser integer part of Tr, where 

r E [ 0,1], ":=;>" denotes weak convergence of the associated probability measures, ,,~ " 

denotes convergence in probability and" == " denotes equality in distribution. 

2. A MUL TIY ARIATE FCLT FOR FRACTIONALLY INTEGRATED PROCESSES 

Let XI = (XII"'" X nl )' be an n-dimensional vector of nonstationary fractionally integrated 

(hereafter denoted NFI) processes with Wold representation given by 

(2.1) !~/XI =&1' t=1,2, ... , 

where the fractional difference operator I1d (with 11 = 1- B where B is the lag operator) can 

be expressed in terms of a Maclaurin expansion as 

(2.2) 

with ro denoting the gamma or generalized binomial function and where &1 is a square 

integrable martingale difference sequence (mds) with constant conditional variance L, i.e., 
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is an n-dimensional mds with constant conditional variance the identity matrix of order n, In' 

With respect to the memory parameter d, we assume that it belongs to the set 

() = {d E ~I d > t, d "* t, t, f ' ... } . This is done without loss of generality in the sense that 

the set {t,t,f, .. ·} has Lebesgue measure zero. See, however, Remark 4. As a technical 

assumption, we further assume that {17s} ~'" = a. Such a restriction will not be assumed to hold 

when dealing with stationary process. 

Instead of using XI' let ~ 1 (d) = L\ -d 17 t and ~ 1 (d) = L\ -d & 1 denote the relevant vectors of 

NFI processes, where the slight change of notation emphasizes the memory of the process and 

the distributional properties of the corresponding innovations. Note that, in the integer case 

where d = {1,2,3, ... } , the recursive partial sums of 171 are defined as ~t (d) = I:=I;" (d - 1), 

with ~ (1) = ~ = 2::=I17s . When d is a real number, ~ (d) = L\ -d 171 becomes the continuous 

equivalence to the above (d -1) -fold discrete version. On the other hand, the shocks 171 are 

assumed to satisfy the following assumption. 

ASSUMPTION A: maXi SUP
1 

EI17itl g
+( <00, g =maX{2,_1_

1
}, C;> a. 

d- 2 

Under this assumption, we obtain the following multivariate invariance principle for NFI 

processes. The univariate version was first proved by Akonom and Gourieroux (1988). 

THEOREM 1 : Under Assumption A with d E (), asymptotically, as the sample size T ---+ 00 , 

(2.3) T
1/2

-
d ~[Trl (d) => W(d, r), 

(2.4) Ttl2-d~[Trl (d) => V(d, r), 

where 

W(d,r)= _(1 ) fer - S)d-I dW(s), 
r d 0 

v( d , r) = L 1/2 w( d , r) and W( r) is a standard n-dimensional Brownian motion, 

W(r) == BM(In) , such that W(l, r) = W(r), r E[a, 1]. 
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REMARK 1. The n-dimensiona1 process W( d , r) would be the generalization of Wm (r) , 

m= {1,2,3, ... }, the (m-I)-fold integral recursive1y defined by Wm(r) = r Wm-I(s)ds with 

Wl (r) == W{r) . Formally, W(d, r) is not the usual (multivariate) fractional Brownian motion 

as defined by Mande1brot and Van Ness (1968), but rather a Ho1mgren-Riemann-Liouville 

fractional integral (cf, Levy, 1953), where the parameter d is allowed to take values in the 

non stationary d > t range. 

In effect, and assuming n = 1 for simplicity, W( d , r) is a Gaussian process with almost 

surely continuous sample paths and nonstationary (and non independent) increments which 

differs from the more standard version of the fractional Brownian motion, as originally 

introduced by Mandelbrot and Van Ness (1968), namely, 

where k denotes a constant term. It can be proved (see, e.g., Samorodnitsky and Taqqu, 1994) 

that W( d, r) is a Gaussian process with almost surely continuous sample paths and stationary 

increments, only defined for values of d in the stationary (- t, t) range. Moreover, it can be 

proved that for r;::: 0, W( d , r) is composed of two independent components, where one of 

them is a scaled W( d ,r ). Therefore, W( d , r) and W{ d , r) have different covariance 

structures. In terms of Marinucci and Robinson (1999), W( d , r) and W( d ,r) correspond to 

Type I and Type 11 fractional Brownian motions, respectively. Indeed, the invariance principle 

derived by Davidson and de Jong (1999), extending previous results by Davydov (1970), Taqqu 

(1975) and Chan and Terrin (1995), is based on W( d, r), and it differs, correspondingly, from 

that obtained in Theorem 1. See Marinucci and Robinson (1999) for further insights. 

REMARK 2. When dealing with NFI processes, one cannot simply use Donker's Theorem 

jointly with the Continuous Mapping Theorem (CMT) to obtain expressions (2.3) and (2.4), 

since the CMT can only be used for d;::: 1. In effect, and assuming again for simplicity that 

n = 1, then the mapping defined on c( 0,1] by W(r) ~ r {r - S)d-I W(r)dr will be uniformly 

continuous if r (r - s) d-2 ds < et:) , i.e., if d;::: 1, and therefore, the CMT can be directly 

invoked in this case. However, in the remaining cases, when t < d < 1 , it is not possible to use 
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the latter result, and hence it is necessary to prove the weak convergence in an explicit way as 

we do in Theorem 1. See Akonom and Gourieroux (1988) for further details. 

REMARK. 3. Theorem 1 can be readily extended to allow for more general situations, such as 

different memory parameters (d p d 2 , ... , d n ), much in the same way as in Marinucci and 

Robinson (1998) and Davidson and de Jong (1999). We have not considered such an extension 

in this paper since we are primarily concerned with the cointegrated case where a necessary 

condition for cointegration with (d p d2 , ... ,dn ) EO is that dl = d 2 = ... = dn = d . 

REMARK. 4. Along this paper we confine the analysis to memory parameters lying in the set 

0= {d E ~I d > t, d =F t,t,t, .. ·}. This is done without loss of generality in the sense that 

the set {t, t ' t , ... } has Lebesgue measure zero. However, as recently proved by Liu (1998), 

this restriction is not without loss of generality with respect to the assumed initial conditions. 

In effect, if we impose that {7Js} ~oo = 0 so that ~t (d) = I~~I d t- j 7Jj , with do = 1, d j ~ /-1 , 

then (2.3) not only holds for d EO but also for d E {t,t,t, .. ·}. See Marinucci and 

Robinson (1998, Theorem 1). Such a restriction on the initial conditions of ~t(d) is necessary 

because the dj's are not square summable for d > t. However, without imposing that the 

MA representation for the nonstationary long memory process ~t(d) takes value ° at time 0, 

Liu (1998, Theorem 2.3) shows that the convergence rate at the points d E {t,t,f,"'} has an 

additional component, namely, log T, when compared to the convergence rates for the other 

values of d in O. Hence, in light of these results, and since we must impose that {7Js} ~oo = 0 

for the sum ~t(d)= I~~ldt_j7Jj to be finite, we decided to restrict our analysis to the case 

where d EO. By doing this, it can be verified that var( I~~I ~t (d)) ~ Cp2d+1 as p ~ 00, 

0< C < 00 and thus ~t (d) is nonstationary long range dependent in Heyde and Yang's (1997) 

sense. 

So far, we have assumed the simple Wold representation (2.1) in order to assess the 

requirements of associated moments and because it is the most useful representation to develop 

the set-up introduced in Section 4. In practical applications, however, the assumption that the 

NFI processes of interest have mds sequences can be too restrictive, and much more generality 
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can be achieved by allowing the underlying innovations to follow linear processes. For this, let 

us now assume that the relevant data generating process is given by 

(2.5) I1d x t =u p 

where Ut = C{L)ct = C{L}'i. Jl2 T/t = \f'{L)T/t and \f'(L) = 2:;=0 \f'jLj is a I-summable one-

sided linear filter, i.e., I~=o JI\f'j I < Cl) , where I AI = maxi,j I Aij I for a matrix A. For this set-up, 

let ~/(d) = l1-d u/, and assume the following condition. 

ASSUMPTION B : maxi SUPt ElT/it Ig+~ < CI),t;;> 0, where 

(i) g = 2 if d > t, 

(ii) g = 4 if % <.:;; d < t, and 

8(1- d) 
(iii) g = if t < d < % . 

2d -1 

Then, we obtain the following invariance principle for multivariate NFl processes with 

innovations driven by linear processes, where the long-run covariance of the innovation vector 

process will be denoted by n = \f'(1)\f'(1)' = C(l)'i.C(l)' . 

THEOREM 2. Under Assumption B with d EO, asymptotically, as the sample size T ~ Cl) , 

(2.6) T
1/2

-
d ~[Tr] (d) ~ B(d, r) , 

where 

B(d, r) = r(l
d

) [(r - S)d-I dB(s) 

and B(r) == BM(n). 

The most important message of Theorem 2 is that, for d > t, only finite second moments of 

T//, together with some restrictions on the dependence embodied in the lag polynomial CCL), 

are needed for the multivariate invariance principle with NFl processes to hold. This result 

contrasts sharply with previous assumptions reported in the literature of led) processes, which 

require uniformly bounded finite fourth moments for all d = 1,2, .... See, for instance, SSW 

(Condition 1) and Stock and Watson (1993, Assumption C). 
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REMARK 5. In independent work, Marinucci and Robinson (1998, Theorem 1) obtain 

expression (2.6) under Assumption A but assuming that Ut = 0 for t::; 0 and 77 t -iid. By 

contrast, and following most of the relevant econometric literature (vid., Stock, 1987, SSW and 

Stock and Watson, 1993, inter alia) we have assumed throughout the paper that 77t = 0 for 

t ::; 0 and 77 t -mds. Of course, those different assumptions on the initial conditions of the 

underlying processes have negligible asymptotic effects. Moreover, it is not difficult to show 

that both sets of initial conditions give rise to the same sequence of solutions for the {x t } 

process. Thus, Marinucci and Robinson's result nicely complements our Theorem 2, 

highlighting the existing trade-off between the distributional assumptions on the error terms 

and moment requirements: if 77t is assumed to be iid, then these authors prove that Assumption 

A is all that is needed to obtain expression (2.6). By contrast, if 77t is assumed to be a mds, as 

we do here, then the stronger Assumption B is required. 

3. STOCHASTIC INTEGRATION 

The combination of Assumption B and the summability conditions imposed on C(L), together 

with CMT, are the only tools which are needed to ensure the convergence of most of the 

relevant random matrices which appear in estimation and testing of long-run relationships 

among NFI processes. 

However, the above theory does not cover the very important case of the weak convergence 

of sample covariance matrices I~=IXtU; to matrix stochastic integrals of the form 

! B( d, r )dB(r)' + X, where X is a constant matrix of bias terms, since in this case the 

convergence cannot be obtained from a routine application of the CMT and a multivariate 

invariance principle. As in the previous section, an explicit proof of the weak convergence of 

"T , "T , the sample matrices L..Jt=1 x t 77t and L..Jt=1 XtUt is required. For this, assume the following 

condition to hold. 

ASSUMPTION C : E( 77; 77t /77t-1 ,77t-2 , ... )::; c a.s. for some constant c> O. 
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THEOREM 3. Under Assumptions A and C, then for all d EO, as T ~ 00 , 

T 1 

(3.1) T-dI~I_I(d)l]~ => JW(d,r)dW(r)' 
1=1 0 

T 1 

(3.2) T-dI~I_I(d)&~ => JV(d,r)dV(r)' 
1=1 0 

Under Assumptions Band C, then, as T ~ 00 , 

T 1 

(3.3) T-d'L~I_I(d)u; => fB(d,r)dB(r)' ,when d>1, 
1=1 0 

T 1 

(3.4) T- 1 I~I-IU; => JB(r)dB(r)' + A, when d = 1, 
1=1 0 

and 
T _ 

(3.5) T-II~I_I(d)u;-4A(d), when t<d<l, 
1=1 

"T . "T, ( d) From Theorem 3 we learn that ~1=IXIl]1 and ~I=IXI&I are Op T for all d EO. This 

is only true for the sample matrix I~=I XI u; whenever d ~ 1. Otherwise, when t < d < 1, it 

is 0 p (T), degenerating in probability to a nonstochastic limit. Notice also that, in the 

"T , particular case where d = 1, ~I=I X1U 1 has a bias (in mean) matrix, A. 

On the other hand, given expressions (3.1 )-(3.5), the next result follows directly. 

COROLLARY l. Under the same assumptions as in Theorem 3, then, as T ~ 00, 

T 1 

(3.6) T-d'L~I(d)ry~ => fW(d,r)dW{r)' ,forall d EO, 
1=1 0 

T 1 

(3.7) T-dL~I(d)&~ => fV(d,r)dV(r)' ,forall d EO, 
1=1 0 

T 1 

(3.8) T-dL~I(d)u; => fB(d,r)dB{r)', when d>l, 
1=1 0 

T 1 

(3.9) T- 1 L ~IU; => f B(r)dB(r)' + t-< , when d = 1, 
1=1 0 
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and 
T _ 

(3.10) T-
I 
I>;t(d)u; ~~(d), when t < d < 1, 
t=1 

Finally, to conclude this section, consider the following partition of (2.5), x t = (x;t X;t)' , 

where x lt and x 2t have dimensions nl and n2 (nl + n2 = n) , respectively. Further, divide 

Ut' Q, A, ~ t (d) and B(r) conformably with xit and x 2t . Then, a very important particular 

case arises when the innovations ult and u2s are independent for all t, s, so that 

Q 21 = A 21 = O. In this case we obtain the following result, stated as a corollary. 

COROLLARY 2. Under the same assumptions as in Theorem 3 and for all dE 0, 

ijQ 21 =A 21 =O,then,as T---+oo, 

T I 

(3.11) T-dL~2,t_l(d)u;t ~ fB2(d,r)dBI(r)' 
1=1 0 

and 

T I 

(3.12) T-dL~2t(d)u;, ~ fB2(d,r)dBI(r)', 
t=1 0 

where B I (r) and B2 (d, r) are stochastically independent processes. Furthermore, in this 

particular case, the limiting distribution ! B2 (d, r )dBI (r)' is mixed normal. 

4. ESTIMATION OF CO INTEGRATING VECTORS IN FRACTIONAL SYSTEMS 

As an application of the previous general results, consider the VAR model 1 

p 

(4.1) l'r =a+ L<!\l'r-i +c t ' 

i=1 

where l'r is an n x 1 vector. Assume that the determinant of the autoregressive polynomial 

/1" - <1> IZ - <1> IZ2 -00 .-<1> pZP / has all its roots on or outside the unit circle, and that the 

maximum order of integration of any element of l'r is d EO. Moreover, assume that there 

are no cross equation restrictions, so that the efficient linear estimators correspond to the 

11 



equation-by-equation OLS estimators. This assumption is only made for simplicity. The 

generalization to more general frameworks, such as those considered, for instance, by Park and 

Phillips (1988, 1989) and SSW, can be obtained by a direct application of the techniques and 

analyses discussed here. 

Previous to this analysis, however, we will include the following useful lemma, of 

independent interest, which extends Lemma 1 in SSW and Lemma A.2 in Stock and Watson 

(1993) to the more general fractional set-up considered in this paper. 

LEMMA 1. Assume that Assumptions Band C hold and that the lag operators 

F(L) = I:o~Lj and G(L) = I;=o GjLj are 1-summable and F(l) nonsingular. Then 

the following converge jointly: 

T 1 

(4.2) T-(m+d+1I2) Itm';l(d)'=> JrmW(d,r)'dr, m~O,d EO, 
1=1 0 

T 1 

(4.3) T-(m+d) I';t (m)';1 (d)'=> J W(m, r)W(d, r)' dr, m,d EO, 
~I 0 

(4.4) 

T 1 

(4.5) T-(m+1/2)L)m[F(L)ryI+I]'=> Jr mdW(r)'F(l)', m~O, 
1=1 0 

T 1 

(4.6) T- 1I2 IF(L)ry1 => F(l) J W(r)dr, 
1=1 0 

T 00 

(4.7) T-1 I [F(L)ry1 ][ G(L)ry1 ],~ IF;G; , 
1=1 ;=1 

T 1 

(4.8) T-1 I';I(F(L)1JI )'=> F(l)'+ JW(r)dW(r), F(l)', if d = 1, 
~I 0 

T 1 

(4.9) T-dI';I(d)(F(L)1JI)'=> JW(d,r)dW(r)'F(l)', ifd>l, 
1=1 0 

and 

T 

(4.10) T-II';I(d)(F(L)ryI)'~F(lrl~(d), ift<d<l. 
1=1 

I A different VAR model with l( 1) regressors and stationary fractionally integrated errors has been 
recently considered by Jeganathan (1999). 
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Next, following Watson (1994), consider the ith equation of model (4.1), 

(4.11) Yit = xjJ + Git' 

where Yit is the ith element of ~,Xt=(1'~~"~~2' ... '~~p)' is the (np+l) vector of 

regressors, j3 denotes the corresponding vector of regression coefficients, and 

G it = OJ' 17 t = 17; OJ is the ith element of G t and OJ' is the ith row of the covariance matrix L . 

A 

Now, following SSW, obtaining the asymptotic behavior of the OLS estimator fJ of j3 is 

greatly facilitated by transforming the regressors in a way that isolates the various stochastic 

and deterministic trends. In particular, the regressors are transformed as Zt = DXt , where the 

nonsingular square matrix D is chosen in such a way that Zt has a simple representation in 

terms of the fundamental stochastic and nonstochastic components. Notice that 

X;D'(Dfl j3 = Z;y, with Y = (D't j3, so that the OLS estimators of the original and 

transformed models are related by D'r = j3 . The regressors Zt are related to the deterministic 

and stochastic trends given in Lemma 1 by the transformation Zt = F(L)vt , where F(L) is a 

lower triangular matrix and the variates v
t 

are referred to as the canonical regressors 

associated with ~. See SSW for a general procedure for transforming regressors from an 

integrated VAR into canonical form. 

The advantage of this transformation is that it isolates the terms of different orders of 

probability. Notice, however, that, contrary to the case where d takes only integer values, the 

vector v, would be an infinite dimensional random vector in the fractional case and for any 

d E (3. Therefore, among the infinite available possibilities, we have chosen the following 

one: 

17, 
1 

(4.12) vt = ~t(d) , 
~t 
t 

where ~,(d) stands for a NFl process of order t < d < 1, thus allowing for a VAR model 

where its elements ~ are individually 1(0),1(1) or l(d) with t < d < 1 (i.e., nonstationary but 

mean reverting) processes, possibly around a linear time trend. Many authors have stressed the 

empirical relevance of that class of processes. See, e.g., Baillie (1996). The main conclusions 

of our analysis remain invariant to other possible configurations of v t • 
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The corresponding regressors ZI can now be related to the deterministic and stochasfic 

trends given in Lemma 1 by the following transformation 

Zlt ~I(L) 0 0 0 0 171 

Z21 0 F22 0 0 0 1 

(4.13) Z3t F31(L) F32 F33 0 0 ;t(d) 

Z4t F41 (L) F42 F43 F44 0 ~t 
ZSt FSI (L) FS2 FS3 FS4 Fss t 

Further, assume that Zlt contains kl elements, Z3 contains k3 elements, Z 4 contains B I (r) 

elements and define the scaling matrix 

\f'T = diag{ TI/2 Ik , T1/2, Td Ik ,TIk ,T3/2}. 
I 3 4 

Then, using Lemma 1, we are now able to obtain the following result concerning the limiting 

behavior of the moment matrices based on the transformed regressors Zt. 

LEMMA 2 . Under the same assumptions as in Lemma 1, the following converge jointly: 

(a) '¥;{ t Z,Z; ) '¥;' => n , where, partitianing n canfarmably with Z" 

Cl) 

IlII = I~I,j~'I,j' 
}=o 

I 

Il33 =F33 fW(d, r)W(d, r)'drF3'3' 
o 

I 

Il44 = F44 fW(r)W(r)'drF~4' 
o 

Fs~ 
Ilss =3' 

Ill} = Il~1 = 0, j = 2, 3, 4, 5, 

I 

Il23 =Il~2 =F22 f W(d,r)'drF;3' 
o 

I 

Il24 = Il~2 = Fn f W(r)' drF4'4' 
o 
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IT = IT = F22 F's5 
25 52 2 

1 

IT 34 = IT~3 = F33 J W( d, r )W(r)' drF~4 ' 
o 

1 

IT3S =IT~3 =F33 JrW(d,r)drFss' 
o 

1 

IT45 = IT~4 = F44 J rW(r )drF's5' 
o 

T 

(b) tp~1 I ZI'7~DJ ~ A, where, partitioning A conformably with ZI' 
1;1 

1 

A2 = F22 J dW(r)' DJ , 

o 

1 

A3 = F33 JW(d,r)dW(r)'DJ, 
o 

1 

A4 = F44 J W(r )dW(r )' DJ , 
o 

1 

As = FS5 J rdW(r )' DJ . 
o 

Application of Lemma 2, in turn, makes the asymptotic analysis of the OLS estimators rand 

A 

f3 straightforward, as stated in the following theorem. 

THEOREM 4. Under the same assumptions as in Lemma 1, asymptotically, 

and 

From this theorem, the following comments apply. First, when the model is correctly 
A 

specified, in the sense that the errors are mds, then rand f3 are consistent when there are 

deterministic time trends and an arbitrary number of unit roots. The individual coefficients 
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converge to their theoretical counterparts at different rates. Secondly, when some transformed 

regressors are dominated by stochastic trends, their joint distribution will be non-normal. When 
A 

there are no Zt regressors dominated by stochastic trends, 9 (and thus /3) has an 

asymptotically normal joint distribution. Thirdly, the block diagonality of IT implies that 

TI/2 (9 1 - r I) ~ N( 0, m' mIT~:). Moreover, Theorem 2.2 in Chan and Wei (1988) applies 

in our context, implying that Al is independent of A j for j> 1 so that TI/2 (r I - r I) is 

asymptotically independent of the other estimated coefficients. By contrast, all of the other 

coefficients will have non-normal limiting distributions, in general. 

All the above results are well known from SSW and Watson (1994). Herein we have shown 

how they extend to the fractional framework. Thus, as in the case of an integer degree of 

integration, they provide a very useful sufficient condition for estimating coefficients with 

asymptotically normal limiting distributions. All that is needed is that a block of coefficients 

can be written as coefficients on zero mean 1(0) regressors in a model that includes a constant 

term. 

Moreover, if we consider Wald statistics for linear hypothesis of the form 

Ho: RfJ = r vs. HI: Rf3 *- r, 

where R denotes a full column rank matrix of q restrictions, 

where (7; = var(Sjt), then proceeding as in SSW (pp. 124-127) or Watson (1994, pp. 2858-

2860), it is straightforward to obtain their same general result stating that restrictions involving 

subsets of coefficients that can be written as coefficients on zero mean 1(0) regressors in 

regressions that include constant terms, can be tested using standard asymptotic distribution 

theory. This is so since W has in this case a limiting chi-square distribution. Otherwise, in 

general, the statistics will have nonstandard limiting distributions. 

5. SOME APPLICATIONS 

Lemma 2 and Theorem 4 together provide the basis for extending SSW's analysis to the 

fractional case. In this section we will investigate how some of their results carry over the more 

general fractional framework. For this, we shall follow Watson's (1994) notation as close as 

possible in order to compare our findings with the existing results for the 1(1) case. 
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5.1. Testing/or Granger causality 

Following Watson (1994), consider the bivariate VAR model 

p p 

(5.1) YIt = a 1 + I ~l1,iYI,t-i + I ~12,iY2,t-i + GIt ' 
i=1 i=1 

p p 

(5.2) Y2t = a 2 + I ~2l,iY1,t-i + I ~22,iY2,t-i + G 2t ' 
i=1 i=1 

with the restriction that Y2t does not Granger-cause YIt corresponding to the null hypothesis 

Ho: ~12,1 = ~12,2 = ... = ~12,p = O. 

When YIt and Y2t are both 1(0) processes, it is welllrnown that the resulting Wald, LR or 

LM test for this hypothesis have a limiting chi-square distribution. On the other hand, when Ylt 

and Y2t are integrated, SSW, Toda and Phillips (1993a, 1993b) and Watson (1994) prove that 

the distribution of the test statistic depends on the location of unit roots in the system. If Y It is 

1(1) and Y2t is 1(0) or if both YIt and Y2t are 1(1) but cointegrated, then the test statistic has a 

limiting chi-square distribution. Otherwise, i.e., if YIt and Y2t are not cointegrated 1(1) 

processes, then the Granger-causality test statistic will not be in general asymptotically chi-

square. 

From the above results, it is not difficult to show that the same comments apply in the 

fractional case, namely, when YIt and Y2t are NFl processes with d E (). So, the Granger

causality test statistic will have a limiting chi-square distribution whenever they are 

cointegrated, i.e., when there is an 1(0) linear combination of the variables, say 

ct = Y2t - AYlt , so that (5.1) can be rewritten as 

p p 

(5.3) YIt =al + I~l1,iYI,t-i +I~12,i(Ct-i -JlJ+G It , 

i=1 i=1 

where Jlc is the mean of Ct' al =a l + I~=I~12,iJlc and ~l1,i =~II,i +~12,iA, i=I, ... ,p. 

Now, since the Granger-causality restriction in the transformed regression corresponds to the 

restriction that the terms ct- i - Jl c do not enter the regression and these are zero mean 1(0) 

regressors in a regression that includes a constant, then the resulting test statistics will have a 

limiting X~ distribution. On the contrary, when either the NFl processes YIt and Y2/ are not 

cointegrated or ct is not an 1(0) process but a fractionally integrated process of order de < d , 

then the resulting test statistic will not, in general, have a limiting chi-square distribution. 
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5.2. Testing lag length restrictions 

Second, another important issue in specifying VAR's is the determination of the correct lag 

length. For this, consider the VAR(p + s) model, 

p+s 

(5.4) ~ = a + I <Di~-i + Et ' 
i=1 

and the null hypothesis that the true model IS a VAR(p) process, I.e., 

Ho: <DP+I = <DP+2 =···=<D p+s =0. 

When p ~ 1, SSW and Watson (1994) prove that if ~1'; is 1(0) with mean Jl, then the usual 

Wald (and LR and LM) test statistic for Ho has an asymptotic chi-square distribution under the 

null in the integer case. 

In effect, in this case, model (2.37) can be rewrite as 

p+s-I 

(5.5) 1'; = a + H1';_1 + LMi(~1';-i - Jl) + Et, 
i=1 

H -_ ,",p+sm.. M. ___ ,",P+S m.. ~ ,",p+s-I 
where .L.i=1 '-V" I .L.j=i+1 '-V] and a = a + .L.i=1 MiJl, so that the restrictions 

<D p+1 = <D p+2 = ... = <D p+s = 0 In the original model are equivalent to 

Mp = M p+1 = ... = M p+s-I = 0 in the transformed model. Since these coefficients are zero 

mean 1(0) regressors in regression equations which include a constant term, the test statistics 

will have the usual large sample chi-square distribution. 

On the other hand, this conclusion can be readily extended to the integer case where the 

maximal order of integration of 1'; is d = 1,2, .... , just by iterating the above procedure. In 

effect, if, for instance, 1(2)-ness is the maximal order of integration to consider so that ~2 ~ IS 

1(0) with mean Jl , then it is direct to prove that model (5.4) can be now transformed as 

p+s-2 

(5.6) 1'; =ii+H1';_1 +M~1';_1 + INi(~21';_i -Jl)+Et' 
i=1 

;::::; I P+s- 2 
where a = a + . NiJl, 

1=1 

M = ,",p+s-I M. N. = _ ,",p+s-IM . 
.L.i=1 I' I .L.j=i+1 ] and the restrictions 

<D p+1 = <D p+2 = ... = <D p+s = 0 in the original model become now equivalent to 

N p_1 = N p = ... = N p+s-2 = 0 in (5.6). Again, these coefficients are zero mean 1(0) regressors 

in regression equations that contain a constant term, so the test statistics will have a limiting 

chi-square distribution. 

By contrast, in the fractional case, when the vector 1'; is such that ~ d 1'; ~1(0) and 

E( ~ d 1'; ) = Jl , d E {}, d =I:- 1, 2, ... , since the fractional difference operator ~d has an 
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expansion with infinite terms, given by expression (2.2), so that there does not exist a finite 

state space representation for this kind of processes (see, e.g., Chan and Palma, 1998), then the 

restrictions <D p+1 = <D p+2 = ... = <D pH = 0 in the original model cannot be transformed into a 

set of restrictions on the coefficients of zero mean 1(0) regressors in a transformed model 

containing a constant term. Consequently, the test statistic for lag length selection will not have 

in general a limiting chi-square distribution in our set-up, where d EO and the only stationary 

terms considered are 1(0). 

5.3. Estimating cointegrating vectors by OLS 

Finally, as a third application, assume that the scalar random processes YIt and Y2t are 

generated by the triangular representation 

(5.7) Ylt = /3Y2t + uII' 

(5.8) ""/ Y2t = u2t' d EO, 

with the innovations Ut =(Ult,U2t)'=C(L)ct =\fI(L)17t being a linear process satisfying 

Assumptions Band C. Then, using Theorem 2, Corollary 1 and the CMT, it follows that, when 

d = 1, the limiting distribution of the OLS estimator of fJ in model (5.7)-(5.8) is given by 

I 

fB2 (r)dB I (r) + t-{21 

(5.9) T(fi - /3) => 0 I ' 

fB;(r)dr 
o 

~ 

using the obvious notation, so that /3 is a super consistent estimator of /3 which suffers from 

mean and median biases. Moreover, from Phillips and Park (1988) and Corollary 2, it follows 

that the limiting OLS distribution is no longer mixed normal. Result (5.9) was first shown by 

Stock (1987). 

Likewise, when d> 1, Theorem 2, Corollary 1 and the CMTyield 

I 

f B 2 (d , r )dB I (r) 

(5.10) Td(fi-fJ)=> 0 1 ' 

f B~(d, r)dr 
o 

~ 

and thus, in this case, /3 is super consistent, median biased and (from Corollary 2) not mixed 

normal. Yet, notice that the drift term t-{21 is no longer present and therefore the mean bias 

disappears. 
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On the other hand, Theorem 2, Corollary 1 and the CMT taken together imply that when 

+ < d < 1, then 

(5.11) T 2d - 1(p_p):=} 1 t{21(d) , 

J B;(d, r)dr 
o 

~ 

so that f3 is mean biased and has a limiting distribution that it is not a mixture of normals. 

~ 

Further, in this case f3 is super consistent only if d > ~. Otherwise, the OLS estimator 

converges to the theoretical counterpart at a rate slower than the standard TII2 rate. 

6. CONCLUDING REMARKS 

In this paper we have been concerned with the asymptotics of NFl multivariate processes. We 

have provided conditions to establish both a multivariate invariance principle and weak 

convergence of stochastic integrals for NFl processes under the assumption that the innovations 

are 1(0) linear processes. Several applications of these results are given. In particular, we 

extend SSW analysis on estimation and hypothesis testing in vector autoregressions with 

integrated processes and deterministic components to the more general fractional framework. 

We show how their main conclusions remain valid when dealing with NFl processes. That is, 

whenever a block of coefficients can be written as coefficients on zero mean 1(0) regressors in 

a model that includes a constant term, they will have a joint asymptotic normal distribution, so 

that the corresponding restrictions can be tested using standard asymptotic chi-square 

distribution theory. Otherwise, in general, the associated statistics will have nonstandard 

limiting distributions. 

As in the integer case, d = 1,2, ... , the statistical procedures analyzed here require at least 

partial knowledge of which variables cointegrate and of the memory parameters of the 

individual series. In the fractional case, estimation of the memory parameters d 1 , d 2 ' ••• ,d n 

and testing for cointegration can be based on Robinson's (1995a,b) results. See Robinson and 

Marinucci (1998) for some empirical applications. 

On the other hand, we have assumed in this paper that all of the fractionally integrated 

processes considered in a vector autoregression are non stationary with 1(0) innovations. This is 

clearly a limitation of our study. For instance, when searching for the correct lag length in 

model (5.4), if we define the integer number q = 1,2, ... , so that d = q + 8 with \8\ < +, then, 

it is not difficult to prove that after q iterations, one can rewrite the restrictions 

<1> - <1> - ... - <1> - 0 in (5.4) in terms of the coefficients of zero mean 1(8) p+l - p+2 - - PH-
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regressors in a transformed model containing a constant term. The relevant question in this case 

is whether the corresponding test statistic has a standard limiting distribution as in the 1(0) case. 

The answer to such a question, in turn, amounts to deriving the weak convergence of sample 

"T . matrices of the form ~t=1 Xt_1Z t with Zt denoting a multivariate stationary fractionally 

integrated process. This is not a straightforward problem, however, since the corresponding 

limiting stochastic integral cannot be defined as an Ito integral with respect to W( d , r) as in 

Section 3, because fractional Brownian motion is not a semimartingale. In this sense, Chan and 

Terrin (1995) have proposed a definition of stochastic integration with respect to a fractional 

Brownian motion in terms of the the so-called harmonizable representation of a Type 1 

fractional Brownian motion (cf, Samorodnitsky and Taqqu, 1994), proving the weak 

"T , convergence of ~t=l Xt_1Z t to their specific definition and imposing rather strong assumptions 

on the range of possible values of the memory parameters of x t and Zt' See also Marinucci 

"T , (1998, Section 3). Therefore, we consider the weak convergence of ~t=l xt-1Zt to be still an 

open question in need of further research. 

APPENDIX: MATHEMATICAL PROOFS 

PROOF OF THEOREM 1. The process ~[Tr] (d), r E [0,1] have associated sample paths 

which are elements of D[O,lf = D[O,l]x ... xD[O,l] , the n-dimensional product metric space 

of all real valued vector functions on [0,1] that are right continuous at each element of [0,1] 

and possess finite left limits. Endow each component space D[ 0,1] with the Skorokhod 

topology (see Billingsley, 1968, chapter 3). The weak convergence appearing in Theorem 1 is 

associated with this particular topology. 

The proof of the theorem now will be based on Prohorov's Theorem (cf, Billingsley, 1968, 

pages 35-40), so that, in order to prove weak convergence, we need to verify if the family of 

joint probability measures on the product space D[ 0,1 r are tight as well as the convergence of 

its finite dimensional distributions of T1I2
-

d ~[Tr] (d) . However, since D[ 0,1 r is separable and 

complete under the Skorokhod metric, tightness will follow if and only if the marginal 

probability measures of the components spaces are tight. 

Consider now the arbitrary linear combination X T (r) = f.J' ( T1I2
-

d ~[Tr] (d)), for arbitrary 

f.J E inn , f.J' f.J = 1. Under Assumption A and with et: 0,1] denoting the space of continuous 
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functions defined on the unit interval, weak convergence of this sequence to a univariate 

Holmgren-Riemann-Lioville fractional integral on qo, 1], say Z(d,r), can be proved as in 

Silveira (1991). Hence, writing Z(d, r) = fp" W(d, r), we deduce that X T(r) => fp'W(d, r) 

for arbitrary fp. Consequently, by the Cramer-Wold device, it follows that the finite 

dimensional distributions of TI12
-

d ~[Tr] (d) converge weakly to those of the vector process 

W(d ,r) and expression (2.3) of the theorem is proved. 

On the other hand, expression (2.4) follows in a direct manner from the CMT and by noticing 

that 51 =1:. IIZ 171 so that ~[Tr](d)=~-d5[Tr] =~-d1:.IIZ17[Tr] =1:.IIZ~[Tr](d) .• 

PROOF OF THEOREM 2. Since \f'(L) = 2:;;0 \f'jLj is I-summable, then, it follows from 

Lemma 2.1 in Phillips and Solo (1992) that \f'(L)=\f'(1)-(1-L)qi(L), where 

qi(L) = ,",'" qi.Li
, qi. = '"'~. \f'., '"'~ Iqi·1 < ex) and \f'(1) < ex). Consequently, L..,;o' I L..,;j+1 ' L..,;o I 

TIIZ-d~[Tr](d) = T 1/Z-d ~-du[Tr] = T1/Z-d ~-d {\f'(1) - ~qi(L)}17[Rr] 

= \f'(l)TI/Z-d ;[Trj(d) - qi(L)TI/Z-d ;[Trj(d -1), 

and, since using Theorem 1 and the CMT we know that 

\f(I)TI/Z-d ;[Trj (d) => \f(I)W(d, r) = B(d, r), 

in order to prove the theorem, we only need to demonstrate that 

Now, if d > t ' then d -1 > t, and ~I (d -1) is a NFI process for which Theorem 1 applies 

so that T 3IZ-d ;[Trj(d -1) => W(d -1, r). This fact, together with the absolute summability of 

qi(L) implies that 

q,(L)TI/2-d ~[Trj (d -1) = T-1 {q,(L)T3/2-d ;[Trj (d -I)} = T-10 p(l) = Op (T-1) = op (1). 

Notice that, in order to derive this result, we only need Assumption A to hold, so that when 

d > t we only require that maxi SUPI EI17itIZ+~ < ex) , (;> ° for expression (2.6) to hold. 

On the other hand, when t < d < t, i.e., when -t < d -1 < t, ~I (d -1) is a stationary 

fractionally integrated (denoted SF!) process. Letting 8 = d - 1 so that 181 < t and given the 

absolute summability of q,(L) , the theorem will be proved if we show that 

r ll2-bATrj (d -1) = op (1). For this, we have that for arbitrary A> ° and for i = 1,2, ... ,N, 
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g> 0, by Markov's inequality, 

= ;g T- I T 2
-(1/2+0)g EI~i,t (d - 1)1 g . 

H h _.1 < s: .1' h.l < d .1 'f - 4 h ence, w en 4 - U < 2 ' I.e., w en 4 - < 2 ,1 g - ,t en 

However, when - t < 8 < - -± ' i.e., when t < d < ~ , we need the existence of the moments of 

~i,1 (d -1) at least of order - 88(1 + 28t
l 
, since in this case, 

g 48 882 
2 

1---g8=1+--+--=88 +68+1, 
2 1 + 28 1 + 28 

which is a quadratic equation with roots 81 = -0.25 and 82 = -0.5 . Hence, if 

g > -88(1 + 28fl in the interval - t < 8 < - -± ' then 

as required. Finally, since ~i,1 (d - 1) is a stationary fractionally integrated process of order 

d -1, 

00 

~i,t (d -1) = L>Ad -I)17i,t-j , 
j=O 

with cAd -1) ~ r(d -If I f- 2
, the existence of EI~i,t(d -If IS guaranteed by the 

existence of the corresponding moments of EI17i,1 I
g

. • 

PROOF OF THEOREM 3. Since {17s} ~oo = 0, then 

00 I-I I 

~iAd)= Lck(d)7Ji,t-k = Lck(d)7Ji,t-k = Lct-k(d)ryi,k' i,j=I, ... ,n, 
k=O k=O k=1 

that, since W; (d, r), W; (r) E C( 0,1] a.s., the convergence in the Skorokhod topology is 

equivalent (cf, Billingsley, 1968, page 112) to uniform convergence, where W; (d, r) and 

W;(r) stand for the ith andjth components of the n-dimensional vectors W(d,r) and W(r), 
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respectively, i, j = 1, ... , n .. Thus, by the Skorokhod representation theorem, there are -a 

probability space e and random elements UT, V T E D[ 0,1] such that 

and 

(A2) 

where = e denotes equality in distribution and IHI", the essential sup norm. Moreover, by (AI) 

and Egoroff s theorem, given 8> 0, there is an event e" c e such that p( e " ) ~ 1- 8 and 

sup[lI{ UT (co), V T (co)} - {w/ (co), ~ (co )}t : co E e" ] = r T ~ 0, where the sequence of 

constants r T is the uniform distance between {U T , V T} and {UT' VT} except on a set of 

arbitrarily small probability. Therefore, under Assumption A Theorem 1 holds, yielding 

{ TlIZ
-

d UT' T- lIZ VT } => {W;( d, r)J~(r)} , 

Consequently, since 77t is a square integrable martingale difference, expressions (3.1) and (3.2) 

follow by Theorem 2.1 in Hansen (1992), using a similar argument to that leading to Theorem 

1 (see also Chan and Wei, 1988, Remark in page 377). 

As regards expreSSIOns (3.3)-(3.5), following Hall and Heyde (1980), define 

E,_IY, = 0, where Et Y stands for E( Y/-3 t ) for any random process Y. Notice that {Yt' -3 t } 

is a mds, where Y, is ergodic, stationary and square integrable with covariance matrix 

Q = c( 1) Le( 1)' , and u, is also ergodic, stationary and square integrable. 

Thus, 

T T 

(A3) T-dI~'_I(d)u; = T-dI~t_l(d)r~ + AT' 
,=1 t=1 

with 

t=1 1=1 

Now, given that Y 1 is a mds, it follows from (3.2) that, for all d EO, 

T 1 

(AS) T-d I ~'-l (d)r~ => J B(d, r)dB(r)'. 
1=1 0 
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Therefore, to prove expressions (3.3 )-(3.5), it only remains to show the convergence of AT' To 

do this, notice that AT can also be rewritten as 

T 

(A.6) AT=T-dI(~t_l(d)-~t_2(d))V;_I-T-d~t_l(d)v;. 
t=1 

Now, using previous results, it follows that for all d E () , 

Hence, 

T 

(A. 8) AT =T-dI(~t_l(d)-~t_2(d))v;_1 +Op(1). 
t=1 

When d = 1, Phillips (1988) showed that 

(A.9) AT ~ f E( UoU~). 
k=1 

Moreover, in the case where d = 2, Hansen (1992) showed that AT ~ O. Consider now 

the case where d>f.Inthiscase,noticingthat d=j+cS, j=2,3, ... , we have that ~~t(d) 

is a NF! process for which 

and then, A T ~ O. On the other hand, when t < d < f, using the decomposition 

d = 1 + cS , we have that ~d x t = Ut <=> ~t = Ct , ~OCt = Ut' so that c t is a SF! process of 

order cS, and then, ~ I (d) - ~ t-I (d) = Cl . Therefore, 

T 

(A.IO) AT = T- d ICI_IV;_I + OAl) , 
1=1 

so that, in the case where 1 < d < f, using the Cauchy-Schwartz inequality it is straightforward 

to show that 

Finally, when t < d < 1, i.e., when - t < cS < 0, from the weak law of large numbers we 

have 
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that is well-defined since ~I and u
1 

are both linear processes with absolutely summahle 

coefficients. 

To prove the last statement, let us focus for simplicity the attention on the univariate case and 

assume that the stationary process Sf has nonzero initial conditions. Then, we obtain 

00 00 cO ex) C() co 

IE(SOuk)= IIcj(8)ru(k+ J)=Ic j(8)Iru(k+ J)=Icj(8)zj' 
k=1 k=1 j=O j=O k=1 j=O 

where r u (I) denotes the autocovariance of U 1 at lag I, and where the interchange of the 

summation operators is justified by the absolute summability of the {Cl (8)} and {r u (t)} 

sequences. Therefore, since Z j = var( 1]1) I:=1 I:o ':Pj ':Pj+k+ j , it follows that 

(M being a constant term) 

(Nbeing a sufficiently large real number) 

(using Sheppard's lemma). Since r x,5-idx converges, it follows from the Cauchy integral 

the binomial coefficients {c j (8)} ;=0 sum up to zero (see, e.g., Knopp, 1964, page 440). Since 

those coefficients are all of them negative for J = 1,2, .... , it follows that L~=o Ic /8~ ::j:. o .• 

PROOF OF COROLLARY 1. Straightforward using the results obtained in Theorem 3 jointly 

with the CMr and the fact that 

T T T 

L~(d)u; = L~-I(d)u; + L[f1~_I(d)]u;. • 
1=1 1=1 1=1 

PROOF OF COROLLARY 2. When Q 21 = A21 = 0 it turns out that the Gaussian vector 

processesB1(r) and B2(r) are independent of each other, and then so are B1(r) and 
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B2 (d, r) smce B2 (d, r) is a uniformly continuous functional of B2 (r). Therefore, 

expressions (3.3), (3.4), (3.8) and (3.9) become equal to (3.11) and (3.12) for d ~ 1, d E {}. 

On the other hand, when t < d < 1, notice that A 21 = ° implies A 21 (d) = ° (uniformly in 

d). Consequently, expression (A.2S) becomes 

T "" 

(A26) T- I IS/_IV;_I ~ IE(Sou~) = 0, 
1=1 k=1 

and in this case a standard CLT for linear processes with square summable coefficients can be 

invoked, yielding 

1=1 1=1 1=1 

and expressions (3.11) and (3.l2) now follow, when t < d < 1, by the use of(AI8). 

Finally, given that B2 (d, r) is a uniformly continuous functional of B2 (r), it follows from 

Park and Phillips (1988, Lemma 2.1) that 

(A28) f B2 (d, r)dB I (r)' == N{O, nil ® f B2 (d, r)B2 (d, r)'dr} , 
o 0"(B2(r)) 0 

where t(B
2
(r)) denotes the conditional distribution with respect to the a -algebra generated by 

PROOF OF LEMMA 1. Proofs of equations (4.2) and (4.3) follow in a straightforward 

manner by using Theorem 1 and the CMT, while expressions (4.4)-(4.8) are proved by SSW, 

Lemma 1 and Stock and Watson (1993), Lemma A2. In order to prove the remaining cases, let 

us notice the I-summability of F(L), which allows us to write 

T T T 

(A29) I ~I (d)( F( L)77/)' = I ~t (d)77;F(l)'+ I ~I (d)( F* (L)Ll77/)" 
/=1 /=1 1=1 

where F* (L) is absolutely summable with coefficients F
J
.* = - ",,"" F). (c.f, Phillips and 

L..../=J+I 

Solo, 1992, Lemma 2.1). 

From (3.6) and the CMT, the first term in the right hand side of (A29) converges weakly to 

T I 

(A30) T-dI~/(d)77;F(l)' => fW(d,r)dW(r)'F(l)'. 
1=1 0 

With respect to the second term in the right hand side of (A29), after some manipulation, one 

obtains 
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T T T 
(A.31) I ~t (d)(F* (L)L\T] t)' = I ~t (d - 1)(F* (L)ryT )' - I ~t (d - 1)( F* (L)T]t_I)'. 

1;1 1;1 1;1 

When d > t ' then 

which vanishes by (4.2) and the absolute summability of the lag operator F* (L) . On the other 

hand, using Markov's inequality and assuming for notational convenience that ~I and 

F* (L)T]t-1 are scalars, yields 

T T 

(A.33) E T-d I ~I (d -1)(F* (L)ryI_I) ~ T-3/2 I E(IT3/2
-
d ~I (d - 1)IIF* (L)T]I_II) 

1=1 1=1 

When 1< d < t, then 0 < d -1 = 5 < t, expression (A.31) is now the sum of two Op (1) 

terms by the weak law of large numbers, implying that 

T 

(A.34) T-d I ~, (d)( F* (L)L\T]I)' = 0 p( T-J
) = 0 p (1). 

';1 

Now, by collecting expressions (A.29)-(A.34), we get 

T 1 

(A.35) T-dI~,(d)(F(L)T]I)'=;' fW(d,r)dW(r)'F(1)' 
,;1 0 

whenever d > 1 . 

Lastly, in the case where t < d < 1, first notice from (3.10) and Phillips and Solo's Lemma 

2.1 that 

T 

(A.36) T- 1 I {F(1) + L\F*(L)}~I(d)T];F(L)'~X(d), 
1=1 

which together with the fact that I~;I F* (L )L\~ 1 (d)T]; F( L)' = 0 p (TII2) imply 

T 

(A.37) T-1 F(1)I ~I(d)( F(L)ry1 )'~X(d). • 
1;1 

28 



PROOF OF LEMMA 2. The limits of the blocks TIu , i = 1,2,4,5, TI 1j , j = 2, 4, 5, 

TI 24 , TI 25 , TI45 and Am' m = 1,2,4,5, follow from Lemma 2 in SSW, whereas the limits of 

the blocks TI i3' i = 1,2, 3, TI 34' TI 35 and A3 follow in a direct way from (4.13), Lemma 1 

and the CMT .• 

PROOF OF THEOREM 4. Straightforward using Lemma 2, the CMT and the relationships 

D'r = jJ and \f T(r - r) = {\f;1 I~=I ZIZ;\f;1 rl 

{\f;! I~=! ZI'7;O)}. • 
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