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Let µ be a finite positive Borel measure whose support is a compact subset
K of the real line and let I be the convex hull of K. Let r denote a rational
function with real coefficients whose poles lie in C \ I and r(∞) = 0. We
consider multipoint rational interpolants of the function

f(z) =

∫
dµ(x)

z − x
+ r(z),

where some poles are fixed and others are left free. We show that if the interpo-
lation points and the fixed poles are chosen conveniently then the sequence of
multipoint rational approximants converges geometrically to f in the chordal
metric on compact subsets of C \ I.

1. INTRODUCTION

Let

f(z) =
∞∑

m=0

cm

zm

be a function which is holomorphic on a neighbourhood of the point z = ∞.
For each given nonnegative integer n there are polynomials pn and qn of
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degree at most n such that qn 6≡ 0 and

(qn f − pn)(z) = O(1/zn+1), z →∞.

The ratio pn/qn of any two such polynomials defines a unique rational
function πn which is called the nth (diagonal) Padé approximant of f .
It is also possible to define the function πn as the rational function of
order at the most n which has maximal order of contact (within the class
of all such functions) with the function f at the point z = ∞. Unlike
Taylor polynomials, the study of the convergence of the sequence of Padé
approximants to f encounters serious difficulties. For instance, there exist
entire functions whose sequence of Padé approximants diverges at every
point of the complex plane (see, for details, [16]). One of the first results of
general character on the convergence of such approximants was obtained
by A.A. Markov (see [12], Chapter 3, Theorem 6.1):

Let µ be a finite positive Borel measure whose support, denoted by S(µ),
is a compact subset of the real line R. The so-called Markov function is
the function µ̂(z) defined by

µ̂(z) =
∫

dµ(x)
z − x

, z ∈ C \ S(µ).

Let I be the convex hull of S(µ). Then, the sequence {πn}n∈N of Padé
approximants of µ̂ converges uniformly to µ̂ inside (on compact subsets of)
the domain C \ I.

This classical theorem admits several generalizations. It is possible to
construct rational approximants interpolating the Markov function along
a table of points. In this way, multipoint Padé approximants are obtained
and the corresponding Markov theorem for this class of interpolants may
be found in [9]. Since the set of singular points of the Markov function is
contained in the support of the measure µ we can take advantage of this
fact fixing all or part of the poles of the approximant precisely on the set
S(µ). These approximants are commonly called in recent years Padé-type
approximants, and Markov-type results involving them have been proved
(cf. [6], see also [1] and [3]). Finally, both types of approximation may
be combined to give multipoint Padé-type approximants (see definitions
below). In this setting we can mention references [4] and [5].

A related problem was posed by A.A. Gonchar in [6]. Let us consider
the function

f(z) =
∫

dµ(x)
z − x

+ r(z),

where r is a rational function whose poles lie in C \ I and r(∞) = 0. Now,
f is a meromorphic function on C \ I; the poles of f and their order are
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unknown and should be found by means of the approximants so, rational
functions with fixed poles no longer work and it is necessary to use ap-
proximants with free or partially free poles. In [6] Gonchar proved the
convergence of the sequence of Padé approximants to f locally uniformly
in the region obtained from C \ I by deleting the poles of r, under the
condition that the absolutely continuous part of the measure µ is positive
almost everywhere in S(µ). In the proof, ratio asymptotics of orthogonal
polynomials is strongly used. Later, E.A. Rakhmanov showed that conver-
gence does not hold for arbitrary positive measures µ and general rational
function r (cf. [11]); this is due to the possible bad behaviour of the poles
of the approximants. Many results in rational approximation (for instance,
see [7], Lemma 1, and [8]) point out that the key ingredient to prove con-
vergence is to maintain the poles of the approximants under control. If
the coefficients of r are required to be real then all of the poles of the
rational approximants, except for a number independent of the order of
the approximants, are in I. This fact was used by Rakhmanov to obtain
the convergence of the sequence of Padé approximants to the function f
without any restriction on the measure µ (see [11]) when the coefficients of
r are real.

The aim of this paper is to extend this work of Rakhmanov to the case
of multipoint Padé-type approximants.

2. DEFINITIONS AND MAIN RESULTS

As above, let µ be a finite positive Borel measure whose support, denoted
by S(µ), is a compact subset of the real line R and contains infinitely
many points. Otherwise, the Markov function is a rational function. Set
µ̂(z) =

∫
(z − x)−1dµ(x). Let I be the convex hull of S(µ). Let r be a

rational function with real coefficients whose poles lie in C\I and r(∞) = 0.
The set of poles of r will be denoted by P. Set

f(z) = µ̂(z) + r(z), z ∈ C \ (S(µ) ∪ P); r(z) =
sd(z)
td(z)

,

where deg sd ≤ d − 1, deg td = d. We also assume that sd and td have no
common factors.

Let {Ln}, n ∈ N, be a sequence of monic polynomials whose zeros lie in I.
This condition may be replaced by the slightly weaker one that all the limit
points of the zeros of Ln are in I. Let us assume that deg Ln = k(n) ≤ n
and n− k(n) > 2d. Let us fix another family of monic polynomials

wn(z) =
2n∏
i=1

(z − wn,i),
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whose zeros are contained in a compact set L ⊂ C\(I∪P) and lie symmet-
rically with respect to the real line, counting multiplicities. In case that
for some i, wn,i = ∞, the corresponding factor must be omitted. Without
loss of generality we may assume that wn and td are positive on S(µ).

It is easy to verify, keeping in mind the definitions above, that for each
n ∈ N there exists a unique rational function Πn(f) = pn/(qn L2

n), where
pn and qn satisfy:

• deg qn ≤ n− k(n),deg pn ≤ n + k(n)− 1, and qn 6≡ 0.

• qn L2
n f − pn

wn
∈ H(C \ (S(µ) ∪ P)), where H(A) denotes the set of all

holomorphic functions defined on the set A ⊂ C.

• qn L2
n f − pn

wn
(z) = O(

1
zn−k(n)+1

), z →∞ .

Πn(f) is the multipoint Padé-type approximant of f with preas-
signed poles at the zeros of the polynomial L2

n, which interpolates the
function f at the zeros of the polynomial wn.

Let ρn and ρ be finite Borel measures on C. By ρn
∗−→ ρ, n → ∞, we

denote the weak∗ convergence of ρn to ρ as n tends to infinity. This means
that for every continuous function f on C

lim
n→∞

∫
f(x) dρn(x) =

∫
f(x) dρ(x).

For a given polynomial T , we denote by ΛT the normalized zero count-
ing measure of T . That is

ΛT =
1

deg T

∑
ξ: T (ξ)=0

δξ.

The sum is taken over all the zeros of T and δξ denotes the Dirac measure
concentrated at ξ.

In the sequel, for each n, it is considered that deg wn = 2n, assigning to
these polynomials 2n−deg wn “zeros” at infinity in case that deg wn < 2n.

It is said that the sequence of polynomials {wn}n∈N has the mea-
sure ν as its asymptotic zero distribution if

Λwn

∗−→ ν, n →∞.

Let {ϕn}n∈N be a sequence of functions defined on a domain D. We will
say that the sequence {ϕn}n∈N converges in capacity to the function ϕ
on compact subsets of D if for each compact subset C of D and for each
ε > 0, we have

lim
n→∞

cap {z ∈ C : |ϕn(z)− ϕ(z)| > ε} = 0,
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where cap (·) stands for the logarithmic capacity.
Let K be a compact subset of the real line R with cap (K) > 0; we will

say that K is regular if the domain C \K is regular with respect to the
Dirichlet problem.

Denote Ω = C \ S(µ) and let τ be a positive measure supported on Ω.
The Green potential of the measure τ in Ω is the function GΩ(τ ; ·)
defined by

GΩ(τ ; z) =
∫

gΩ(z; ζ) dτ(ζ), z ∈ Ω,

where gΩ(z; ζ) is the (generalized) Green function of Ω with singularity at
the point ζ.

Let f be a bounded function defined on K. Set ‖f‖K = sup{|f(z)| :
z ∈ K}. Finally, let us introduce the main sufficient condition to prove the
theorem below. Set w(z) = exp(−

∫
log |z − t| dν(t)). We will require

lim sup
n→∞

‖wk(n) Ln‖1/k(n)
S(µ) ≤ exp(−Fw), (1)

where Fw is the modified Robin constant for w (see Section 3.2 for details
and Section 5 for remarks about this condition). The limit above relates
to the behaviour of the zeros of the polynomials Ln on S(µ).

We are ready for

Theorem 2.1. Suppose that the sequence of polynomials {wn}n∈N has
ν as its asymptotic zero distribution. Let cap (S(µ)) > 0. If either k(n) =
o(n) or (1) takes place, then

1.For all sufficiently large n, deg qn = n − k(n); for such n the number
of poles of Πn(f) in C \ I equals the number of poles of r; and the poles of
Πn(f) in C \ I tend, as n →∞, to the poles of r (in such a way that each
pole of r “attracts” exactly a number of poles equal to its order).

2.On each compact subset K of C \ (I ∪ P), we have

lim sup
n→∞

‖ f −Πn(f)‖1/2n
K ≤ ‖ exp{−GΩ(ν; ·)}‖K .

The combination of 1 and 2 indicates that Πn(f) converges to f uniformly
on compact subsets of C \ I in the chordal metric. Since it is known that
‖ exp{−GΩ(ν; ·)}‖K < 1, we obtain geometric rate of convergence of the
multipoint Padé-type approximants to the function f .

In particular, if f = µ̂, we obtain
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Corollary 2.1. Suppose that the sequence of polynomials {wn}n∈N has
ν as its asymptotic zero distribution. Let cap (S(µ)) > 0. If either k(n) =
o(n) or (1) takes place then, on each compact subset K of C \ I, we have

lim sup
n→∞

‖ µ̂−Πn(µ̂)‖1/2n
K ≤ ‖ exp{−GΩ(ν; ·)}‖K .

This last result is closely related to those that appear in [3] or [5], though
the methods are somewhat different. We will discuss their connection later
on.

To conclude this section, we give, for the sake of clarity, a list of the main
symbols and notation used in the paper.

µ a finite positive Borel measure.
S(µ) the support of µ, a compact subset of R.
I the convex hull of S(µ).
µ̂(z)

∫
dµ(x)/(z − x), the Markov function of µ.

Ω C \ S(µ).
r = sd/td a rational function with real coefficients.
d degree of td.
P set of poles of r.
f = µ̂ + r a Markov-type meromorphic function.
{Ln}n∈N a sequence of monic polynomials whose zeros lie on I.
L a compact subset of C \ (I ∪ P).
{wn}n∈N a sequence of monic polynomials whose zeros lie on L.
Πn(f) = pn/(qn L2

n) the multipoint Padé-type approximant of f.
ΛT : the normalized zero counting measure of T .
gΩ(z, ζ) the Green function of Ω.
ν a probability measure supported on L.
GΩ(ν; ·) the Green potential of ν in Ω.
cap (·) the logarithmic capacity.
P (τ ; z) −

∫
log |z − ζ| dτ(ζ), the potential of the measure τ .

w(z) exp P (ν; z).
Fw the equilibrium constant associated with w.
µw the equilibrium measure associated with w.

3. AUXILIARY RESULTS
3.1. Some Lemmas

In the sequel, we maintain the notations introduced above. From the
definition of multipoint Padé-type approximant it is easy to prove (cf. [4],
Lemma 1 or [6], §2.3)
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Lemma 3.1. We have∫
xj qn(x)

td(x)L2
n(x)

wn(x)
dµ(x) = 0, j = 0, 1, . . . , n− k(n)− d− 1 (2)

and

f(z)−Πn(f)(z) =
wn(z)

(td qn L2
n h)(z)

∫
(td qn L2

n h)(x)
wn(x) (z − x)

dµ(x), (3)

where h is any polynomial of degree less than or equal to n− k(n)− d and
z belongs to C \ (S(µ) ∪ P).

From now on, we will represent the polynomials wn in the following form.
For each n ∈ N, put wn = un vn, where

un(z) =
2k(n)+4d∏

i=1

(z − un,i), vn(z) =
2n−2k(n)−4d∏

j=1

(z − vn,j),

are such that their zeros lie (in each family) symmetrically with respect to
the real line, counting multiplicities. In case that for some i or j, un,i = ∞
or vn,j = ∞, the corresponding factor must be omitted. Without loss of
generality we may assume that un and vn are positive on S(µ). We wish to
stress that Lemmas 3.2 to 3.4 hold true for any such decomposition of wn.
In the proof of Theorem 2.1, we select un and vn conveniently according
to Lemma 3.5.

As a consequence of (2), the polynomial qn has at least n − k(n) − d
changes of sign on I (cf. [15], §3.3). Then, qn can be represented in
the form qn = qn,1 qn,2, where deg qn,1 ≥ n − k(n) − d and the zeros
{xn,i}, i = 1, . . . , n′ of qn,1 are simple and belong to I. The polynomial
qn,2 does not change sign on I; and deg qn,2 ≤ d. Set

pn,1(z) =
∫

qn,1(z)vn(x)− qn,1(x)vn(z)
(z − x) vn(x)

dµn(x),

dµn(x) =
td qn,2 L2

n

un
(x) dµ(x).

Lemma 3.2. We have

(td qn,2 L2
n)(f −Πn(f))(z) = un(z)

(
µ̂n(z)− pn,1

qn,1
(z)

)
, z ∈ C \ I, (4)
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pn,1

qn,1
(z) =

n′∑
i=1

λn,i

z − xn,i
, λn,i =

∫
qn,1(x) vn(xn,i)

q′n,1(xn,i) (x− xn,i)
dµn(x)
vn(x)

. (5)

Proof. From the definition of pn,1, we obtain

pn,1(z) = qn,1(z) µ̂n(z)− vn(z)
∫

qn,1(x)
(z − x) vn(x)

dµn(x),

or, in an equivalent manner

µ̂n(z)− pn,1

qn,1
(z) =

vn(z)
qn,1(z)

∫
qn,1(x)

(z − x) vn(x)
dµn(x). (6)

Using Hermite’s formula (3) with h ≡ 1, we also have

vn(z)
qn,1(z)

∫
qn,1(x)

(z − x) vn(x)
dµn(x) =

vn(z)
qn,1(z)

∫
(td qn L2

n)(x)
(un vn)(x) (z − x)

dµ(x) =

(td qn,2 L2
n)(z)

un(z)
(f −Πn(f))(z).

(7)

Now, (6) and (7) together give (4). Furthermore

pn,1

qn,1
(z) = µ̂n(z)− vn(z)

qn,1(z)

∫
(td qn L2

n)(x)
(un vn)(x) (z − x)

dµ(x) = o(
1
z
),

due to the orthogonality relations (2) and taking account of the possible
degrees of the polynomials vn and qn,1. Thus deg pn,1 < deg qn,1 and,
therefore

pn,1

qn,1
(z) =

n′∑
i=1

λn,i

z − xn,i
with λn,i = lim

z→xn,i

(z − xn,i)
pn,1

qn,1
(z).

If we now use the integral formula that defines pn,1, we obtain (5) and the
proof of the lemma is over.

Consider the following linear functional Λn. If ϕ is a function defined on
I, then

Λn(ϕ) =
n′∑

i=1

λn,i
ϕ(xn,i)
vn(xn,i)

.
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The next lemma is an analog of the Gauss-Jacobi quadrature formula.

Lemma 3.3. For every polynomial P with deg P < 2n− 2k(n)− 2d,∫
P (x)

dµn(x)
vn(x)

= Λn(P ). (8)

Proof. Let L, deg L < n′, be the Lagrange polynomial which inter-
polates a given polynomial P, deg P < 2n − 2k(n) − 2d, at the points
xn,i, i = 1, . . . , n′. We have P = L + qn,1 T , where T is a polynomial of
degree less than n − k(n) − d. Integrating the equation P = L + qn,1 T ,
using (2) and (5), we obtain

∫
P (x)

dµn(x)
vn(x)

=
n′∑

i=1

P (xn,i)
∫

qn,1(x)
q′n,1(xn,i) (x− xn,i)

dµn(x)
vn(x)

= Λn(P ),

and the proof is complete.

From this last result immediately follows

Lemma 3.4. The number of positive coefficients λn,i in (5) is at least
n− k(n)− d.

Proof. Let N be the number of positive λn,i (for a given n). Put
P (z) =

∏+(z−xn,i)2, where
∏+ denotes the product over all indices i for

which λn,i > 0. If deg P = 2N < 2n− 2k(n)− 2d, formula (8) is applicable
to P , and we obtain a contradiction (the left-hand side of the formula is pos-
itive and the right-hand one is nonpositive). Consequently N > n−k(n)−d,
which proves the lemma.

The next lemma shows that the polynomials un and vn may be chosen
so that the sequences inherit the asymptotic zero distribution of {wn}n∈N.
Though it may be stated in more general terms we restrict our attention
to the case needed for the proof of Theorem 2.1.

Lemma 3.5. Suppose that the sequence of polynomials {wn}n∈N with
deg wn = n, has the measure ν as its asymptotic zero distribution and
S(ν) ⊂ C. Let k(n) ∈ N be such that k(n) ≤ n. If limn→∞ k(n) = ∞
and limn→∞ n − k(n) = ∞ then, for each n ∈ N, there exist polynomials
un and vn such that wn = un vn, deg un = k(n), and

Λun

∗−→ ν, n →∞, Λvn

∗−→ ν, n →∞.
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Proof. Fix a closed square Q such that the support of ν is contained
in Q. We may assume, without loss of generality, that all the zeros of the
polynomials wn belong to Q. For each positive integer n, divide Q into
m(n) disjoint squares (not necessarily closed): Q = ∪m(n)

j=1 Qn
j . We suppose

that m(n) = o(k(n)), m(n) = o(n−k(n)), and limn→∞ m(n) = ∞ verifying

lim
n→∞

(
max

j=1,...,m(n)
|Qn

j |
)

= 0, where |A| = max
{a,b∈A}

|a− b|.

Now, we construct un in the following way. In each square Qn
j we choose

[k(n) ΛWn(Qn
j )] zeros of wn, where [ · ] denotes the integer part. These zeros

are the zeros of un, the rest of them define vn. These polynomials un and
vn do not have the degrees announced in the statement of the lemma. We
correct this later. Notice that the difference in degrees is, at most, m(n)
for each of them.

The polynomial un satisfies

k(n) Λwn(Qn
j )− 1 ≤ Υun(Qn

j ) ≤ k(n) Λwn(Qn
j ), j = 1, . . . ,m(n), (9)

where Υun stands for the measure which at each zero of un a mass equal
to the multiplicity of the zero. From (9) we obtain

Λwn(Q)− m(n)
k(n)

≤ Υun(Q)
k(n)

≤ Λwn
(Q).

Analogously

Λwn
(Q) ≤ Υvn

(Q)
n− k(n)

≤ Λwn
(Q) +

m(n)
n− k(n)

.

Let h be a continuous function on C. We may suppose that h is a real,
positive function. Denote by M the maximum of h on Q and by Mn

j and
mn

j the maximum and the minimum, respectively, of h on the closure of
Qn

j . Due to uniform continuity we may suppose that Mn
j −mn

j ≤ δn, where
limn→∞ δn = 0. By (9), we have∣∣∣∣∣

∫
Qn

j

h dΛwn
−

∫
Qn

j

h dΛun

∣∣∣∣∣ ≤ Mn
j Λwn

(Qn
j )−mn

j Λun
(Qn

j )

≤ (Mn
j −mn

j ) Λwn
(Qn

j ) + mn
j

k(n) .
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Therefore,

∣∣∣∣∫
Q

h dΛwn −
∫

Q

h dΛun

∣∣∣∣ ≤ m(n)∑
j=1

∣∣∣∣∣
∫

Qn
j

h dΛwn −
∫

Qn
j

h dΛun

∣∣∣∣∣
≤

m(n)∑
j=1

[
(Mn

j −mn
j ) Λwn(Qn

j ) +
mn

j

k(n)

]
≤ δn + M

m(n)
k(n)

,

where the right-hand side tends to zero as n tends to infinity. The weak
star convergence of Λvn

is proved in a similar way.
In order to correct the degrees of un and vn according to the statement,

we must only transmit from one of these polynomials to the other at most
m(n) zeros. Since m(n) = o(k(n)) and m(n) = o(n− k(n)) the new poly-
nomials preserve the weak star limit of the previous ones. The proof is com-
plete.

The next lemma was proved by Gonchar in [7].

Lemma 3.6. Suppose that the sequence {ϕn} of functions defined on the
domain D ⊂ C converges in capacity to a function ϕ on compact subsets
of D. Then the following assertions hold true:

1.If the functions ϕn, n ∈ N are holomorphic in D, then the sequence
{ϕn} converges uniformly on compact subsets of D and ϕ is holomorphic
in D (more precisely, it is equal to a holomorphic function in D except on
a set of capacity zero).

2.If each of the functions ϕn is meromorphic in D and has no more than
k < +∞ poles in this domain, then the limit function ϕ is also meromorphic
and has no more than k poles in D.

3.If each function ϕn is meromorphic and has no more than k < +∞
poles in D and the function ϕ is meromorphic and has exactly k poles in D,
then all ϕn, n ≥ N , also have k poles in D; the poles of ϕn tend to the poles
z1, , . . . , zk of ϕ (taking account of their orders) and the sequence {ϕn} tends
to ϕ uniformly on compact subsets of the domain D′ = D \ {z1, , . . . , zk}.

3.2. Potential Theory
Let w be a positive continuous function on S(µ). Set g(z) = − log w(z).

It is well known (see [14], Sections I.1 and I.3) that among all probability
measures σ with support in S(µ) there exists a unique probability mea-
sure µw with support in S(µ), called the extremal or equilibrium measure



12 B. DE LA CALLE AND G. LÓPEZ

associated with w, minimizing the weighted energy

Iw(σ) =
∫ ∫ (

log
1

|z − t|
+ g(z) + g(t)

)
dσ(z) dσ(t).

Let P (µw; z) = −
∫

log |z− t| dµw(t) be the potential of this extremal mea-
sure and Sw ⊂ S(µ) its support. Under these conditions there exists a
constant Fw, called the equilibrium constant or modified Robin constant,
such that

P (µw; z) + g(z) ≥ Fw, z ∈ S(µ) \ E, cap (E) = 0,

P (µw; z) + g(z) ≤ Fw, z ∈ Sw.
(10)

Due to (10), µw is also called the equilibrium measure in the presence of
the external field g. The constant Fw is determined by

Fw = Iw(µw)−
∫

g(t) dµw(t).

If {wn}n∈N has asymptotic zero distribution ν, it is easy to see that
(wn)−1/ deg wn uniformly converges to eP (ν;.) on S(µ), where P (ν; ·) is the
potential of the probability measure ν. If we take g(z) = −P (ν; ·), since
the support of ν is contained in L ⊂ C \ (I ∪ P), it is well known that µw

is the balayage of ν onto S(µ) and Sw coincides with S(µ) minus a set of
capacity zero (for instance, see [14], Chapter IV, Theorem 1.10). Therefore,

P (µw; z)− P (ν; z) = Fw, z ∈ S(µ) \ E, cap (E) = 0. (11)

It is also known (see Theorem 5.1, Chapter II, in [14]) that

GΩ(ν; z) = Fw − P (µw; z) + P (ν; z), z ∈ Ω = C \ S(µ). (12)

Recall that GΩ(ν; ·) is the Green potential of the measure ν in Ω. The next
lemma tells us that Green potentials behave properly with respect to an
increasing union of domains.

Lemma 3.7. Let {Kn}n∈N be a sequence of compact sets contained in
R such that Kn+1 ⊂ Kn for each n ∈ N and cap (∩∞n=1Kn) > 0. Let ν be
a positive measure with compact support in C \K1. Then

lim
n→∞

e−GDn (ν;z) = e−GD(ν;z),

uniformly on compact subsets of D, where Dn = C\Kn and D = ∪∞n=1Dn.
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Proof. For each n ∈ N, denote Fw,n and µw,n the Robin constant and
the equilibrium measure, respectively, associated with w = eP (ν;·); where
we consider the function w restricted to the set Kn. And let Fw and µw be
the Robin constant and the equilibrium measure, respectively, associated
with the same weight w restricted to the set ∩∞n=1Kn. In the situation of
this lemma, it is known (cf. Theorems 6.2 and 6.5, Chapter I, in [14]) that

lim
n→∞

Fw,n = Fw and µw,n
∗−→ µw, n →∞.

Therefore, if we denote Fw,n − P (µw,n; ·) by hn, it is obtained that the
functions hn converge to Fw − P (µw; ·) uniformly on compact subsets of
D. Hence,

lim
n→∞

e−hn(z) = e−Fw+P (µw;z),

uniformly on compact subsets of D, since the functions hn are uniformly
bounded on such subsets.

On the other hand, the function −P (ν; ·) is a subharmonic function on
D (in fact, on all C) so, for any compact subset C of D, −P (ν; ·) attains
its maximum: say MC . Then, e−P (ν;z) ∈ [0, eMC ] ∀z ∈ C, which implies,
using (12), that

lim
n→∞

e−GDn (ν;z) = lim
n→∞

e−P (ν;z) e−hn(z) = e−P (ν;z) e−Fw+P (µw;z) = e−GD(ν;z),

uniformly on C.

4. PROOF OF THE THEOREM

In the sequel, without loss of generality, we may assume that L is a
compact subset of C \ I. The reduction to this case may be achieved by
means of a Möbius transformation of the variable in the initial problem,
which transforms S(µ) into another compact subset of R and L ⊂ C \ I

into a compact subset contained in C \ Ĩ, where Ĩ is the image of I by the
Möbius transformation. This assumption implies, in particular, that for
each n the degree of wn is really 2n, and liberates our arguments from the
special treatment which otherwise we would have to give to neighbourhoods
of infinity.

The proof is divided into three parts. In the first we obtain a general
estimate of the size of f − Πn(f) on compact subsets of C \ I. Here we
must deal with two problems; namely, the poles of Πn(f) (zeros of qn,2)
which may lie in C \ I (and in fact some do), and the zeros of qn,1 which
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have negative coefficients λn,i. Fortunately the number of points with
these undesired properties does not depend on n as n tends to infinity. To
handle these problems we follow arguments employed in the proof of the
Theorem in [10]. The general estimate obtained in the first part allows us
to give proper bounds in part two using techniques from potential theory.
The bounds of part two provide convergence in capacity of Πn(f) to f on
compact subsets of C\I and with the aid of Gonchar’s Lemma we conclude
the proof in part three.

1. Let wn = un vn be any decomposition of wn as defined in the be-
ginning of Section 3.1. Let ρn(z) =

∏−(z − xn,i)2, where
∏− denotes the

product over the indices i for which λn,i < 0. From Lemma 3.4 it follows
that deg ρn ≤ 2d. Let us consider the functions

Φn(z) =
ρn qn,2 td L2

n

un
(z) (f −Πn(f)) (z), z ∈ C \ I.

For every z ∈ C \ I, from (4) and (5), we obtain

Φn(z) = ρn(z)
[
µ̂n(z)− pn,1

qn,1
(z)

]
= ρn(z)

[
µ̂n(z)− Λn

(
vn(x)
z − x

)]
.

Denote

Kn(x; z) =
ρn(z)− ρn(x)
(z − x) ρn(z)

;

then, Kn is a polynomial (in x) of degree less than 2d. We have

1
z − x

−Kn(x; z) =
ρn(x)
ρn(z)

1
z − x

.

From the preceding representation of Φn and Lemma 3.3, we obtain (recall
that n− k(n) > 2d)

Φn(z) = ρn(z)
∫ (

1
z − x

−Kn(x; z)
)

dµn(x)

−ρn(z) Λn

(
vn(x)
z − x

− vn(x)Kn(x; z)
)

=
∫

ρn(x)
dµn(x)
z − x

− Λn

(
ρn(x)

vn(x)
z − x

)
, z ∈ C \ I.

Let K be an arbitrary compact subset of C \ I. On one hand∣∣∣∣ ∫
ρn(x)

dµn(x)
z − x

∣∣∣∣ ≤ M(K)
∥∥∥∥L2

n

un

∥∥∥∥
S(µ)

‖qn,2 td‖S(µ), z ∈ K, (13)
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where M(K) denotes a constant which may depend on K but not on n. In
the following, in each appearance, M(K) may denote a different constant
with the same characteristics.

On the other hand, using Lemma 3.3, we obtain (notice that ρn(xn,i) = 0
whenever λn,i < 0)

∣∣∣∣Λn

(
ρn(x)

vn(x)
z − x

)∣∣∣∣ =

∣∣∣∣∣∣
n′∑

i=1

λn,i
ρn(xn,i)
z − xn,i

∣∣∣∣∣∣
≤

n′∑
i=1

λn,i
ρn(xn,i)
|z − xn,i|

≤ M(K)
n′∑

i=1

λn,i ρn(xn,i)

= M(K)
∫

ρn(x) dµn(x) ≤ M(K)
∥∥∥∥L2

n

un

∥∥∥∥
S(µ)

‖qn,2 td‖S(µ), z ∈ K.

(14)

Therefore, by the use of (13) and (14), we obtain

|Φn(z)| ≤ M(K)
∥∥∥∥L2

n

un

∥∥∥∥
S(µ)

‖qn,2 td‖S(µ), z ∈ K, (15)

where K is an arbitrary compact subset of C \ I.
2. Let {Km}m∈N be a sequence of regular compact sets contained in

I such that Km+1 ⊂ Km and S(µ) = ∩∞m=1Km. We may assume that
each Km is a finite union of intervals. Let us denote by µw,m and Fw,m

the equilibrium measure on the set Km and the modified Robin constant,
respectively, associated with the external field w(z) = expP (ν; z). Set
Ωm = C\Km and let GΩm

(ν; ζ) be the corresponding Green potential. Let
m be an arbitrary natural number but fixed. In view of (2), qn,1, n ∈ N,
has, at most, d + 1 simple zeros in each connected component of I \ S(µ).
In this way, qn,1 may be represented in the form qn,1 = q̃n,1 hn, where
deg hn = an ≤ A(m), n ≥ N , and q̃n,1 has all its zeros in Km.

Now, let us consider the functions

Hn(z) =
Φn(z) hn(z)∥∥u−1

n L2
n

∥∥
S(µ)

‖qn,2 td‖S(µ) vn(z) ρn(z)
, z ∈ C \Km.

From the definition of multipoint Padé-type approximant it is easily seen
that

Hn ∈ H(C \Km) and Hn = O(
1

z2n−2k(n)−2d−an+1
), z →∞. (16)
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We also know, due to (15), that

|Hn(z) vn(z)| ≤ M(K), z ∈ K, (17)

where K is any given compact subset of C \ I, since hn has all its zeros in
I and its degree is bounded by A(m).

Notice that

hn(z) [f(z)−Πn(f)(z)] =
∥∥∥∥L2

n

un

∥∥∥∥
S(µ)

un(z)
L2

n(z)
Hn(z) vn(z)

‖qn,2 td‖S(µ)

qn,2(z) td(z)
,

(18)

where z belongs to C \ I. Our next goal is to prove that the sequence{∥∥∥∥L2
n

un

∥∥∥∥
S(µ)

un(z)
L2

n(z)
Hn(z) vn(z)

}
n∈N

(19)

converges to zero with a geometric rate uniformly on compact subsets of
C \ I. To this end, we estimate separately the factors

Hn(z) vn(z) and
∥∥∥∥L2

n

un

∥∥∥∥
S(µ)

un(z)
L2

n(z)
.

We start with the factors of the first kind. Let K be an arbitrary compact
subset of C \ I. Set γε = {ζ ∈ C : expGΩm(ν; ζ) = 1 + ε}, where ε is a
positive constant sufficiently small so that K and L lie in the unbounded
component of C \ γε. In view of (16), for each n, the function

|Hn(z)| [exp(Fw,m − P (µw,m; z))]2n−2k(n)−2d−an

is subharmonic in C \Km. Taking (17) into account, we obtain that

|Hn(z) vn(z)| [exp(Fw,m − P (µw,m; z))]2n−2k(n)−2d−an

≤ M(γε) [exp(Fw,m − P (µw,m; z))]2n−2k(n)−2d−an

≤ M(γε) [exp(Fw,m − P (µw,m; z))]2n−2k(n)−4d, z ∈ γε,

where M(γε) has the same characteristics as M(K). Or equivalently, using
(12)

|Hn(z)|[exp(Fw,m − P (µw,m; z))]2n−2k(n)−4d−an

≤ M(γε)
|vn(z)|

[exp(GΩm
(ν; z))]2n−2k(n)−4d

[exp(P (ν; z))]2n−2k(n)−4d
, z ∈ γε.

(20)
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Now, we suppose that limn→∞ n − k(n) = ∞ and limn→∞ k(n) = ∞ (the
bounded cases are easier and are considered at the end of this section). We
choose un and vn, deg vn = 2n− 2k(n)− 4d, with the additional property
of having ν as their asymptotic zero distribution as in Lemma 3.5. Since
the degree of all the polynomials involved is even this choice may be done
in such a way that the zeros of un and vn lie symmetrically with respect
to the real line. From the fact that ν is the asymptotic zero distribution of
{vn}n∈N, we obtain

lim
n→∞

|vn(z)|1/ deg vn = e−P (ν;z), (21)

uniformly on compact subsets of C \ L, and using the Principle of De-
scent(see [14], Chapter 1, Theorem 6.8), we have that

lim sup
n→∞

|vn(z)|1/ deg vn ≤ e−P (ν;z), (22)

uniformly on compact subsets of C. Now, for sufficiently large n ∈ N, (20)
and (21) together give

|Hn(z)| [exp(Fw,m − P (µw,m; z))]2n−2k(n)−4d−an

≤ M(γε)
(

1 + ε

1− ε

)2n−2k(n)−4d

, z ∈ γε.

It follows from the Maximum Principle for subharmonic functions that the
same inequality holds for any z in K. Hence, using (22), we obtain that

|Hn(z) vn(z)| = |Hn(z)| [exp(Fw,m − P (µw,m; z))]2n−2k(n)−4d−an×

|vn(z)| [exp(−Fw,m + P (µw,m; z))]2n−2k(n)−4d−an ≤ M(γε) |vn(z)|×

(
1 + ε

1− ε

)2n−2k(n)−4d

[exp(−GΩm
(ν; z)) exp(P (ν; z))]2n−2k(n)−4d

≤ M(γε)
(

(1 + ε)2

1− ε

)2n−2k(n)−4d

[exp(−GΩm(ν; z))]2n−2k(n)−4d, z ∈ K;

(23)

for sufficiently large n ∈ N.
On the other hand, (recall that w(z) = exp(P (ν; z)))∥∥∥∥L2

n

un

∥∥∥∥
S(µ)

=
∥∥∥∥L2

n w2k(n)+4d

un w2k(n)+4d

∥∥∥∥
S(µ)

≤ C
‖L2

n w2k(n)‖S(µ)

minζ∈S(µ){un(ζ) w2k(n)+4d(ζ)}
,
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where C is an absolute constant which may be different in each appearance.
Therefore, taking account of (1) and (21) relative to un, we have that∥∥∥∥L2

n

un

∥∥∥∥
S(µ)

≤ C

(
1 + ε

1− ε

)2k(n)

[exp(−Fw)]2k(n)+4d, (24)

for sufficiently large n ∈ N.
Condition (1) implies that (see [14], Chapter III, Theorem 4.2)

ΛLn

∗−→ µw, n →∞,

which in turn implies that

lim
n→∞

|Ln(z)|1/ deg Ln = e−P (µw;z),

uniformly on compact subsets of C \ S(µ). Using this fact and (22) with
un instead of vn, we have that

|un(z)|
|L2

n(z)|
≤ M(K)

|un(z)|[exp(P (ν; z))]2k(n)+4d

|L2
n(z)|[exp(P (µw; z))]2k(n)

×

[exp(P (µw; z)− P (ν; z))]2k(n)+4d ≤ M(K)
(

1 + ε

1− ε

)2k(n)

×

[exp(P (µw; z)− P (ν; z))]2k(n)+4d, z ∈ K,

(25)

for sufficiently large n ∈ N. From (24) and (25), we obtain∥∥∥∥L2
n

un

∥∥∥∥
S(µ)

|un(z)|
|L2

n(z)|
≤ M(K)

(
1 + ε

1− ε

)4k(n)

[exp(−GΩ(ν; z))]2k(n)+4d

≤ M(K)
(

1 + ε

1− ε

)4k(n)

[exp(−GΩm
(ν; z))]2k(n)+4d, z ∈ K,

(26)

for sufficiently large n ∈ N.
Using (23) and (26), taking limits, and making ε tend to zero it follows

that

lim sup
n→∞

∥∥∥∥∥
∥∥∥∥L2

n

un

∥∥∥∥
S(µ)

un(z)
L2

n(z)
Hn(z) vn(z)

∥∥∥∥∥
1/2n

K

≤ ‖ exp(−GΩm(ν; ·))‖K , (27)

for each compact subset K of C \ I. From here it immediately follows that
the sequence (19) converges uniformly to zero, with geometric rate, on each
compact subset of C \ I.
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If n− k(n) ≤ B, B ∈ R, for all n ∈ N, it is obvious that {un}n∈N has ν
as its asymptotic zero distribution. Then, we attain (27) by the use of (17)
and (26). Finally, we obtain (27) in the general case (regarding the size of
n− k(n)) passing to subsequences.

3. Following standard arguments, from (18) and (27), it is not difficult
to prove convergence in capacity of the sequence Πn(f) to f on compact
subsets of C \ I (cf. proof of Theorem 1 in [11]). The poles of the function
Πn(f) in C \ I are the zeros of qn,2 and their number does not exceed d.
The number of poles of f in C \ I is exactly equal to d, and part 1 of
the statement of Theorem 2.1 now follows from Lemma 3.6. Therefore, on
every compact set K ⊂ C \ (I ∪ P) the function qn,2 td can be uniformly
bounded below for sufficiently large n. Thus, from (18) and (27), we have
that

lim sup
n→∞

‖f −Πn(f)‖1/2n
K ≤ ‖ exp(−GΩm(ν; ·))‖K , (28)

where K is any compact subset of C\(I∪P) and m is an arbitrary natural
number. Therefore, with the aid of Lemma 3.7, we obtain part 2 of the
statement of Theorem 2.1 for compact subsets of C\(I∪P). Since f−Πn(f)
is holomorphic in a neighbourhood of z = ∞ and takes the value 0 there,
we have, by the Maximum Principle, that (28) holds true for arbitrary
compact subsets in C\ (I ∪P), which completes the proof if (1) takes place
and limn→∞ k(n) = ∞.

Now, we assume that k(n) = o(n). Let K be an arbitrary compact set of
C \ I. Let α = minz∈K,ζ∈I |z − ζ| and β = maxz∈S(µ),ζ∈I |z − ζ|. If z ∈ K
and we use (21) and (22) with un instead of vn, we have that

|un(z)|
|L2

n(z)|

∥∥∥∥L2
n

un

∥∥∥∥
S(µ)

≤
‖L2

n‖S(µ)

|L2
n(z)|

|un(z)|
minζ∈S(µ) |un(ζ)|

≤
(

β

α

)2k(n) (
‖ exp(−P (ν; ·))‖K + ε

minζ∈S(µ) | exp(−P (ν; ζ))| − ε

)2k(n)+4d

,

for all sufficiently large n ∈ N. Therefore, if k(n) = o(n), we obtain

lim sup
n→∞

∥∥∥∥L2
n

un

∥∥∥∥1/2n

S(µ)

∥∥∥∥ un(z)
L2

n(z)

∥∥∥∥1/2n

K

≤ 1,

where K is any compact subset of C \ I. Now, the proof is analogous to
the previous one using this last result, instead of (26).

Finally, if only condition (1) takes place we attain the result passing to
subsequences.



20 B. DE LA CALLE AND G. LÓPEZ

5. REMARKS

As we said above, condition (1) implies (assuming limn→∞ k(n) = ∞)
that

ΛLn

∗−→ µw, n →∞.

If the set S(µ) is regular with respect to the Dirichlet problem in Ω both
conditions are equivalent (see Lemmas 3 and 4 in [5]) but, in general,
the reciprocal statement is not true. To see this, let us consider the set
[−2, 2] ∪ {3} and the Chebyshev polynomials Tn(z) = zn + . . . for [−2, 2].
Let µ be the measure on [−2, 2]∪{3} which restricted to [−2, 2] equals the
Lebesgue measure and has mass 1 at z = 3. We take un ≡ vn ≡ 1, for all
n ∈ N. The Chebyshev polynomials Tn verify

lim sup
n→∞

‖Tn‖1/n
[−2,2] ≤ cap ([−2, 2]) = 1. (29)

This fact is equivalent (see [2], Theorem 1) to

ΛTn

∗−→ µw, n →∞, (30)

where dµw is the equilibrium measure of [−2, 2], which is the same measure
that the equilibrium measure of [−2, 2]∪{3}, since both sets differ in a set of
capacity zero. In turn, any one of the conditions (29) and (30) is equivalent
to

lim
n→∞

|Tn(z)|1/n = exp(gC\[−2,2](z;∞)),

uniformly on compact subsets of C \ [−2, 2]. In particular

lim
n→∞

|Tn(3)|1/n = exp(gC\[−2,2](3;∞)) > 1. (31)

On the other hand, condition (1), for the polynomials Tn, reads

lim sup
n→∞

‖Tn‖1/n
[−2,2]∪{3} ≤ cap ([−2, 2] ∪ {3}) = 1,

which contradicts (31). However, it is easy, in this case, to construct a
family of polynomials that satisfies (1). It is sufficient to take Ln(z) =
Tn(z) (z−3). In general, there always exist families of polynomials verifying
(1), for instance, Chebyshev and Fekete (weighted) polynomials (see [14],
Chapter 3).

Regarding the relationship between Corollary 2.1 and Theorem 2 in [5],
neither of the results is contained in the other. In contrast with [5], we do
not require that either S(µ) be regular or that the measure µ be regular
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(see [5] for definition). However, our condition on the polynomials Ln is
stronger and we do not obtain the exact rate of convergence.

If, in Corollary 2.1, the polynomials wn are taken to be equal to 1, we may
compare this result and Theorem 2′ in [3]. In case that S(µ) is a regular
compact set, both results are equivalent; otherwise, our requirement (1)
is stronger than the one that appears in [3], but we let limn→∞ k(n)/n
be equal to 1, which is not allowed in [3]. The case limn→∞ k(n)/n = 1
corresponds to the case when “almost” all the poles of Πn(µ̂) are fixed. In
this situation the construction of the Padé-type approximants has the least
computational cost since the zeros of Ln are given.
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