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Abstract. We prove perfectness for Nikishin systems made up of three functions and apply
this to the convergence of the associated Hermite-Padé approximants.

1. Introduction

Let S = (s1, . . . , sm) be a system of finite Borel measures. All the measures considered in this
paper have constant sign and compact support supp(·) contained in the real line R with infinitely
many points. Fix a multi-index n = (n1, . . . , nm) ∈ Zm

+ and set |n| = n1 + · · ·+ nm. We say that
Qn, deg Qn ≤ |n|, Qn 6≡ 0, is a multiple orthogonal polynomial of S relative to the multi-index n if

0 =
∫

xkQn(x)dsj(x) , k = 0, . . . , nj − 1 , j = 1, . . . , m . (1)

It is well known (see e.g. [2, 3, 5, 7] and Section 3 below) that orthogonality relations of this type
arise in a natural way in the study of Hermite-Padé (or simultaneous Padé) approximation.

Basic questions are: if (1) determines Qn uniquely (up to a constant factor); is deg Qn = |n|
for all non trivial solution of (1); are the zeros of Qn simple and do they lie in the interior (with
the euclidean topology of R) of the smallest interval containing the support of all the measures
sj . In general, it is easy to construct examples where the answer to all these questions is negative
(taking, for example, s1 = · · · = sm).

Definition 1. We say that a multi-index n is weakly normal for the system S if Qn is determined
uniquely. A multi-index n is said to be normal if any non trivial solution Qn of (1) satisfies
deg Qn = |n|. If Qn has exactly |n| simple zeros and they all lie in the interior of the smallest
interval containing ∪m

j=1 supp(sj) the index is called strongly normal. When all the indices are
weakly normal, normal, or strongly normal the system S is said to be weakly perfect, perfect, or
strongly perfect respectively.

Normality of indices plays a crucial role in applications to number theory and Hermite-Padé
approximation. Obviously, strong normality implies normality, and it is not hard to prove that
normality implies weak normality (see Lemma 1 below).

Nikishin systems of measures were introduced in [7]. For them a large class of indices are known
to be strongly normal. Such systems are defined as follows. We adopt the notation introduced in
[5] which is clarifying.

Let σ1 and σ2 be two measures supported on R and let F1, F2 denote the smallest intervals
containing supp(σ1) and supp(σ2) respectively. We write Fi = Co(supp(σi)). Assume that F1 ∩
F2 = ∅. We define

〈σ1, σ2〉(x) =
∫

dσ2(t)
x− t

dσ1(x) = σ̂2(x)dσ1(x) .

Therefore, 〈σ1, σ2〉 is a measure with constant sign and support equal to that of σ1.
For a system of closed intervals F1, . . . , Fm satisfying Fj−1 ∩ Fj = ∅, j = 2, . . . , m, and finite

Borel measures σ1, . . . , σm with constant sign and Co(supp(σj)) = Fj , we define by induction

〈σ1, σ2, . . . , σj〉 = 〈σ1, 〈σ2, . . . , σj〉〉, j = 2, . . . , m .

We say that S = (s1, . . . , sm), where

s1 = 〈σ1〉 = σ1, s2 = 〈σ1, σ2〉, . . . , sm = 〈σ1, . . . , σm〉 ,
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is the Nikishin system of measures associated with (σ1, . . . , σm). Notice that all the measures in
a Nikishin system have the same support.

For Nikishin systems of measures all multi-indices n satisfying 1 ≤ i < j ≤ m ⇒ nj ≤ ni +1 are
known to be strongly normal. This result was originally proved in [3]. More recently, an extension
for so called generalized Nikishin systems was given in [5]. When m = 2, from the results in [2]
it follows that the system is strongly perfect (a detailed proof may be found in [3]). In [1], the
authors were able to include in the set of strongly normal indices all those for which there do not
exist 1 ≤ i < j < k ≤ m such that ni < nj < nk. In particular, for m = 3 all indices turn out to
be strongly normal except (possibly) when n1 < n2 < n3.

The main result of this paper states the following.

Theorem 1. An arbitrary Nikishin system of three measures is strongly perfect.

This result is proved in section 2. Section 3 is devoted to some applications.

2. Proofs

Let S = (s1, . . . , sm) be a system of measures in R (not necessarily of Nikishin type) and
n = (n1, . . . , nm) a multi-index. The moment matrix of the system S relative to the multi-index
n is the square matrix Mn of order |n| obtained placing the submatrices




∫
dsj(x) · · · ∫

x|n|−1dsj(x)
...

. . .
...∫

xnj−1dsj(x) · · · ∫
x|n|+nj−2dsj(x)


 , j = 1, . . . , m ,

consecutively one on top of the other. If nj = 0, this index is skipped in the construction of Mn.
By M ′

n we denote the matrix obtained adding to Mn at the end the column vector

(
∫

x|n|ds1(x), . . . ,

∫
x|n|+n1−1ds1(x),

∫
x|n|ds2(x), . . . ,

∫
x|n|+nm−1dsm(x))t .

Let Qn(x) = a|n|x|n| + a|n|−1x
|n|−1 + · · · + a0 be a solution of (1) and A = (a0, . . . , a|n|)t the

vector of coefficients corresponding to Qn. In matrix form, the system of equations defined by (1)
may be expressed as follows

M ′
nA = 0 , (2)

where 0 denotes the |n|-dimensional zero vector. In algebraic terms it is easy to answer the first
two questions posed in the previous section. By rk(·) we denote the rank of the indicated matrix.

Lemma 1. Let (s1, . . . , sm) be a system of measures and n = (n1, . . . , nm) a multi-index. A
necessary and sufficient condition in order that n be weakly normal is that rk(M ′

n) = |n|. In turn,
a necessary and sufficient condition in order that n be normal is that rk(Mn) = |n|. In particular,
normality implies weak normality.

Proof. In fact, according to the Rouche-Frobenius Theorem the solution space of the homo-
geneous system of equations (2) is one dimensional if and only if rk(M ′

n) = |n|. Of course, this
is equivalent to the fact that Qn be determined uniquely up to a constant factor. On the other
hand, rk(Mn) = |n| and an = 0 imply that all the other entries of A must equal zero, whereas if
rk(M) < |n| we can find a non trivial solution of (2) with an = 0. 2

Related to (1) there is the so called dual problem. Let σ1 be a Borel measure on R with infinitely
many points in its support and (w1, . . . , wm) a system of continuous functions on Co(supp(σ1)) with
constant sign. Consider the system of measures (s1, . . . , sm) = (w1dσ1, . . . , wmdσm). Whenever
it is convenient, we adopt the differential notation for a measure.

Definition 2. We say that n ∈ Zm
+ is normal with respect to the dual problem if there do not

exist polynomials Pn1 , . . . , Pnm , not all identically equal to zero, such that deg Pnj ≤ nj − 1 and
∫

xν(Pn1(x)w1(x) + · · ·+ Pnm(x)wm(x))dσ1(x) = 0 , ν = 0, . . . , |n| − 1 , (3)

(deg Pnj
≤ −1 means that Pnj

≡ 0).
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Lemma 2. Let σ1 and (w1, . . . , wm) be as above. Set S = (w1dσ1, . . . , wmdσm). The index n ∈ Zm
+

is normal with respect to S if and only if it is normal with respect to the dual problem.

Proof. According to Lemma 1, n is normal with respect to S if and only if the rows of Mn are
linearly independent. Taking arbitrary linear combinations of the rows of Mn one sees that this is
equivalent to saying that n is normal for the dual problem. 2

Definition 3. It is said that (w1, . . . , wm) forms an AT system for the index n = (n1, . . . , nm)
on Co(supp(σ1)) if no matter what polynomials Pn1 , . . . , Pnm one chooses with deg Pnj ≤ nj − 1,
not all identically equal to zero, the function

Pn(x) = Pn(Pn1 , . . . , Pnm ; x) = Pn1(x)w1(x) + · · ·+ Pnm(x)wm(x) .

has at most |n| − 1 zeros on Co(supp(σ1)). The system (w1, . . . , wm) forms an AT system on
Co(supp(σ1)) if it is an AT system on that interval for all n ∈ Zm

+ .

Since σ1 has infinitely many points in its support, (3) forces Pn(x) to have at least |n| changes
of sign in the interior of Co(supp(σ1)). Therefore, a sufficient condition in order that an index
n be normal for the dual problem is that (w1, . . . , wm) form an AT system for the index n on
Co(supp(σ1)). In fact, the AT property has more substantial consequences. The following result
appears as Theorem 1 in [7] where more on AT systems may be found. For convenience of the
reader we include a proof with the additional assumption that the functions wj are analytic on a
neighborhood of Co(supp(σ1)) which is sufficient for our further considerations.

Lemma 3. Let σ1 and (w1, . . . , wm) be as above. Set S = (w1dσ1, . . . , wmdσm). Assume that
(w1, . . . , wm) is an AT system for the multi-index n = (n1, . . . , nm). Then n is strongly normal
for S.

Proof. From (1) it follows that

0 =
∫

Qn(x)Pn(x)dσ1(x) (4)

for all Pn(x) = Pn(Pn1 , . . . , Pnm ;x). Assume that Qn has at most N < |n| changes of sign in the
interior of Co(supp(σ1)). Choose the polynomials Pnj , j = 1, . . . ,m, so that Pn has a simple zero at
each of the points where Qn changes sign in the interior of Co(supp(σ1)) and a zero of multiplicity
|n| −N − 1 at one of the extreme points of Co(supp(σ1)) (recall that in the proof we are assuming
additionally that the functions wj are analytic on a neighborhood of Co(supp(σ1))). Finding such
polynomials Pnj , j = 1, . . . , m, reduces to solving a homogeneous system of |n| − 1 equations on
|n| unknowns formed by the coefficients of these polynomials, thus a non trivial solution exists.
Since Pn(x) can have no more zeros on Co(supp(σ1)) than the |n| − 1 already assigned, we have
that Qn(x)Pn(x) does not change sign on Co(supp(σ1)). Therefore, (4) cannot take place for this
Pn arriving to a contradiction. 2

From Lemma 3 it follows that Theorem 1 is an immediate consequence of the following.

Theorem 2. Let S = (s1, s2, sm) be the Nikishin system associated with (σ1, σ2, σ3). Then
(w1, w2, w3) forms an AT system on Co(supp(σ1)), where w1 ≡ 1, w2 = σ̂2, and w3 = ŝ2,3 with
s2,3 = 〈σ2, σ3〉.

To prove this theorem we use

Lemma 4. Let σ2, σ3 be two measures on R such that Co(supp(σ2)) ∩ Co(supp(σ3)) = ∅. Then

σ̂2(z)σ̂3(z) = ŝ2,3(z) + ŝ3,2(z) , z ∈ C \ (supp(σ2) ∪ supp(σ3)) , (5)

where s2,3 = 〈σ2, σ3〉 and s3,2 = 〈σ3, σ2〉.
Proof. In fact,

σ̂2(z)σ̂3(z) =
∫ ∫

dσ2(x)dσ3(t)
(z − x)(z − t)

=
∫ ∫ (

1
z − x

− 1
z − t

)
dσ2(x)dσ3(t)

x− t

=
∫

σ̂3(x)dσ2(x)
z − x

+
∫

σ̂2(t)dσ3(t)
z − t

which is what we needed to prove. 2
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Let σ be a measure supported on R with constant sign. Notice that the statement of Theorem
2 implies that a system of the form (1, σ̂) forms an AT system on any closed interval contained in
R disjoint from Co(supp(σ)). This is the reason why Nikishin systems of two measures in strongly
perfect. Let us prove this particular case separately. Before doing so let us recall the well known
property (see [6, Appendix]) that there exists a finite measure τ with constant sign such that
Co(supp(τ)) ⊂ Co(supp(σ)) and

1
σ̂(z)

= l(z) + τ̂(z), z ∈ C \ supp(σ) , (6)

where l(z) is a polynomial of degree one. This will be used frequently in the sequel.

Lemma 5. The system (1, σ̂) forms an AT system on any closed interval contained in R disjoint
from Co(supp(σ)).

Proof. Let us assume that (1, σ̂) is not an AT system on some interval [a, b] disjoint from
Co(supp(σ)). Then there exists a multi-index n = (n1, n2) ∈ Z2

+ and polynomials Pni , deg Pni ≤
ni − 1, i = 1, 2, not both identically equal to zero, such that Pn = Pn1 + Pn2 σ̂ has exactly
N ≥ |n| = n1+n2 zeros on [a, b] counting multiplicities. Obviously, N < ∞ since Pn is analytic on a
neighborhood of [a, b] and N = ∞ would imply that Pn ≡ 0 and by the same token Pni ≡ 0, i = 1, 2.

Let Wn be the monic polynomial whose zeros are the zeros of Pn on [a, b] (counting multiplici-
ties). Therefore,

Pn(z)
Wn(z)

= O

(
1

zN−M

)
∈ H(C \ Co(supp(σ))) , (7)

where M = max{n1 − 1, n2 − 2}.
Assume that M = n1 − 1. From (7) we have that

zνPn(z)
Wn(z)

= O

(
1
z2

)
∈ H(C \ Co(supp(σ))) , ν = 0, . . . , n2 − 1 .

Let Γ be a closed integration path with winding number 1 for all its interior points. Denote Ext(Γ)
and Int(Γ) the unbounded and bounded connected components respectively of the complement of
Γ. Take Γ so that Co(supp(σ)) ⊂ Int(Γ) and [a, b] ⊂ Ext(Γ). From Cauchy’s Theorem, it follows
that

0 =
1

2πi

∫

Γ

zνPn(z)
Wn(z)

dz =
1

2πi

∫

Γ

zν(Pn2 σ̂)(z)
Wn(z)

dz , ν = 0, . . . , n2 − 1 .

Using Fubini’s Theorem and Cauchy’s integral formula, we obtain

0 =
∫

xνPn2(x)
Wn(x)

dσ(x) , ν = 0, . . . , n2 − 1 .

Since dσ(x)/Wn(x) is a measure with constant sign on Co(supp(σ)) it follows that Pn2 has at least
n2 zeros on Co(supp(σ)). But this is impossible unless Pn2 ≡ 0 which in turn would imply that
Pn1 , having N > n1 − 1 zeros on [a, b], would also be identically equal to zero against our initial
assumption on these polynomials.

If M = n2 − 2 the proof is the same except for one additional ingredient. From (7) it follows
that

zνPn(z)
σ̂(z)Wn(z)

= O

(
1
z2

)
∈ H(C \ Co(supp(σ))) , ν = 0, . . . , n1 − 1 .

Take Γ as before. From Cauchy’s Theorem and (6), it follows that

0 =
1

2πi

∫

Γ

zνPn(z)
(σ̂Wn)(z)

dz =
1

2πi

∫

Γ

zν(Pn1 τ̂)(z)
Wn(z)

dz , ν = 0, . . . , n1 − 1 .

Using Fubini’s Theorem and Cauchy’s integral formula, we obtain

0 =
∫

xνPn1(x)
Wn(x)

dτ(x) , ν = 0, . . . , n1 − 1 .

Reasoning as in the previous case we obtain a contradiction. 2

Proof of Theorem 2. We use the notation introduced in the statement of the Theorem. Let
us assume that (w1, w2, w3) is not an AT system on Co(supp(σ1)). Then there exists a multi-index
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n = (n1, n2, n3) ∈ Z3
+ and polynomials Pni ,deg Pni ≤ ni − 1, i = 1, 2, 3, not all identically equal to

zero, such that Pn = Pn1 + Pn2w2 + Pn3w3 has exactly N ≥ |n| zeros on Co(supp(σ1)) counting
multiplicities. Obviously, N < ∞ since Pn is analytic on a neighborhood of Co(supp(σ1)) and
N = ∞ would imply that Pn ≡ 0 and by the same token Pni ≡ 0, i = 1, 2, 3.

Let Wn be the monic polynomial whose zeros are the zeros of Pn on Co(supp(σ1)) (counting
multiplicities). Therefore,

Pn(z)
Wn(z)

= O

(
1

zN−M

)
∈ H(C \ Co(supp(σ2))) , (8)

where M = max{n1 − 1, n2 − 2, n3 − 2}.
Assume that M = n1 − 1. From (8) we have that

zνPn(z)
Wn(z)

= O

(
1
z2

)
∈ H(C \ Co(supp(σ2))) , ν = 0, . . . , n2 + n3 − 1 .

Let Γ be a closed integration path with winding number 1 for all its interior points such that
Co(supp(σ2)) ⊂ Int(Γ) and Co(supp(σ1)) ⊂ Ext(Γ). From Cauchy’s Theorem, it follows that

0 =
1

2πi

∫

Γ

zνPn(z)
Wn(z)

dz =
1

2πi

∫

Γ

zν(Pn2w2 + Pn3w3)(z)
Wn(z)

dz , ν = 0, . . . , n2 + n3 − 1 .

Substituting w2 and w3 by their expressions, using Fubini’s Theorem and Cauchy’s integral formula,
we obtain

0 =
∫

xν(Pn2 + Pn3 σ̂3)(x)
Wn(x)

dσ2(x) , ν = 0, . . . , n2 + n3 − 1 .

Since dσ2(x)/Wn(x) is a measure with constant sign on supp σ2, it follows that (Pn2 + Pn3 σ̂3)(x)
must have at least n2 + n3 changes of sign on Co(supp(σ2)). According to Lemma 5 this is not
possible unless Pn2 ≡ 0 and Pn3 ≡ 0. But this is not possible either because then Pn1 would have
N > n1 − 1 zeros on Co(supp(σ1)) and would also be identically equal to zero contrary to our
assumption that these polynomials are not all identically equal to zero.

Let us consider the case when M = n2 − 2. From (8) it follows that

zνPn(z)
σ̂2(z)Wn(z)

= O

(
1
z2

)
∈ H(C \ Co(supp(σ))) , ν = 0, . . . , n1 + n3 − 1 .

Take Γ as before. From Cauchy’s Theorem we obtain

0 =
1

2πi

∫

Γ

zνPn(z)
(σ̂2Wn)(z)

dz =

1
2πi

∫

Γ

zνPn1(z)
(σ̂2Wn)(z)

dz +
1

2πi

∫

Γ

zν(Pn3 ŝ2,3)(z)
(σ̂2Wn)(z)

dz , ν = 0, . . . , n1 + n3 − 1 .

According to (6), there exists a finite measure τ2 with constant sign such that
1

σ̂2(z)
= l2(z) + τ̂2(z), z ∈ C \ supp(σ2) , (9)

From (9), Cauchy’s Theorem, Fubini’s Theorem, and Cauchy’s Integral Formula, for the first
integral on the right hand we have

1
2πi

∫

Γ

zνPn1(z)
(σ̂2Wn)(z)

dz =
1

2πi

∫

Γ

zν(Pn1 τ̂2)(z)
Wn(z)

dz =
∫

xνPn1(x)
Wn(x)

dτ2(x) .

For the second integral, using (5), (9), Cauchy’s Theorem, Fubini’s Theorem, and Cauchy’s Integral
formula, we obtain

1
2πi

∫

Γ

zν(Pn3 ŝ2,3)(z)
(σ̂2Wn)(z)

dz =
1

2πi

∫

Γ

zνPn3(z)
Wn(z)

(
σ̂3(z)− ŝ3,2(z)

σ̂2(z)

)
dz =

− 1
2πi

∫

Γ

zν(Pn3 ŝ3,2τ̂2)(z)
Wn(z)

dz = −
∫

xν(Pn3 ŝ3,2)(x)
Wn(x)

dτ2(x) .

Summing up the last three relations, we get

0 =
∫

xν(Pn1 − Pn3 ŝ3,2)(x)
Wn(x)

dτ2(x) , ν = 0, . . . , n1 + n3 − 1 .
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On account of Lemma 5, reasoning as in the previous case we obtain a contradiction.
If M = n3 − 2, from (8) we have that

zνPn(z)
ŝ2,3(z)Wn(z)

= O

(
1
z2

)
∈ H(C \ Co(supp(σ2))) , ν = 0, . . . , n1 + n2 − 1 .

Taking Γ as above and using Cauchy’s Theorem it follows that

0 =
1

2πi

∫

Γ

zνPn(z)
(ŝ2,3Wn)(z)

dz =

1
2πi

∫

Γ

zνPn1(z)
(ŝ2,3Wn)(z)

dz +
1

2πi

∫

Γ

zν(Pn2 σ̂2)(z)
(ŝ2,3Wn)(z)

dz , ν = 0, . . . , n1 + n2 − 1 .

According to (6), let τ2,3 be such that Co(supp(τ2,3)) ⊂ Co(supp(s2,3)) = Co(supp(σ2)) and

1
ŝ2,3(z)

= l2,3(z) + τ̂2,3(z), z ∈ C \ supp(s2,3) , (10)

From (10)

1
2πi

∫

Γ

zνPn1(z)
(ŝ2,3Wn)(z)

dz =
1

2πi

∫

Γ

zν(Pn1 τ̂2,3)(z)
(Wn)(z)

dz =
∫

xνPn1(x)
Wn(x)

dτ2,3(x) .

For the second integral, using (5) and (10), we get

1
2πi

∫

Γ

zν(Pn2 σ̂2)(z)
(ŝ2,3Wn)(z)

dz =
1

2πi

∫

Γ

zνPn2(z)
(σ̂3Wn)(z)

(ŝ2,3 + ŝ3,2)(z)
ŝ2,3(z)

dz =

1
2πi

∫

Γ

zνPn2(z)
(σ̂3Wn)(z)

ŝ3,2(z)
ŝ2,3(z)

dz =
∫

xν(Pn2 ŝ3,2)(x)
(σ̂3Wn)(x)

dτ2,3(x) .

Putting together these relations, it follows that

0 =
∫

xν(Pn1 σ̂3 + Pn2 ŝ3,2)(x)
(σ̂3Wn)(x)

dτ2,3(x) , ν = 0, . . . , n1 + n2 − 1 . (11)

We cannot apply directly Lemma 5 as we did before to conclude the proof. Instead, we must go
one step further down.

From (11) we know that Pn1 σ̂3 + Pn2 ŝ3,2 must have N1 ≥ n1 + n2 zeros on Co(supp(σ2)) and
Pn1 , Pn2 cannot be simultaneously identically equal to zero because by the way these polynomials
were chosen it would turn out that all three would be identically equal to zero against our initial
assumption. Let V be the monic polynomial whose zeros are the zeros of Pn1 σ̂3 + Pn2 ŝ3,2 on
Co(supp(σ2)). Therefore,

(Pn1 σ̂3 + Pn2 ŝ3,2)(z)
V (z)

= O

(
1

zN1−M1

)
∈ H(C \ Co(supp(σ3))) , (12)

where M1 = max{n1 − 2, n2 − 2}.
Assume that M1 = n1 − 2. From (12) we have that

zν(Pn1 σ̂3 + Pn2 ŝ3,2)(z)
(σ̂3V )(z)

= O

(
1
z2

)
∈ H(C \ Co(supp(σ3))) , ν = 0, . . . , n2 − 1 .

Let Γ be a closed integration path with winding number 1 for all its interior points such that
Co(supp(σ3)) ⊂ Int(Γ) and Co(supp(σ2)) ⊂ Ext(Γ). Using Lemma 5, it follows that

0 =
1

2πi

∫

Γ

zν(Pn1 σ̂3 + Pn2 ŝ3,2)(z)
(σ̂3V )(z)

dz =
1

2πi

∫

Γ

zν(Pn2 ŝ3,2)(z)
(σ̂3V )(z)

dz =

− 1
2πi

∫

Γ

zν(Pn2 ŝ2,3)(z)
(σ̂3V )(z)

dz = − 1
2πi

∫

Γ

zν(Pn2 ŝ2,3τ̂3)(z)
V (z)

dz =

−
∫

xν(Pn2 ŝ2,3)(x)
V (z)

dτ3(x) , ν = 0, . . . , n2 − 1 ,

where 1/σ̂3(z) = l3(z) + τ̂3(z), z ∈ C \ Co(supp(σ3)). This is not possible unless Pn2 ≡ 0 and,
consequently, Pn1 ≡ 0 which contradicts the initial assumptions on these polynomials.
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If M1 = n2 − 2, from (12) we have that

zν(Pn1 σ̂3 + Pn2 ŝ3,2)(z)
(ŝ3,2V )(z)

= O

(
1
z2

)
∈ H(C \ Co(supp(σ3))) , ν = 0, . . . , n1 − 1 .

Taking Γ as before and 1/ŝ3,2(z) = l3,2(z) + τ̂3,2(z), z ∈ C \ Co(supp(σ3)), it follows that

0 =
1

2πi

∫

Γ

zν(Pn1 σ̂3 + Pn2 ŝ3,2)(z)
(ŝ3,2V )(z)

dz =
1

2πi

∫

Γ

zν(Pn1 σ̂2σ̂3)(z)
(σ̂2ŝ3,2V )(z)

dz =

1
2πi

∫

Γ

zν(Pn1 ŝ2,3)(z)
(σ̂2ŝ3,2V )(z)

dz =
1

2πi

∫

Γ

zν(Pn1 ŝ2,3τ̂3,2)(z)
(σ̂2V )(z)

dz =

∫
xν(Pn1 ŝ2,3)(x)

(σ̂2V )(x)
dτ3,2(x) , ν = 0, . . . , n1 − 1 .

Reasoning as in the previous case, we obtain a contradiction. With this we conclude the proof of
Theorem 2. 2

Remark . The proof of Theorem 2 may be conveniently modified so as to allow the possibility
that consecutive intervals Fj , j = 1, . . . , m, appearing in the definition of a Nikishin system of
measures have a common end point (as long as their interiors remain non intersecting). It suffices
to require that the corresponding measures be sufficiently weak in a neighborhood of the point of
contact. In the same direction, it is possible to allow that some of the measures have unbounded
support requiring that the corresponding measures be sufficiently weak at infinity.

3. Applications

Let f = (f1, . . . , fm) be a finite system of (formal) power series

fj(z) =
∞∑

k=0

cj,k

zk+1
, j = 1, . . . ,m .

Fix a multi–index n = (n1, . . . , nm) ∈ Zm
+ . It is easy to see that there exists a polynomial Qn such

that

(i) Qn(z) 6≡ 0 , deg Qn ≤ |n|,
(ii) (Qnfj − Pn,j)(z) = An,j

znj+1 + . . . , j = 1, . . . , m ,
(13)

where on the right hand of (ii) we have a series in increasing powers of 1/z and Pn,j is the polynomial
part of the power expansion of Qnfj at z = ∞ (hence deg Pn,j ≤ |n| − 1). The construction of
Qn, reduces to finding a non–trivial solution of a homogeneous linear system of |n| equations on
|n| + 1 unknowns (the coefficients of Qn). Therefore, a non–trivial solution always exists. For
each solution of (13), the vector

(
Pn,1
Qn

, . . . ,
Pn,m

Qn

)
is called the Hermite–Padé approximant (or

simultaneous Padé approximant) of (f1, . . . , fm) relative to the multi–index (n1, . . . , nm). In the
case of one function the definition reduces to that of a diagonal Padé approximant.

It is well known that Padé approximants and in particular diagonal Padé approximants are
uniquely determined. This is not the case for Hermite–Padé approximants when m ≥ 2. Different
solutions to the homogeneous system mentioned above can give rise to different vector Hermite–
Padé approximants. From (13) it follows that a sufficient condition in order that the multi–index
(n1, . . . , nm) determines a unique Hermite–Padé approximant, is to be able to ensure that any
Qn which solves (13) has deg Qn = |n|. In fact, if Qn and Q̃n satisfy (ii), we would have that
Q̃n = λQn, λ 6= 0, since otherwise we can obtain a polynomial of degree less than |n| that verifies
(i) and (ii).

Let S = (s1, . . . , sm be the Nikishin system of measures associated with (σ1, . . . , σm). We say
that Ŝ = (ŝ1, . . . , ŝm) is the Nikishin system of functions associated with (σ1, . . . , σm). Consider
the Hermite-Padé approximants relative to Ŝ. Using Cauchy’s Theorem, from (13) immediately
follows that the common denominator Qn of the corresponding Hermite-Padé approximant verifies
(1).

From Theorem 1 and what was said above, we obtain
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Corollary 1. For a Nikishin system of three functions the Hermite-Padé approximant of any
muti–index is determined uniquely.

Another consequence of Theorem 1 is the following.

Corollary 2. Let Ŝ = (ŝ1, ŝ2, ŝ3) be a Nikishin system. Let {n(r)}, r ∈ N, be a sequence of
multi–indices in Z3

+ such that limr→∞ |n(r)| = ∞, and there exists a constant c such that ni(r) ≥
(|n(r)|/3)− c, i = 1, 2, 3. Then

lim
r→∞

Pn(r),i

Qn(r)
= fi , i = 1, 2, 3 .

uniformly on each compact subset of C \ Co(supp(σ1)) .

Proof. According to [2, Theorem 1], our assumptions imply that each component of the
Hermite-Padé approximant converges to the corresponding component of Ŝ in logarithmic ca-
pacity on each compact subset of C \ Co(supp(σ1)) . On the other hand, for all i = 1, 2, 3, and
r ∈ N, all the poles of Pn(r),i/Qn(r) lie on Co(supp(σ1)) . According to [4, Lemma 1], this and the
convergence in capacity imply our statement. 2
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