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1. INTRODUCTION 

Let P be a probability function in (~d, ]Bd) absolutely continuous with respect to the (J­

finite measure It. Let f = dP Idf-L be the corresponding Radon Nikodym derivative, which 

is assumed to belong to the space Lp (~d,]Bd, f-L) , with 1 ::; p < 00. Usually, it is considered 

the Lebesgue measure A and then, f = dP IdA is the corresponding probability density 

function (pdf). Given a random sample {Xi, 1 = 1, ... , n} from P, a delta estimator of f 

is defined as 

where mn = m (n) is known as smoothing sequence, and it is assumed that mn diverges 

as n -> 00. The sequence {mn}nEN is not necessarily a sequence of numbers, it could be 

a sequence of matrices, partitions, functions, etc. The sequence {K mn } nEN is known as 

generalized kernel sequence. 

This class of estimators was introduced by Whittle (1958), encompassing most of the 

existing nonparametric estimators. Terrell (1984) and Terell and Scott (1992) show that 

all nonparametric density estimators, which are continuous and differentiable functionals 

of the empirical distribution function can be interpreted as delta estimators, at least 

asymptotically. 

In the case of pdf estimation in (x) is pointwise asymptotically unbiased if 

where b is the Dirac delta generalized function with jump at zero. This is why these esti­

mators are known as delta estimators. Watson and Leadbetter (1963), Waiter and Blum 

(1979) and Prakasa Rao (1983) provide sufficient condition for global consistency in norm 

Lp (A) and pointwise consistency, assuming smoothness conditions on f. Winter (1973, 

1975) studies uniform consistency and the consistency of the corresponding smooth distri­

bution function estimator. Watson and Leadbetter (1964) establish asymptotic normality. 

Basawa and Prakasa Rao (1980, Chap. 11) provide results for dependent observations. 

In this literature unbiasedness is achieved under restrictive smoothness conditiolls on the 

pdf f. Universal asymptotic unbiasedness results and global rates of convergence for the 

bias have not been obtained yet. 

One of the main objectives of this paper is to provide fairly primitive conditions on 

Kmn which are sufficient for the universally asymptotic unbiasedness of in. The expected 
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value of fn is given by 

O:m" (f; x) = J Km" (x; z) f (z) IJ (dz). 

which is a sequence of linear operators in Lp (lRd, Iffid, jJ) . \Ve say that the delta estimator 

is asymptotically unbiased (in global sense) when 

lim I100m" (j;x)-f(x)II L ( )=0. 
n----tOO P J.L 

(1) 

Notice that the smoothing sequence {mn } nEN is a divergent sequence in a directed set l 

IT. The elements of such a sequence can be positive definite matrices ordered by decreasing 

norm, in the usual kernel estimator of a multivariate density; the order of a polynomial, 

in the orthogonal series estimators; or measurable partitions, in the histogram. Thus 

{ O:m (f; x) } mER is a net2 of curves in Lp (lRd, Iffid, jJ) , which allows to define universally 

asymptotic unbiasedness in a very general framework. 

Definition 1 We say that the delta estimator in is universally asymptotically unbiased 

in Lp (lRd, Iffid, jJ), with 1 :S p < 00, iff the net of linear operators {O:m} mER' with 

O:m: Lp (lRd,lffid,jJ) 

f 

--t Lp (lRd,lffid,jJ) 

I---> O:m (f) = O:m (f; x) = J Km (x, z) f (z) jJ (dz) ; 

lim II00m(f;x)-f(x)II L (,,) =0. mER p ,-

This is the same as saying that the net of linear operators {O:m} mER is a linear approx­

imator of the identity or a linear approximate identity3. 

Notice that when in is asymptotically unbiased, according to definition 1, (1) holds for 

any sequence {mn } nEN which is an increasing sequence that diverges in IT, for all probability 

functions P absolutely continuous with respect to jJ, with f = dP / dp, E Lp (lRd, Iffid, jJ) . 

1 A directed set H, is a non empty set endowed with a partial preorder ::;, such that if ml, m2 E H, then, 

there exists an m3 EH such that ml ::; m3 and m2 ::; m3. 

2A net {am}mEI in a Banach space (B,II'II B ), is such that am = a (m) with a: H -+ B, where H is a 

directed set. So we say that lim lIam - all B = 0, a E B iffVe > 0, 3m (e) E H such that lIam - aN B < e for 
""El 

al m 2:: m(e). See e.g. Edgar and Sucheston (1992, pp 4). In our case B = Lp (lR d ,lBd ,tL) , am = et"" (fjx) 

and a = f (x). 
3 Let (Bj /1./1 B) a Banach space. The net {am} mEI of bounded linear operators a"" : B -+ B is a linear 

approximat.or of t.he ident.ity if 

lim lJam (f) - fllB = 0, Vf E B. 
mEI 

See e.g. Davis (1975, PP 346). 
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The rest of the paper is organized as follows. In section 2 we provide sufficient condi­

tions on the kernel function {Km (x, z) } mEn' for universally asymptotically unbiasedness. 

Section 3 provides a rate of convergence for the bias, which can be improved under dif­

ferentiability conditions on f. Section 4 presents a bias reduction technique. In section 

5 we check the universal asymptotic unbiasedness sufficient conditions for for some broad 

classes of non parametric estimators. In section 6 we discuss the bias of regression delta 

estimators. Proofs can be found in section 7. 

2. SUFFICIENT CONDITIONS FOR UNIVERSAL ASYMPTOTICALLY 

UNBIASEDNESS 

Define the net of majorized operators of {O:m} mEn 

The following theorem provides conditions on the generalized kernel net {Km (x,z)}mEn 

which are sufficient to guarantee that the net {O:m} mEn is a linear approximator of the 

identity and, therefore, the delta estimator is universally asymptotically unbiased. We 

say that {l 0: J m} mEn is uniformly bounded4 in Lp (~d, lffid, J.L) if 

Theorem 1 Assume that 

A.I. {l 0: Jm} mEn is uniformly bounded in Lp (~d, lffid, J.L) , 1 :S p < 00. 

A.2. 

lim II00m (1; x) - l11L (fL) =lim Ilf Km (x, z) J.L (dz) - 111 = O. 
mEI P mEI Lp{fL) 

A.3. For all compact set C C ~d, the measure J.L (C) < 00. 

(2) 

4Lct (B1' 1I· IIB1) . (B2. 1I· IIB2) be two Banach spaces. We say that a linear operator a: B1 -> B1 is 

bounded (equivalently continuous). if 

lIallB B dg. sup lIa (I)II B < 00. 
1. 2 II/IIB

1
:9 2 

A net {a"'}"'EI is uniformly bounded iff 

sup lIa",IIB B =sup { sup lIa(l)IIB} < 00. 
"'Ell, 2 "'El II/IIB1 $1 2 

Sce e.g. Kantorovich and Akilov (1982). 
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A.4. For all 8> 0, and all compact set C C ]Rd, 

lim 11 r /Km (x, Z)llle (dZ)11 = 0, 
mEI J{z:llx-zll>6} 

L,,(I1(' ) 

where Ile, is the restriction of Il to the compact set C. 

Then the net sequence {am} mEI is a linear approximator of the identity in Lp (]Rd, lffid, Il). 

The following remarks are in order 

Remark 1 Assumption A.l. establishes that the net sequence {laJm}mEI is uniformly 

bounded in Lp (]Rd, lffid, Il). This condition is fairly easy to check when p = 1 or p = 2. If 

p = 1 and IKm (x, z)1 is continuous for almost all points, then the left hand side of (2) is 

equal to 

sup {ess sup J IKm (x,z)11l (dX)} . 
mEI zElRd 

If p = 2 the left hand side of (2) is bounded by 

;''r. { U IKm (x, z)I'" (dx) " (dz) n 
See DeVore and Lorentz (1993, pp 30-34) and Dundford and Schwartz (1956) for a dis­

cussion of these results. 

Remark 2 A sufficient condition, but not necessary, for A.2. is that there exist an mo E IT 

such that 't/m 2: mo, 

am (1; x) = 1 a.s. [Ill. 

If Il is a finite measure, a weaker sufficient condition for A.2. consists of assuming 

f-l ( {x E ]Rd :~~ lam (1; x) - 11 > O} ) 0 

sup lam (l;x)1 E Lp (]Rd,lffid,f-l) , 
mEn 

Observe that if f-l is a finite measure, those conditions implies A.2. (see e.g. Chung (1974, 

pp 100) and Billingsley (1986, pp 220)). 

Remark 3 If f-l is a finite measure, condition A.3. holds. The Lebesgue's measure also 

satisfies A.3 .. 

Remark 4 A sufficient condition for A.4. is that for all 8 > 0, 

lim 11 { 'Km(x,z)'f-l(dZ)11 =0. 
mEI J{z:lIx-zll>6} L,,(I-') 

Assumption A.4. says that when m increases the support of IKm (x, z)1 concentrates on 

{( x, z) : x = z} and, perhaps, in other points of null measure. 
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Condition A.4. may be the most difficult to check. The next proposition provides a 

sufficient condition for AA 

Proposition 1 The assumption: 

A.4'. For some s ~ 1 

lim III \Km (x, z)\\\x - Z\\8 J.L (dZ)11 = 0, 
mE[ L,,(f.l) 

is a sufficient condition for A.4. 

Proposition 2 The assumptions: 

1. J \\z - X\\8 \Km (x, z)\ J.L (dz) -> 0, a.s. [J.L], 

are sufficient conditions for A.4 '. 

Weaker sufficient conditions in propositions 1 and 2 can be obtained substituting J.L by 

J.Le, for every compact set C. 

In order to obtain rates of convergence for the bias of delta pdf estimators, we need to 

assume differentiability of the density function. 

3. GLOBAL RATES OF CONVERGENCE FOR THE BIAS 

When f belongs to the Sobolev's5 space Wp (~d, Bd, A), it is fairly straightforward to 

obtain global rates of convergence for the bias. The next proposition provides a bounding 

condition, which is useful in order to obtain rates of convergence. 

Proposition 3 If { am} mEI is a linear approximator of the identity in Lp (~d, Bd, A) with 

1 :S p < 00, and f E Wp (~d, Bd, A) , then 

\lam (/; x) - f (x)\ILp(A) :S \If (x) (1- am (1; x))IILp(A) + 0 (( (m)), 

where 

((m) = \I LaJm (11x - z\l; x)IIL (A) = 111 IKm (x, z)lllx - z\l A (dZ)\\ . 
p Lp(A) 

5For an introduction to Sobolev spaces see, e.g. Adams (1978) and Maz'ja (1985). 
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Remark 5 This result is useful when lim ((m) = 0 holds, e.g. under A.4'- with S = l. 
mE! 

In some cases this property may not be satisfied. However, we can use the proposition 3, 

substituting the meaSU1'e A by the measure AC, where C c ]Rd is a compact set and AC is 

the Lebesgue's measure restricted to C. Also ((171) must be substituted by (c (m), such 

that, 

lim (c (m) d;J lim 111 IKm (x, z)lllx - zll AC (dz) 11 = O. 
mE! mE! L,,(AC) 

Note that Ilam (j; x) - f (x)IILI'(A) = 0 (( (m)) when, 

Ilf (x) (1 - am (1; x))IIL,,(A) = 0 (( (m)), 

which may be achieved ensuring that 3mo E IT such that Vm ~ mo, 

am (1; x) = 1 a.s. [A], 

this condition is satisfied when {am} mE! is a net of normalized operators. 

Define the normalized generalized kernel, 

- Km (x,z) 
Km (x, z) = J Km (x, z) A (dz) , 

and the corresponding normalized operator, 

The next proposition shows that (3) holds for normalized operators. 

Proposition 4 If { am} mE! is net such that, 

A.5. 

inf lam (1; x)1 ~ c> 0 a.s. [A] , 
mE! 

then, 

am (l;x)=l a.s.[A]' 

and V I E Lp (lRd, Bd, A) , 

Ilam (j; x) - I (x)IIL (A) ~ c-
1 ·111 Km (x, z) (j (z) - I (x)) A (dz)11 ' 

P Lp(A) 

(3) 

Thus, when A.5. holds, the resulting normalized operators satisfy condition A.2 .. Notice 

also, that Proposition 3 establishes that {am} mEn is a linear approximator of the identity 

when, 

lim 111 Km (x, z) (j (z) - I (x)) A (dZ)11 = 0, VI E Lp (lRd, Bd, A) , 
mEI LI,(A) 
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which follows when {am} mEI satisfies, despite of A.5., conditions A.l, A.3. and A.4. III 

Theorem 1. 

The next corollary states the rate of convergence for the standardized operators {am} mEn . 

Corollary 1 Suppose A.5. holds. If {am},nEI is a linear approximator of the identity in 

Lp (IRd, lBd , A) with 1 ::; p < 00, and f E Wp (IRd, lBd , A) , then, 

Ilam (/; x) - f (x)IILp(,\) = 0 «( (m)). 

Therefore, pdf delta estimators of the form, 

- 1 ~-
fn (x) = - ~Kmn (x, Xi) , 

n i=1 

are universally unbiased in Lp (IRd, lBd , A), with a bias 0 ( ( (m)) for differentiable density 

functions. 

In general, the rate of convergence is not faster when f belongs to the Sobolev's spaces 

W; (IRd, lBd , A) , with higher derivatives of order s > 1. But, under certain moment condi­

tions on the linear operator, it is possible to obtain rates of convergence 0 «( (m)) imposing 

the nullity of some moments for the linear approximator {am} mEl' as stated in the fol­

lowing theorem. 

Theorem 2 Let {am} mEn be a linear approximator of the identity in Lp (IRd, lBd , A) with 

1 ::; p < 00. Assume that there exist an mo E IT such that for all m ~ mo, 

am «z - x)" ; x) 

1 a.s. [A], 

o a.s. [A], 

for all vENd such that 0 ::; IIvIII < T, TEN, with (z - x)" 

v! = rI~=1 Vj!. Then: 

(i) If fEW; (IRd,lBd,A) with s E N, s ~ T, then, 

11 am (/; x) - f (x)IILp(,\) = 0 «(r (m)), 

where, 

(ii) If fEW; (IRd, lBd , A) with s E N, s ~ T, then, 

lam (/; x) - f (x)1 = 0 «(r (m; x)) a.s. [A] , 

where, 

(r (m;x) = ILaJm (11z - xlnl· 
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(iii) If f E C~ (IRd) with s E N, s ~ T, then, 

//am (J; .7:) - f (X)//Loo(A) = 0 ((;:0 (m)), 

where, 

So under the conditions of the above propositions, it is possible to obtain faster rates 

of convergence, since 0 ((r (m)) = 0 (( (m)) for all T> 1, with ((m) = (1 (m). This fact 

is formally stated in the following lemma. 

Lemma 1 Define for all T ~ 1, 

and ( (m) = (1 (m) . 

• If lim ((m) = 0, then, 
mE! 

lim (r (m) = 0, "iT> l. 
mE! 

• If 1 ::; T1, T2 < 00, then, 

The same results follow for the rates (r (m;x), (;:0 (m) in (ii) (iii) of Theorem 2. 

A leading example of higher order delta estimators are the higher order kernels, studied 

by Singht (1979), Gasser and Miiller (1984), Gasser et al (1985), Devroye (1987), Hall 

and Marron (1987) and Berlinet (1991) among others. These bias reduction techniques 

have been proven very useful in semi parametric estimation problems, in order to make 

compatible the convergence of the variance and bias terms in statistics which are weighted 

averages of nonparametric estimators, see e.g. Robinson (1988) and Powell et al (1989); 

also Delgado and Gonzalez-Manteiga (1998) for testing restrictions on nonparametric 

curves. 

In next section we propose a bias reduction technique for obtaining higher order delta 

estimators based on local polynomials. 

4. A BIAS REDUCTION TECHNIQUE. 

Let {Bm} mEi a linear approximator of the identity in Lp (IRd, Bd, -X), with 1 ::; p < 00, 

given by 

Bm U; x) = J Gm (x, z) f (z),X (dz) , 
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with {LeJm}mEll uniformly bounded. Assuming that fEW; (l~d,lBd,A), the objective is 

to obtain a new higher order bias delta estimator, whose corresponding net of expected 

values {Ctm },nEll achieve rates of convergence 0 ((T (m)). De net {Ctm} mEll has generalized 

kernels of the form 

Km (x, z) = [1- Z L: f3-y (x)(z - x)'] Gm (x, z), 
l=llhllt=1 

with 1 < T < s. The polynomial coefficients f3-y are locally constant for each point x. 

These coefficients are obtained by means of que moment conditions 

Ctm ((z - x)"'; x) = J (z - x)'" Km (x, z) A (dz) = 0, 

with 1 ~ IIvll1 ~ T - 1. So Km (x, z) is a higher order generalized kernel. The coefficients 

{f3-y (x)} are deterministics. The pdf estimator is, 

The computation of the coefficient 13,." (x) is fairly easy. For each x, f3-y (x) is obtained by 

solving the linear system 

with 1 ~ IIvl11 ~ T - 1. Notice that (5) can be written equivalently, as, 

or, 

T-1 J (z - x)'" Gm (x, z) A (dz) = L: I: f3-y (x) J (z - x)'+v Gm (x, z) A (dz), 
1=1IhIl 1 =1 

em (IT (Zj - Xj)",j ; x) = I: I: f3-y (x) em (IT (Zj - Xj )'j+Vj ; x) . 
j=1 1=1 Ihlh =1 j=l 

In order to guarantee a solution for the system, we need that Vm E 1I, the matrix 

must be non singular in almost every point x E ~d. In principle, this is the only restriction 

that has to be taken into account for choosing T. It may be the case that such solution 

does not exist. 
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5. SOME EXAMPLES 

Next we check conditions A.I.-A.4. for some broad classes of nonparametric density 

estimators in the next examples. 

5.1. SINGULAR INTEGRAL ESTIMATORS 

A relevant case are the singular integral kernels, 

Km (x,z) =Km(x-z), (6) 

with correponding linear approximator 

(XmU;x) = J Km(x-z)J(z)>..(dz). 

The pdf singular integral estimators singular is 

~ 1 n 

In (x) = - LKmn (x - Xi), 
n i=l 

The global unbiasedness of this estimators has been considered by Devroye and Gyorfi 

(1985, chap 12, sec. 8), for the measure>.. restricted to a finite interval. They encompass 

relevant families of nonparametric estimators like: 

• Kernels in Lp (lRd
, lEd, >..), that take 

KH (u) = de/(H) J K (H-1u) 

with H a definite positive matrix, and the matrix are ordered by the relation to have 

smaller IIHII. In the multiplicative kernel, K (u) = n;=l K j (Uj) with H diagonal. 

• Fourier series estimators in Lp ([-7r, 7r]), 1 < p < 00, with 

Km(u)=sin((m+~)u), 
27rsin (~u) 

mEN. 

Km (u) is known as Dirichlet's kernel. If p = 1 this is not uniformly bounded, but 

we use: 

• Fejer series estimators in Ll ([-7r, 7rJ), 

Km(u) = 1 (sin((m+~)u))2 
27r (m + 1) sin (~u) 

There are many other examples, for a review see Butzer and Nessel (1971), Devroye 

and Gyorfi (1985, Chap. 12, sec. 8). The next proposition provides sufficient conditions 

which satisfy theorem 1 for these estimators: 
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Proposition 5 Assume that: 

S.2. :3mo E IT such that J Km (u) du = 1, Vm ~ moo 

S.3. lim J IlulllKm (u)1 du = O. 
mEn 

Then A .1. to A. 4. holds in Lp (I~d, Bd, A) , with 1 ~ P < 00, for the generalized kernels 

in (6). 

5.2. HISTOGRAM 

A broad class of density estimators is de histogram. It is defined by means of measurable 

partitions. Denote by m = {AI, A2, .... } a measurable Borel partition of ]Rd, which is 

formed by non null and finite A-measure sets. Denote the set of such partitions by IT, 

which is ordered by the partial preorder ml ~ m2 if! m2 is more thin 6 than ml. Then 

IT is a directed set. Sometimes we take a subset ITa C IT of nested partitions. Define the 

partitioning approximator by the generalized kernel, 

(7) 

with corresponding linear approximator, 

. _ ( J A f (z)A (dz) ) 
am (J, X) - L A (A) lA (x) . 

AErn 

The Histogram estimator of fELl (]Rd, Bd, A) is, 

This is the oldest nonparametric estimators that is known, Graunt (1662) is an early 

reference. It is studied by Revesz ((1971), (1972), (1973), (1974)), Tukey (1977), Scott 

((1979), (1992, Chap. 3)), Freedman and Diaconis (1981), among others. Universal 

consistency of the histogram has been established by Ahou-Jaude (1976a, 19766, 1976c) 

and Devroye and Gyorfi (1985). 

Proposition 6 A.1.to A.4. holds for the generalized kernels in (7). 

6We say 71'2 is t.hinner than 71'1, iff every set. in 71'2 belongs to some set of 71'1; that is, If Al E 71'1, A2 E 71'2 

t.hen A2 C AI, or A2 n Al = 0. 
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5.3. ESTIMATORS BASED ON ORTHONORMAL HILBERT SPACE BA­

SIS 

Here, we consider the particular case where! E L2 (lRd, lEd, /-L). This is a Hilbert space 

with the inner product 

(f,g)L2(/l) = J !(z)g(z)/-L(dz). 

We say that the set {edz)}~l C L2 (lRd,lEd,/-L) is an orthonormal set if (ek,e S )L2(/l) = 

I{k=s}. 

The use of an orthonormal set is relevant, because if we have an orthonormal set 

{ ek (z) } :'=1' the orthogonal projection of an arbitrary ! E L2 (lRd, lEd, /-L) , onto the linear 

subspace spanned by this set, can be expressed as, 

Note that, if we define, 
m 

Km (x,z) = Ledx)ek(Z) , (8) 
k=l 

then, the projection can be expressed as, 

O:m(f;x) J Km (x,z)!(z)/-L(dz) 

= J (~edx)edZ») !(z)/-L(dz). 

Thus, we say that a sequence {ek (Z)} ~=1 is an orthonormal Hilbert space basis if the se­

quence of projections {O:m} :=1 , is a linear approximator of the identity in L2 (lRd, lEd, /-L); 

or equivalently, iff the set {edz)}~l has a span which is dense in the L2 (lRd,lEd,/-L) 

space. Using the Zorn's Lemma it can be proved that every Hilbert space has, at least, 

an orthonormal Hilbert basis (see Kreyszig (1978, pp 212». 

Notice that the corresponding density estimation is just 

This estimator was first consider by Cencov (1962) and Bosq (1969). The literature about 

density estimation by means of orthonormal basis is discussed in Devroye and Gyorfi (1985, 

Chap. 12). 

Establishing the approximation property is far from be obvious. A possibility is to use 

Theorem 1, however even in this case the conditions are not easy to check. 
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Proposition 7 Assume that: 

0.1. {ek (z)}~=1 is an orthononnal set in L2 (JRd, Bd, Jl) , such that 

0.2. there is a ko such that eko (x) = 1, a.s.[JlJ. 

0.3. For all compact set C, Jl (C) < 00. 

0.4. \::/8 > 0, and all compact set C, 

!~ 111 (t ek (x) ek (Z)) Ilx - zll Jl (dZ)11 = o. 
k-1 L2(/-LC) 

Then A.l to A.4. holds for the generalized kernel (8), and {ek (z)}:'1 is an orthononnal 

basis in L2 (JRd, Bd, J.L) . 

In the particular case that we use Fourier series, this method is equivalent to use the 

result about singular integral estimators. 

A useful technique in L2 (JRd, Bd, Jl) consists of taking orthonormal polynomials. The 

corresponding base is obtained by means of the Graham-Schmidt algorithm of orthonor­

malization (See Davis (1975) and Cheney (1981)), applied to a previous set of functions 

that are dense in L2 (JRd,Bd,Jl), usually {xk}:1' provided that such functions belongs 

to L2 (JRd, Bd, Jl). This orthonormal basis contains polynomials like, 

where the coefficients are obtained from the Graham Schmidt technique. Establishing 

the approximation property is not obvious, but in the case of orthonormal polynomials in 

L2 (JR, B, Jl) , we can use the Christoffel-Darboux formulae, 

K ( ) _ ~ () () _ am,m (em+1 (x) em (z) - em (x) em+1 (Z)) 
m x, z - ~ ek X ek z - . 

k=l am+l,m+l X - z . 

(See Davis (1975) and Cheney (1981)). This result can be used to check assumption 4 

because, 

1 IKm (x, z)llx - zl Jl (dz) ~ am,m 1 lem+! (x) em (z) - em (x) em+l (z)1 Jl (dz). 
am+l,m+l 
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6. ON THE BIAS OF REGRESSION CURVES 

Let pX,Y a probability function in (]Rd+!, Jad+!) and pX the margillal probability 

function of X. Assume that E [/YIPj < 00, with 1 ::; p < 00, so, 

Given a random sample {(Xi, Yi) ,i = 1, ... , n} from pXY, if we have an linear approx­

imator of the identity {,Bm}mEH in Lp (]Rd,]Bd, pX) with, 

,Bm (J; x) = J w (x, z) f (z) pX (dz) , 

then se can get a delta sequence estimator of the regression function as, 

where mn = m (n) is a divergent sequence in n. By the law of iterated expectation, 

E [§n (x)] = E [Wmn (x; Xi) Yi] = f W (x, z) gpx.y (z) pX (dz) = ,Bm
n 

(gpX,y; x) , 

so gn (x) is asymptotically unbiased if, 

lim II,Bm (gpX,y;x) - gpx.y (x) ilL (PX) = O. 
nEH n p 

This condition universally holds if {,Bm} mEH is an approximator of the identity in Lp (]Rd, ]Bd, pX). 

However, in practice, this kind of approximator {,Bm} mEH can be obtained when the proba-

bility pX of the regressors is known. It happens, for instance, when we have deterministic 

regressors. In this case, the techniques developed in this work are also useful. Higher order 

rates of convergence for the bias are also applicable when pX is the uniform distribution 

in rr~=1 [aj,bj ]. 

For instance, in the orthonormal series regression estimator in L2 (]Rd, ]Bd, PX) take 

Wmn (x; z) = 2:;;:;1 ek (x) ek (z), and 

§n(x) 

g,.,n 

Notice that if pX IS unknown, then is also unknown the orthonormal Hilbert basis 

{ek (x)}~l· 
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7. PROOFS 

7.1. PROOFS OF SECTION 2. 

PROOF OF THEOREM 1. 

The following theorem provides high level assumptions which ensures that net of linear 

operators is a linear approximator of the identity. This is obtained from the Banach­

Steinhaus theorem (see e.g. Rudin (1966)). 

Theorem 3 Let (B, II·IIB) a Banach space and {am}mE[ a net of linear operators such 

that, 

1. {am}mE[ is uniform bounded in (B, II·IIB)' that is 

sup Ilamll =sup { sup Ilam (1)IIB} < 00. 
mEn mEn IIfllB~l 

2. There exists a subset Q cB, dense en B, such that, 

lim lIam (1) - fllB = 0, Vf E Q. mEn 

Then {am} mEn is a linear approximator of the identity in B. If also Ilam II < 00 for 

each m E 1I, then the conditions are necessary. 

Proof. 

See e.g. Kantorovich and Akilov (1982, Th .. 3, pp .. 203) and Davis (1975, pp .. 351) . 

• 
Note that the space Cc (lRd) of continuous functions with compact support is dense in 

Lp (lRd
, Bd ,J1) , with 1 ~ p < 00, (see e.g. Rudin (1974, Th. 3.3.1.)). The theorem follows 

applying theorem 3 and the following lemmas. 

Lemma 2 Let {am} mEI a net of linear operators in Lp (lRd, Bd, J1) with 1 ~ p < 00. Then 

for all m E 1I the operator norm verify, 

Furthermore, the uniform boundness of {laJm}mEU implies the uniform boundness of 

{am}mEI· 

16 
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Proof· 

Because the norm II·IIL,,(I') is lattice, 

and so IIO:mllLp ::; IIlo:JmllLp· 

• 
The previous lemma and assumption A.I. implies that {O:m} mE! is uniformly bounded. 

By theorem 3, it is sufficient to establish that, 

Lemma 3 If the net {O:m} mE! satisfies the conditions of the theorem, for all f E Cc (JRd) , 

lim IIO:m (J; x) - f (x) ilL (,,) = o. mEi p ,-

Proof. 

First, notice that, 

IIO:m (J; x) - f (x)IILp(I') < 111 (J (z) - f (x)) Km (x, z) J.L (dZ)iLp(I') 

+ IIO:m (1; x) f (x) - f (x) 11 Lp(I') . 

By (A.2.), for all f E Cc (lRd
) , 

IIO:m (J; x) - 1 (x) 11 Lp (I') ::; Ilf (J (z) - 1 (x)) Km (x, z) J.L (dZ)IILp(I') 

+ 111 (x) 1100 IIO:m (1; x) - 1I1Lp(I') 

= 111 (J(z)-I(x)) Km (x,z) J.L(dZ)ILp(I') +0'(1). 

Function (J (z) - 1 (x)) E Cc (lRd X JRd) so then we can restrict the measure J.L to a com­

pact set C. Denote such restricted measure by J.Lc. Then, 

IIO:m (J; x) - 1 (x) 11 Lp (I') = 111 (J (z) - 1 (x)) Km (x, z) J.Lc (dz) 11 + 0 (1) . 
Lp(I'cl 
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Since f is uniform continuous, for all E > 0, 315 > 0, such that, if Ilx - zll :::; 15 then 

If (x) - f (z)1 :::; c. Thus, 

< II r If (z) - f (x)1 IKm (x, z)1 fLe (dZ)11 + 
J{z:lIx-zll~6} L ( ) 

I' j.Lc 

+111 (f(z)-f(x)) Km(x,z) fLe(dZ)11 +0(1) 
{z:lIx- zll>6} L,,(Jlcl 

< E ·llf IKm (x, z)1 fLe (dz)11 + 
L 1,(Jlc) 

+ 111 h (x, z) Km (x, z) fLe (dZ)11 + 0 (1) , 
{z:lI x - z ll>5} Ll'(Jlcl 

where h (x, z) = (f (z) - f (x)). 

The first term is arbitrarily small by A.I. and A.3., 

sup Ilf IKm (x, z)1 fLe (dz)11 
mEn Lp(Jlc) 

< sup Ilf IKm (x, z)1 fLe (dz)11 
mEn Lp(Jl) 

sup Ilf IKm (x, z)l· le (z) fL (dZ)11 
mEn Lp(Jl) 

< sup IllaJmIlLp(Jl) 'lIleIlLp(Jl) 
mEn 

~ 

sup IIlaJmllL ( ). fL(G)p < 00. mER p Jl 

The second term is 0 (1) because for all h (x, z) E Gc (JRd X JRd) we have Ilhlloo < 00 and 

then, 

Ilh"""-,,,>,j Km (x, x) h (x, x) "cCdz)t.("C) 

< Ilhll oo ·11 r IKm (x, z)1 fLe (dZ)1 ~ 0. 
) {z:lIx-zll>5} Lp(Jlc) mEn 

by AA.. 

PROOF OF PROPOSITION 1. 

Since LaJm is a monotone operator and the norm 11·IIL
p

(/-,) is lattice, 

II r . IKm (x, z)1 fLe (dZ)11 
J{z.lIx- z ll>6} Lp(Jlc) 

< 15-
8 Ilf IIx - zlls IKm (x, z)1 fLe (4Z )11 

Lp(/-,c) 

thus AA. is satisfied. 

PROOF OF PROPOSITION 2. 

This is an inmediate consequence of the Lebesgue's Theorem of dominated convergence. 

18 

I I1 



7.2. PROOFS OF SECTION 3 

PROOF OF PROPOSITION 3. 

By the triangle inequality, 

Ilf(x) - Om (f;x)II Lp (>') < Jlf(x) - f(x)· am (l;x)IIL,,(>.) 

+ Ilf (x) . Om (1; x) - Om (f; x)/lL,,(>.) 

= IIf(x)(l-om (l;x))/lL,,(>.) 

+ /If (x) . Om (1; x) - Om (f; x)IJ Lp (>') , 

since f E Wp (lRd , Bd, ,\). Using the mean value theorem argument, 

f(z) = f(x)+R(x,(z-x)) 

R(z,(z-x)) = O(/lx-z/l). 

almost everywhere. Thus, 

am (f; x) = f (x) am (1; x) + am (R (z, (z - x)) ; x) , 

and 

which implies that, 

Since loJ m is monotone, 

loJ m (JR (z, (z - x))1 ; x) = 0 (l oJ m (/Ix - zl/ ; x)) , 

and taking into account that the norm /I·IILp(>') is lattice, 

Therefore, 

I/o (f; x) - f (x) Om (1; x)IILp(>') = 0 (( (m)) . 

• 
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PROOF OF PROPOSITION 4. 

Obviously, 
_ ( ) a m (l;x) ( ) 
am 1; X = am (1; x) . I{IG:m (l;x)I>O} X = 1 a.s. [A]. 

Then, 

lam (f; x) - f (x)1 I 
am (f; x) _ f (x) I = I am (f; x) - f (x) am (1; x) I 
am (1; x) am (1; x) 

a.s. [A], 

< c- 1
. lam (f; x) - f (x) am (1; x)1 

c- 1 ·If Km (x, z) (J (z) - f (x)) A (dZ)1 ' 

using the regularity condition. 

PROOF OF COROLLARY 1. 

Is an immediate consequence of Proposition 4, and 3. 

PROOF OF THEOREM 2. 

The proof of the theorem 2 is based on the following proposition, which permits to 

apply higher order Taylor expansions to the linear operators. 

Proposition 8 Let {am} mEn be a linear approximator of the identity in Lp (!Rd , lBd , A) 

with 1 ::s; p < 00. Then, 

(i) Assuming that fEW; (!Rd , lBd , A) with sEN. Thus, 

8-1 

am (f; x) - f (x) am (1; x) - L L ~am «(z - x)"; x) D" f (x) = 0 (Cs (m)), 
v. 

1=1 11"11 , =1 L
p

(>') 

where (z - x)" = n1=1 (Zj - Xj)"i, v! = n1=IVj! and 

am «(z - x)"; x) = am (IT (Zj - Xj)"j ; x) 
3=1 

(8 (m) = II LaJm (11z - xll s
; x)IIL

p
(>')' 

(ii) Assume that fEW; (!Rd , lBd , A) with sEN. Thus, 

s-1 

am (f; x) - f (x) am (1; x) - L L ~am «z - x)"; x) = 0 «(8 (m; x)) a.s. [A] 
v. 

1=111"11 , =1 

where 
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(iii) Assume that f E C~ (lRd
) with s E No Thus, 

s-l 

am (J; x) - f (x) am (1; x) - L L ~am «z - :r)"' ; x) DV f (x) 
V. 

l=lllvll,=1 

where 

Proof. 

If JEW; (lRd, lffid, ).), then in almost every point we have a Taylor expansion, 

where, 

Therefore, 

s-l 

f (z) = f (x) + L L ~ (z - x)"' DV f (x) + Rs (z, (z - x» 
v. 

1=1I1v Il 1 =1 

lim IRs (z, (z - x»1 = 0 (/lz - xln . 
Z-+X 

s-l 

= f(x)am (l;x)+ L L ~DVf(x)am«Z-xt;x) 
v. 

1=1I1v Il 1=1 

+am (Rs (z, (z - x»; x). 

=O«(~(m», 

Notice that LaJm is a monotone operator, IRs (z, (z - x»1 = 0 (/lz - xW), so for almost 

every point, 

Since the norm /I·/IL,,(.\) is lattice, 

Hence, 

/lam (Rs (x, (z - x» ; x)/lLp(.\) < /I L aJ m (IRs (x, (z - x»1 ; x)/lLp(.\) 

o (/I LaJm (/lz - xW; X)/lL p(.\)) 

= O«(s(m». 

8-1 

am (J; x) - f (x) am (l;x) - L L ~Dv f (x) am «z - x)"' ;x) 
v. 

1=1I1v ll , =1 

Proof for the other convergence criterions is similar. 

• 
The proof of the theorem follows fairly straightforwardly from the above proposition. 

There exist an mo such that for all m > mo, 

/lDv f (x) am ((z - x)"'; x)/l Lp(.\) = 0 

21 



for all 1/ such that 1 ~ Ill/Ill ~ T - 1. 

By proposition 8, for T ~ s is satisfied that, 

T-1 

IICtm (f; x) - f (x) Ctm (1; x)IIL,,(A) < L L ~DVf(x)am((Z-xt;x) + 
1/. 

1I11I,=1I1 v ll,=1 L,,(A) 

+0 (11 LaJm (11z - xllT ; x)IIL,'(A)) . 

then, 

Ilam (f; x) - f (x) am (1; x)IILp(A) = 0 (11 LaJm (llz - xll~; x)IILp(A)) . 

Since am (1; x) = 1 a.s. [A], for all m 2 mo, the result follows. For the rest of the 

convergence criterion is similar. 

PROOF OF LEMMA 1. 

Assume that {LaJm} Ell is a linear approximator of the identity. If lim ((m) = 0, by m mEll 
proposi tion 1, 

lim lIam (I{\!z- xll>6} (z); x) ilL (A) = 0, V8 > 0, mE! p 

Then, for m enough large, in almost every point the support of the kernel verify, 

Supp (Km (x, z)) C {(x, z) E ]R2d : IIz - xii ~ I} . 

If 1 ~ T1 < T2, in the Supp (Km (x, z)) , 

with strict inequality in almost every point (x, z). For those points such that x = z we 

have the equality. 

Using that LaJm is a monotone operator, 

and noting that 1I·IILp(A) is lattice, 

o < (T2(m) = IILaJm(lIz-xIIT2;x)IILp(A) 

< III a Jm (lIz - xu-r l 
; x)IILp(A) = (Tl (m) . 

By an analogous argument, 

O~(TI(m)«(m). 

so then lim ((m) = 0 implies lim (T (m) = 0, VT > 1. If 1 ~ T1 < T2 < 00 then mEi mEI 
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7.3. PROOFS OF SECTION 5 

PROOF OF PROPOSITION 5. 

We use theorem (1). First note that assumption S.l. implies the A.I, as a consequence 

of next result. 

Lemma 4 Young's Inequality. Set Km (u) E Ll (lRd
, lB d

, A), then Vf E Lp (lRd , lBd , A) 

with 1 :S p < 00, 

Proof. 

Using the integral's Minkowsky inequality and Fubini theorem and the invariance of 

Lebesgue's measure is invariant to translations, then, 

• 

IIlaJm(J;x)IILp (>') = (jlj,Km(x-Z)/f(Z)dzI
P 

dX)i 

= (j (j/Km(u)/./J(X-U)/dU)P dX)i 

< j (j (/Km (u)/·/J (x - u)/)P dX) i du 

j/Km(U)/ (j/f(X-UWdX)i du 

j /Km (u)/ (Ij f (X)( dX) i du 

= IIKmllLl(>')' IIfllLp(>.) . 

Note than A satisfies A.3.. The assumption A.4. is a consequence of S.3. For each 

compact set C, 

j /Km(x-z)/IIx-zIIAc(dZ) = r /Km(x-z)//lx-z/ldz 
JzEc 

changing the variable u = (x - z) , 

= 1 /Km (u)/ /lu/l duo 
uEx-C 

Then, 

Il
j /Km (x - z)/ /Ix - zl/ AC (du) 11 

Lp(>'c) = Ill/Km (u)/ IIul/ dull x-c 4(>'c) 

< j /Km (u)/ /lull du· /lI/lLp(>.c) 

= j /Km (u)II/ul/ du· A (C)* ...... O. 

23 



PROOF OF PROPOSITION 6 

We use the Theorem 1. First we check condition A.I.. Note that am is a positive 

operator, so am = LaJm' For all m E 11, 

then { La J m} mEll is uniformly bounded in L1 (~d, Jffid, A). 

A.2. is immediate because, for all m E 11, 

The measure A satisfies A.3 .. Now we will check A.4. Let AC be the restriction of A to 

any compact set C, then, 

But for a partition m8 E 11 thin enough, we have that for every A E m8, 

sup \\x - z\\ ~ 8. 
x,zEA 

Then for all m ;::: mo, 

\fA E m. 

Thus, 

"" (f{{Z:IIX-ZII>8} n A} A (dZ)) I ( ) = 0 L.. A(A) A x a.s. (A], 
AEm 

and by dominated convergence, 

~~ J I ~ e{('II'-'I~(~) Al A (dZ)) [A (x) I AC (dx) ~ O. 
PROOF OF PROPOSITION 7. 

Assumption 0.1. ensures that condition A.1. holds. Note that the projection operators 

{ am} mE! has norm 
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We only need to check A.2. to A.4. Note that, since eko (x) = 1, a.s. [f1) , then Vm 2 ko, 

because 1 belongs to the space span ({ ed Z~l) , ant its projection is just equal to itself. 

Assumptions A.3. and A.4. are a consequence of 0.3. and 0.4., respectively. 
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