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1 Introduction 

Let Xn = (X1, ... ,Xn) be an observed stretch of a (strictly) stationary, strong mixing 
sequence of random variables {Xtl t E Z} taking values in some general space S; the 
probability measure generating the observations is denoted by P. The strong mixing 
condition means that the sequence ax(k) = sUPA,B IP(A n B) - P(A)P(B)I tends to 
zero as k tends to infinity, where A and B are events in the o-algebras generated by 
{Xt, t < O} and {Xt, t ~ k} respectively; the case where Xl, ... , Xn are independent, 
identically distributed (i.i.d.) is an important special case where ax(k) = 0 for all k > O. 

In Politis and Romano (1994), a general subsampling methodology was put forth for 
the construction of large-sample confidence regions for a general unknown parameter e = 
e(p) under very minimal conditions; see also Wu (1990) where subsampling distribution 
estimators were first considered in the particular case where e is the sample mean of 
real-valued, LLd. data. 

The subsampling methodology hinges on approximating the sampling distribution of 
a statistic Tn = Tn (X n) that is consistent for e at some known rate Tn. Note that, in 
general, the rate of convergence Tn depends on P as well, although this dependence will 
not be explicitly denoted; the case with unknown convergence rate is studied in Bertail 
et al. (1999). 

In the present paper, we make the simplifying assumption that Tn and e are real­
valued. To obtain asymptotically pivotal (or at least, scale-free) statistics, a standardiza­
tion or 'studentization' is often required. Thus, we also introduce a statistic an = an(X n) 
with the purpose of estimating the "scale" of Tn. 

In the case of LLd. data, subsampling may be seen as a delete-d (with d = n - b) 
jackknife (cf. Shao and Wu (1989), or Shao and Tu (1995)), but also as resampling 
(bootstrap) without replacement with a resampling size b smaller than the original 
sample size n (cf. Politis and Romano (1993), or Bickel et al. (1997)). In the case 
of stationary data (time series or random fields), subsampling is closely related to the 
blocking methods of Carlstein (1986), Kiinsch (1989), Liu and Singh (1992), and Sherman 
and Carlstein (1994, 1996). 

Although LLd. data can be seen as a special case of stationary strong mixing data, the 
construction of the subsampling distribution can take advantage of the i.i.d. structure 
when such a structure exists; of course, if one is unsure regarding the independence 
assumption, it is safer (and more robust) to operate under the general strong mixing 
assumption . 

• General case (strong mixing data). Define Yi to be the subsequence (Xi, X i +1 , 

""Xi+b-l), for i = 1, ... , q, and q = n - b + 1; note that Yi consists of b consecutive 
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observations from the Xl, . .. , Xn sequence, and the order of the observations is 
preserved . 

• Special case (i.i.d. data). Let Y1, . •. ,Yq be equal to the q = b!(:~b)! subsets of 
size b chosen from {Xl,'" ,Xn }, and then ordered in any fashion; here the subsets 
Yi consist of unordered observations. 

In either case, let n,i and G-b,i be the values of statistics nand G-b as calculated 
from just subsample Yi. The subsampling distribution of the root Tn°-;l (Tn - (J), based 
on a subsample of size b, is defined by 

q 

Kb(X) == q-l L 1 {Tbo-;,f (Tb,i - Tn) ::; x}. (1) 
i=l 

Under the assumption that, as n -7 00, 

(2) 

where (J is some constant, and assuming that there is a well-defined asymptotic distri­
bution for the centered, 'studentized' statistic Tno-;l(Tn - (J), i.e., assuming that there is 
a distribution K(x, P), continuous in x, such that 

(3) 

as n -7 00, for any real number x, the subsampling methodology was shown to 'work' 
asymptotically, provided also that the integer" subsample size" b satisfies 

b -700 (4) 

and 
b Tb 

max( -, - ) -7 0 
n Tn 

(5) 

as n -7 00. In other words, subsampling "works" in the sense that 

sup IKb(X) - K(x, P)I = op(l) (6) 
x 

and subsequently also that 

sup IKb(X) - Kn(x, P)I = op(l) (7) 
x 

as n tends to infinity; cf. Politis and Romano (1994). Equation (6) can then be used to 
construct confidence intervals for (J of asymptotically correct coverage. 
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Nevertheless, the rate of convergence of Kb(X) to K(x, P) is of some concern to us 
in order to see how large the sample size should be such that the approximation of 
K(x, P) or of Kn(x, P) by Kb(X) is reasonably accurate. The benchmark for comparison 
is provided by the Berry-Esseen theorem in the sample mean case stating that, under 
some regularity conditions (e.g., finite third moment), there is an approximation (namely 
the normal) that is in error by Op(I/.Ji0 from Kn(x, P). The subsampling distribution 
in this case turns out to be a relatively low-accuracy approximation to the true sampling 
distribution Kn(x, P), and is actually worse than the asymptotic normal distribution; 
see vVu (1990). This phenomenon may be explained by the fact that the Berry-Esseen 
bound for the subsampling distribution based on subsamples of size b gives an error of 
size 0 (1/ Jb). Nevertheless, an interpolation idea, first introduced by Booth and Hall 
(1993) for the particular case of the sample mean of i.i.d data, was shown to be able to 
improve the accuracy of subsampling. 

To describe the interpolation idea for general statistics, note that Bertail (1997) 

proved that, if Kn(x, P) admits an Edgeworth expansion of the type 

(8) 

for some increasing functions /1 and iz satisfying it (n) = o(iz (n)), and where the 
O(h(n)-1) term in (8) is uniform in x, then -under some extra conditions as well as 
possible restrictions on the subsampling size b- the subsampling distribution also admits 
the same Edgeworth expansion but in powers of b instead of n; that is, 

(9) 

where the Op(h(n)-l) term in (9) is uniform in x. This result has a straighforward 
consequence when there exists a standardization an such that the asymptotic distribution 
is pivotal and known, i.e. if K(x, P) = K(x) not depending on P. If the rate of the first 
term in the Edgeworth expansion it (n) is known (typically it (n) = n 1/2 in the regular 
case) then it is possible to improve the subsampling distribution by considering a linear 
combination of that distribution with the asymptotic distribution: 

As pointed out in Bertail (1997), the 'interpolation' Ktnt(x) is closely related to the 
generalized jackknife (see Gray, Schucany and Watkins(1972)) involving the two non­
second order correct estimators Kb(X) and K(x)j Ktnt(x) is generally a more accurate 
estimator of the limit K(x) as compared to the subsampling distribution Kb(X). Never­
theless, the generality of the subsampling methodology lies in the fact that K(x) does 
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not have to be known in order for subsampling to work. Therefore, it is of interest to 
seek an interpolation method that does not explicitly involve K(x) but still yields im­
provements over the initial distribution estimator. The next section shows how this goal 
can indeed be achieved under the sole assumption that the limit distribution K(x, P) 
is symmetric, i.e., K(x, P) = 1 - K( -x, P), for all x. Finally, section 3 discusses an 
interesting application: the sample mean of LLd. data with possibly heavy tails. 

2 Subsampling and partial symmetrization 

To construct the 'robust interpolation' subsampling distribution, we start by letting 
K[Iip(x) = 1- Kb(-x), for all x; also let 

K;ymm(x) = (Kb(X) + KtiP (x))/2 = (Kb(X) + 1 - Kb( -x)))/2. 

Finally construct the partially symmetrized subsampling distribution 

(10) 

the following theorem justifies the title 'robust interpolation' for the partially sym­
metrized su bsam pling distri bu tion K'b°b (x). 

Theorem 2.1 Assume conditions (2), (3), (4), and (5), where the limit K(x, P) zs 
continuous in x, and symmetric, i.e., K(x, P) = 1 - K( -x, P), for all x; then 

(a) sup IK'b°b(x) - Kn(x, P)I = op(l) 
x 

as n -t 00. 

If in addition it so happens that the two Edgeworth expansions (8) and (g) hold true 
for some increasing functions f1 and f2-satisfying fl(n) = o(f2(n)), and a symmetric 
function p(x, P), i.e., p(x, P) = p( -x, P), for all x, then 

(b) sup IK'b°b(x) - Kn(x, P)I = Op(j2(bt1
) 

x 

as n -t 00. 

Remark l(a) Part (a) of Theorem 2.1 shows that K'b°b(x) is consistent under very gen­
eral conditions, namely: existence of a continuous and symmetric limit for the sampling 
distribution Kn(x, P). Since existence of an asymptotic distribution is a sine qua non 
assumption in large-sample theory, the only real restriction is the symmetry (and conti­
nuity) of the limit. Incidentally, the continuity restriction can be somewhat relaxed; see, 
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e.g., Politis and Romano (1994), or Politis, Romano, and Wolf (1999) for more details. 

Remark l(b) Part (b) of Theorem 2.1 shows that, under some extra conditions, 
the consistency of K'b°b(x) will occur at a fast rate. Of course, part (b) of Theorem 2.1 
becomes of real interest if the functions Jt and h are such that allow us to pick the 
subsample size b to satisfy 

(11) 

while at the same time satisfying conditions (4) and (5). In that case, it is apparent 
that K'b°b(x) becomes a "higher-order accurate" estimator of the sampling distribu­
tion Kn(x, P), in the sense that K'b°b(x) will provide a more accurate approximation 
to Kn(x, P) as compared to the asymptotic distribution K(x, P). The combination of 
parts (a) and (b), i.e., general validity in conjunction with higher-order accuracy (when 
higher-order accuracy is possible), shows that KbOb(X) achieves higher-order accuracy in 
a robust way. 

Remar k 1 ( c) In Section 3, we will discuss the particular exam pIe of the sample mean 
of i.i.d. data, where Jt(n) = l/Vii, and h(n) = l/n. In that case, to satisfy equation 
(11), a choice of b such that Vii = o(b) would be required; a typical choice would be to 
take b proportional to n'Y, for some fixed I E (1/2, 1). 

Proof of Theorem 2.1. First note that, for any real x, the results of Politis and 
Romano (1994) imply that Kb(X) is consistent for K(x, P). Since K(x, P) is symmetric 
in x, it follows that K[Iip(X) is also consistent for K(x, P). Consequently, Kgvmm(x), as 
well as K'b°b(x), are both consistent estimators of K(x, P), each being a convex combi­
nation of consistent estimators. Part (a) then follows from the continuity of K(x, P), 
and Polya's theorem. 

Regarding part (b), note that equation (9) implies that: 

where the symmetry of p(x, P) was used. Hence, 

K[Iip(X) = 1 - Kb( -x) = 

= 1- K(-x,P) - fl(b)-lp(X,p) + Op(f2(b)-1), 

and therefore: 
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Finally, note that, under the assumed Edgeworth expansions (8) and (9), it follows 
that 

KbOb(X) = K(x, P) + f1 (n)-1p(x, P) + Op(h(bt1), 

and part (b) follows. 0 

(12) 

It is quite interesting that condition (2) is not really necessary: subsampling has 
been shown to be asymptotically valid even in the case of 'self-normalized' statistic 
where typically the rate Tn is of simple form but the statistic an used for studentization 
has a nondegenerate asymptotic distribution; see, e.g., Romano and Wolf (1998a,b), or 

Politis, Romano and Wolf (1999). 
In order to relax the assumption (2) we impose the following: let an and dn be positive 

sequences satisfying 
(13) 

Suppose that, as n -+ 00, 

(14) 

and 
(15) 

where V and Ware some random variables with the distribution of ltV not having positive 
mass at O. 

For the general robust interpolation theorem given below we also need to replace 
condition (5) with the stronger (16) that reads: 

(16) 

as n -+ 00. 

Theorem 2.2 Assume conditions (3), (4), (13), (14), (15), and (16), where the limit 
K(x, P) is continuous in x, and symmetric, i.e., K(x, P) = 1 - K( -x, P), for all x; 
then 

(a) sup IKb"°b(x) - Kn(x, P)I = op(l) 
x 

as n -+ 00. 

If in addition it so happens that the two Edgeworth expansions (8) and (9) hold true 
for some increasing functions !I and f2-satisfying fl(n) = o(f2(n)), and a symmetric 
function p(x, P), i.e., p(x, P) = p( -x, P), for all x, then 

(b) sup IKb"°b(X) - Kn(x, P)I = Op(f2(b)-l) 
x 

as n -+ 00. 
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Proof of Theorem 2.2. The proof is very similar to the proof of Theorem 2.1 taking 
into account Theorem 11.3.1 (LLd. case) and Theorem 12.2.2 (strong mixing case) of 
Politis, Romano and Wolf (1999) that guarantee the consistency of ]{b(X) under the as­
sumed conditions. 0 

Remark 2 In the LLd. case, it has been observed that subsampling is nothing other 
than sampling without replacement from the finite population {Xl, ... , X n }. Therefore, 
it is not surprising that the finite population correction might be helpful; see) e.g., Shao 
and Wu (1989), Wu (1990), Booth and Hall (1993), Shao and Tu (1995), or Bickel et al. 
(1997). In essence, the finite population correction amounts to using TT instead of Tb in 
constructing the subsampling distribution ]{b(X), where r- l = b- l - n- l . By condition 
(5) or (16), it follows that TT/Tb -t 1, and consequently the finite population correc­
tion has no effect on the (first-order) asymptotic validity; it does, however, come into 
play when higher-order properties are concerned, and its use is highly recommended. A 
similar situation occurs in the case of strong mixing data where the use of the finite 
population correction (surprisingly, of the same form as in the Li.d. case) is also recom­
mended; see Bertail and Politis (1996), and Politis, Romano and Wolf (1999). Instead 
of repeating Theorems 2.1 and 2.2 to include the use of the finite population correction 
factor, we illustrate its use in the following section where an interesting application is 
discussed. 

3 Application: The sample mean of i.i.d. data with 
possibly heavy tails 

In this section we impose the following assumption. 

Assumption A. Assume Xl, X 2 ) ••• is an i.i.d. sequence of real-valued random vari­
ables such that the centered sequence Xl - B, X 2 - B, ... lies in the normal domain 
of attraction of a symmetric stable distribution Ja (·, P) with some index of stability 
1 < a ~ 2; here, B = EXt , and the symmetry assumption for the limit law means 
In(x, P) = 1 - I n( -x, P), for all x. 

The case a = 2 corresponds to the case of a Gaussian limit law, while if a < 2, then 
we have a 'heavy-tailed' distribution. Assumption A is tantamount to assuming that 

n 

Pr p{n l
-

t/n 2::)Xi - B) ~ x} -t Ja(x, P) (17) 
i=l 
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uniformly in x as n -t 00; cf. Feller (1966). 
Consider the problem of estimating the mean () by the sample mean Tn = Xn 

n- l 2:i=1 Xi. We also define the usual sample variance by 

n 

a-; = (n - Itl 'L(Xi - Xn)2. 
i=l 

Note that the value of a is generally unknown in practice. To obtain confidence intervals 
for (), it is possible to use the subsampling distribution of the unstudentized sample mean 
X in conjunction with an estimated value of the unknown parameter a; see Bertail et 
al. (1999) for details on this approach which is essentially based on equation (17). 

Alternatively, we may look at the sampling distribution of the studentized sample 
mean, i.e., look at Kn(x,P) = Prp{nl/2o-;1(Tn - 0) ::; x}. It is actually remarkable 
that, although for a < 2 the estimator o-n diverges, the studentized distribution Kn (x, P) 
possesses a well-defined limit K(x, P) under our general Assumption A. In other words, 
equation (3) holds true here for some well-defined continuous distribution K(x, P), and 
for Tn = Vn not depending on a. The reason for this interesting phenomenon is that o-n 
grows like n 1!a-l!2 with high probability so that studentization has a 'self-normalization' 
effect in this case; see Logan et a1. (1973) for more details. 

It is equally remarkable that the subsampling distribution Kb(x), defined exactly as 
in equation (1), is consistent for K(x, P) in this general case; see Romano and Wolf 
(1998a), or Politis, Romano, and Wolf (1999). 

Note, that in the regular case a = 2, under some additional conditions (the Cramer 
condition and existence of higher moments -see, e.g., Bhattacharya and Ghosh, 1978) 
we have the Edgeworth expansion: 

with 

Kn(x, P) = P {nl/2a-;;-l(Xn - O(P)) ::; x} 

= <ll(x) + n- I /2Pl(X, P)cp(x) + O(n-l) 

k3 2 
Pl(X, P) = 6(2x + 1) 

(18) 

where k3 = (E~1~~~~~~))33/2 is the skewness of Xl; in the above, <ll(.) and CPU represent 
the standard normal distribution and density function respectively. 

Vie will now employ the symmetrization ideas of our previous sections to 'have our 
cake and eat it too': we will construct a distribution estimator that is not only consistent 
for K(x, P) in the fat-tailed case, but higher-order accurate as well in case higher-order 
accurate estimation is possible, i.e., if regularity conditions happen to be satisfied; all 
this will be achieved without requiring knowledge of the parameter a. 
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Start by constructing the finite-population corrected subsampling distribution Kb(X) 
by 

q 

Kb(X) = q-l L l{Tra-~l(n,i - Tn) ::; x} 
i=l 

where r- 1 = b-1 - n-1 and Tn = n l
/
2

. Note that Kb(X) = Kb(XTb/Tr); therefore, Kb(X) 
is consistent for K(x, P) whenever Kb(X) is itself consistent since the factor Tb/Tr -t 1 
under conditions (4) and (5). Nevertheless, the finite-population correction is important 
for higher-order consistency properties. 

To elaborate, recall that in the regular case a = 2, (and under the Cram er condition 
together with assuming that EIXi/8+ 1J < 00, for some 'f} > 0), Babu and Singh (1985) 
give the following Edgeworth expansion for sampling without replacement from a finite 
population, with bin ---t O. For any E > 0, 

n-too 

where 

and 

Kb(X) = <J? (x) + b-1
/

2pl(X, P)cp(x) + b- 1p2(X, P)cp(x) 
+O(b1/ 2n-l) + Op(b-I/2n-l/2+E) + o(b-1), 

k4 = E(Xl - EXd
4 

2' 

(E(Xl - EXl)2) 

(19) 

To construct the robust interpolation, we start by letting KtiP(x) = 1 - Kb(-x), and 
let 

K;vmm(x) = (Kb(X) + KC iP (x))/2 = (Kb(X) + 1 - Kb(-x)))/2. 

Finally construct the partially symmetrized subsampling distribution 

KbOb(X) = .jb/nKb(x) + (1 - .jb/n)K~ymm(x). 

The following theorem justifies calling KbOb(x) a "robust interpolation". 

Theorem 3.1 Under Assumption A, and conditions (4) and (5) we have 

(a) sup IKbOb(X) - Kn(x, P)I = op(l) 
x 

as n -t 00. 

(20) 

If in addition it so happens that a = 2, and the two Edgeworth expansions (18) and (19) 
hold true (for some small constant € > 0), then 

(b) sup IKbOb(X) - Kn(x, P)I = op(l/Fn) 
x 

if b 2 const.nl / He as n -t 00. 

10 

, ,I 



Proof of Theorem 3.1. First note that Logan et al. (1973) showed that, under 
our Assumption A, equation (3) holds true with Tn = vn, and for some well-defined 
continuous and symmetric distribution K(x, P) satisfying K(x, P) = 1 - K( -x, P) for 
all x. 

Now, for any real x, Proposition 11.4.3 of Politis, Romano and Wolf (1999) implies 
that Kb(X) is consistent for K(x,P). Since kb(x) = Kb(XTb/Tr), the consistency of 
kb(x) follows from noting that Tb/Tr -+ 1 under conditions (4) and (5). Since K(x, P) 
is symmetric in x, it follows that ktip (x) is also consistent for K (x, P). Consequently, 
ktvmm(x), as well as k'b°b(x), are both consistent estimators of K(x,P), each being a 
convex combination of consistent estimators. Part (a) then follows from Polya's theorem. 

Regarding part (b), note that equation (19) together with the condition b ~ const.nl/2+~ 
implies that: 

and thus: 

where it was used that Pl(X,P) = Pl(-X, P), and P2(X, P) = -P2(-X, P) for all x. 
Hence, K[lip(X) = 1- Kb(-X) = 

= <I> (x) - b-1
/
2pl (x, P)q;(x) + b-1p2(X, P)q;(x) + Op(b1

/
2n-1

), 

and therefore: ktvmm(x) = (Kb(X) + K[lip(x))/2 = 

= <I> (x) + b-1p2(X, P)q;(x) + Op(b1
/
2n-1

). 

Now note that P2(X, P)q;(x) is bounded; hence, under the assumed Edgeworth expan­
sions it follows that 

and part (b) follows. 0 

Remark 3(a) Observe that equation (21) implies that the most accurate approxi­
mation by k'b°b(x) is achieved by taking b = const.n2/3 , yielding an approximation error 
of order Op(n-2

/
3

). As is to be expected, this is slightly worse than the error of size 
Op(n-S/ 6 ) obtained by Booth and Hall (1993) in their (non-robust) interpolation; never­
theless, k'bob(x) retains its asymptotic validity even in the case of a non-Gaussian limit, 
i.e., the case Cl' < 2. 

11 



Remark 3(b) To elaborate on the usefulness of the subsampling-based robust in­
terpolation note that a practitioner can stick to working with the usual studentized 
sample mean for inference regarding the location parameter e. As long as this inference 
(confidence intervals and/or hypothesis tests) is based on the robust interpolation esti­
mator of the sampling distribution, the practitioner is assured of higher-order accurate 
inferences under the usual regularity conditions (finite variance, asymptotic Gaussian 
limit, etc.); at the same time the first-order asymptotic validity is maintained even if the 
aforementioned regularity conditions break down, under the sole provision of existence 
of a symmetric a-stable limit law. Notably, all this is achieved without knowledge (or 
explicit estimation) of the unknown parameter a. 

Acknowledgement. Research partially supported by NSF grants DMS97-03964 
and DMS97-04487. Many thanks are due to Patrice Bertail (IN RA-France) for many 
helpful discussions on the subject of general Edgeworth expansions. 

References 

[lJ Babu, G. and Singh, K(1985). Edgeworth expansions for sampling without replace­
ment from finite populations. Journal of Multivariate Analysis, 17, 261-278. 

[2] Bertail, P. (1997), Second order properties of an extrapolated bootstrap without 
replacement: the i.i.d. and the strong mixing cases, Bernoulli, 3, 149-179. 

[3] Bertail, P. and Politis, D.N. (1996). Extrapolation of subsampling distributions in 
the i.i.d. and strong mixing cases, Technical Report 9604, INRA-CORELA, Ivry, 
France. 

[4] Bertail, P., Politis, D.N., and Romano, J.P. (1999), On subsampling estimators 
with unknown rate of convergence, to appear in Journal of the American Statistical 
Association, June 1999. 

[5J Bickel, P., G6tze, F. and van Zwet, W.R. (1997), Resampling fewer than n observa­
tions: Gains, losses and remedies for losses, Statistica Sinica, 7, 1-31. 

[6J Booth, J.G. and Hall P. (1993). An improvement of the jackknife distribution func­
tion estimator. Annals of Statistics, 21, 1476-1485 

[7] Carlstein, E.(1986), The use of subseries values for estimating the variance of a 
general statistic from a stationary sequence, Annals of Statistics, 14, 1171-1179 

12 

, " 



[8] Feller, W. (1966). An introduction to probability theory and its applications, Vol. Il, 
John Wiley, New York. 

[9] Gray, H., Schucany, W. and Watkins, T.(1972). The Generalized Jackknife Statis­
tics, Marcel Dekker, New York. 

[10] Logan, B.F., Mallows, C.L., Rice, S.O., and Shepp, L.A. (1973). Limit distributions 
of self-normalized sums. Annals of Probability, 1, 788-809. 

[l1J Politis, D.N. and Romano, J.P.(1993). 'Estimating the Distribution of a Studentized 
Statistic by Subsampling', Bulletin of the International Statistical Institute, 49th 
Session, Firenze, August 25 -September 2, 1993, Book 2, pp. 315-316. 

[12] Politis, D.N. and Romano, J.P. (1994). 'Large Sample Confidence Regions Based on 
Subsamples under Minimal Assumptions', Annals of Statistics, 22,2031-2050. 

[13] Politis, D.N., Romano, J.P. and 'Volf, M. (1999). Subsampling, Springer Verlag, 
New York. (to appear: August 1999) 

[14J Romano, J.P. and 'Nolf, M. (1998a), Inference for the mean in the heavy-tailed case, 
Technical Report, Dept. of Statistics, Stanford University. 

[15] Romano, J.P. and Wolf, M. (1998b), Subsampling confidence intervals for the au­
toregressive root, Technical Report, Dept. of Statistics, Stanford University. 

[16] Shao, J. and Tu, D. (1995), The jackknife and the boo ts trap , Springer Verlag, New 
York. 

[17] Shao, J. and Wu, C.F.J. (1989). A general theory for jackknife variance estimation. 
Annals of Statistics, 17, 1176-1197. 

[18] Wu, C.F.J. (1990). On the asymptotic properties of the jackknife histogram. Annals 
of Statistics, 18, 1438-1452. 

13 


