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Abstract

We consider the solutions of general three term recurrence relations whose coeffi-
cients are analytic functions in a prescribed region. We study the ratio asymptotic of
such solutions under the assumption that the coefficients are asymptotically periodic
and their strong asymptotic under more restrictive conditions.

1 Introduction

Let an(z) # 0 and b,(2), n € N, be analytic functions in a certain domain 2 C C. For
the study of the solutions of the recurrence relation

wy = by (2)wn_1 — a2 (2)wp_o, 2€Q, (1)
it is convenient to consider the infinite tridiagonal matrix

—b1(2)  az2(2)
az(z)  —ba(z) a3(2)

D(z) = as(z)  —by(z) - . (2)

For each j € N, by DU)(z) we denote the infinite matrix which is obtained eliminating from
D(z) its first j columns and rows (D) (z) = D(z)). By Dﬁlj)(z) we denote the principal
section of order n of DU)(z). It is easy to check that (—1)"detD,(z), n € N, is the
solution to the recurrence relation (1) taking as initial conditions w_; = 0 and wy = 1.
If we define the functions
()
1

wid(2) = (~1)"det DY) (2), neN, zeQ, wi =1, w

0, (3)
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expanding det D,(lj )(z) by its first row, we have

wf)(2) = b (2wl () — ol (2), nz1, (4)

and if this is done by the last column one sees that {wn )} n € N, is the solution to

W) (2) = bsj () (2) — a2y (2w y(2), n>1, (5)

n n+yj n

()

with initial conditions wo =1, w(] ) = 0. These solutions satisfy the following three-term
recurrence relation (see Lemma 4, page 7, in [2])

0 = w1 (2) = wlT @) () + @ (e TP el (),
jmeN, s=0,1,..., (6)
and ' N
0=w™ 7 wl) ()~
n+j+1 n4+ij—s n 2 n+j—s i
W (wiH =D (2) — a2 (2w (2™ ) WP )+ (7)

i+ j .
+ap i sya(2) - a%ﬂ-ﬂ(z)wgﬁl] @ (2), n>s>2,j>0.

In this paper, we study the asymptotic behavior of the solution (3) of (1) when the
coefficients of the recurrence relation are analytic functions in {2 and satisfy the following
asymptotically periodic relations

lm amni;(2) =aP(z),  Hm buyii(z) =bD(2), 7=01,....,N—1, (8)
where N € N is fixed, the convergence in (8) is locally uniform in 2, and
a(2)#0, zeQ, j=0,1,...,N—1.

In the sequel, we assume that these conditions take place.

This general setting covers several cases treated in the literature:

i) Orthogonal polynomials with asymptotically periodic recurrence coefficients when
bn(z) = z — b, and a,(2) = a,, where b, and a, are independent of z. This case
which is studied in detail by Geronimo and Van Assche [8] when a, > 0, b, € R
and in [1] when a,, # 0, b, € C.

ii) Orthogonal polynomials {®,} on the unit circle with by (2) = 2 + z- (%) ,an(2) =

z (1 - |<I>n,1(0)|2). In [11] and [12] is studied the case when the reflection coefficients
{®,(0)} are asymptotically periodic. In [2] is treated the situation in which the
sequences {®,,(0)/®,+1(0)} and {|®,(0)|} are asymptotically periodic.

iii) Laurent orthogonal polynomials and orthogonal rational functions as considered in
[14] and [6].



2 Ratio asymptotic

In [4] V. I. Buslaev studies the convergence of the continued fraction

T 0
bl(z)_ 2 ag(z)
bo(z) — —
bs(2) —

under assumptions of type (8) and proves a result of considerable generality from which
convergence is deduced. We make use of his result in proving ratio asymptotic for the
sequence of functions which solves (1).

We state Buslaev’s result in the form of a lemma for convenience of the reader. First
let us introduce some notation. Set

al(z) pO(z) 0 — (a®)’ (2 0 — (a@+D)? (4
( 7O (z) W (2) > - ( 1 (b(’)()z)( ) ) X ( 1 (b(l“)()z)( ) ) X (10)

0 —(a™-)? (2 0 —(a®)* (2 0 — (a2 (5
(1 S ) y (1 (@ ) (1 @ ) |
I(z) = aW(2) +60(2),  A(x) = a(2)60(2) = V()71 V) (2) = (a“))(z) S a(N‘”(z))2 :

F:{ZGQ : )I(z)+\/M‘ - ‘I(z)—\/m’}.
For z € Q, assuming that the root is taken so that ‘I(z) +/1?(2) — 4A(z)

]1(,2) ~ V() —4A(2)
N—-1

p0(2) = al(2) = 6V (2) + \/T2(2) — 4A(2) CB=J {Z e pO(z) = O} .
=0

270 (2)

<

, we define

Lemma 1 ([4], Th. 1, page 675) Assume that (8) takes place uniformly on compact
subsets of Q. Then, the continued fraction (9) converges uniformly on compact subsets of
Q\ (I'U E) in the spherical metric to a meromorphic function in Q\ T.

This result applied to the continued fraction

_a]2+1(z)

a2 5(2)
bjt1(z) — AR

byea(e) - — a8l

bj+s(z) — |



also guarantees the uniform convergence on compact subsets of Q\ (I' U E) to a meromor-
phic function @) in Q\ T. Define Ug)(z) as the solution of

W (2) = bpgj(2)wn—1(2) — aiﬂ»(z)wn,g(z)
under the initial conditions vV )( )=1 fu(()j )( ) = 0. From the general theory of continued
fractions, it is well known that the nth partial fraction of (11) is equal to e ( )/w ( ).
On the other hand, from the recurrence relation it is easy to check that v,(l 2 (z) =
—Q?H(z)ngll)(z). Therefore, the nth partial fraction of (11) is —a§+1( z)w, JH (z )/w ( ).
Hence, the convergence of (11) is equivalent to

w(j+1)(z)

fO(:) = —a2yy(2) lim L2

(12)

for z € Q\ (' U E) (for details on the general theory of continued fractions see [15]).

One can use Lemma 1 to detect the limit behavior of the zeros of the solution w,(lj )(z)
of (1). Let us define the set

EU) = { poles of fU) in Q\F} .

We have

Lemma 2 For each fized j € Z, z'fIC is a compact set, K C Q\ (FUEUE(j)), there
exists ng = no(j,K) € N such that wl ( ) #0, for alln > ng and z € K.

Proof.- Let j and K be as above. Since f) has no poles on K from (12) it follows that
{ JH)( )/w(] (z )} n > ng, is uniformly bounded on K. Therefore, if zg € K is a zero
()

of wy’(2) then w(] H)( zp) = 0. Iterating (4) backwards on the index n, we would have
that w((]J Jrn)(zo) = 0 (recall that we have assumed that for all n, a,(z) # 0). On the other

hand, w(J +n)( ) = 1. This contradiction implies that for allm > ng and z € IC, w ( ) 7& 0
as we needed to prove.

The previous result implies that for each j € N, the sequence of functions {fwn },ne
N, can only have accumulation points of zeros on the set I'U E U EW). Moreover, we have

Lemma 3 For each fized j € Z,, (EV) N EUTVY\ E = (. Let z 6 E )\ E, then there

ezist € > 0 and na € N such that for n > ng the number of zeros ofwn in{z:|z—z| <e}
is equal to the order of the pole which fU) has at zo .

Proof.- Fix zy € EU \E Since z is a pole of f\) there exist M > 0 and e > 0 such that
{z:0<|z—2]<e} CcQ\(PUEYUE) and ’f]) z)/a3, 4 (2)| > M for |z — 20| < e.

From (12) it follows that |w7(£r11)(z)/wg)(z)\ > M/2 if |z — 29| < € and n > ng. This
implies that either w(] +1 )( ) # 0if |z — 20| < € or wffjll) and wﬁf ) have a common zero
in {z : |z — 2| < 5} As it was seen in the proof of Lemma 2, the second case is not
possible; therefore, the first one holds. This means that E) cannot contain accumulation
points of zeros of {w, ]H }. On the other hand, from (12) (applied to fU+1) it also



follows that every point in EU+Y) must be a limit point of zeros of {ngll)}. Therefore,
(EW N EUHD)\ E = () as asserted.

Now take 0 < &1 < € so that |f)(2)] # 0 if |z — 29| = £;. From (12) we have that
wg)(z) has no zeros on {z : |z — 29| =¢e1} for all n > ny > ng. By (12) and the argument
principle, we have that

(G+1) @) NN,
4 (v @) (F9)(2))
w %/nu (0D () ) () T g JOG) TV

where v/(z) is the order of the pole which f) has at z. For n > n; the integral on the left

is equal to the number of zeros of wl )(z) inside {z : |z — 2| < €}. The existence of limit

implies that for all n > ng > n; the number of zeros of wff)(z) inside {z : |z — 2| < &}
must be equal to v(zp). With this we conclude the proof. O

Let i € {0,...,.N—1},s=N,n=mN +1i, and m € Z,. Then (7) is a three term
recurrence relation with solution {wﬁﬁv 4i(2)} for each 2z € Q. The coefficients of this
recurrence have limit which are holomorphic functions that can be expressed in terms of

a®(z), 8% (2), k=0,...,N — 1. For z € Q such that w((m_l)NHHH)(z) # 0, let

N-1
(mMN—+i+j+1) (m=1)N+itj+1) 9 (mN+i+j+2)  ((m—1)N+itj+1)
S WN_1 Wy N +it+j+2WN -2 WN—1
myity T ((m—1)N+i+j+1) ’
Wy
a2 a2 w MmN Fi++L)
Y-y Nti+2  ImNti 1N
ity 2= ((m—1)N+it+j+1)
WN_1

We can rewrite (7) as

wEQH)NH(z) — 5m,i+j(z)w$v+i(z) + ’ym7i+j(z)w82_1w+i(z) =0, m>1. (13)
We have o o
lim w{™ VT () = ()N det DU (2) (14)
~( L. 2 ~le g s
lim_6m,i15(2) = (1) |det DY (2) = (a2 (2)) aet DG ()|, (15)
lim 7m,i+j(z) = A(z) ) (16)
m—0o0

where the limits are locally uniform in 2 and

_b(k—l-l)(z) a(k+2) (Z)
a(k+2)(z _b(k+2)(z) a(k+3)(2)

D) (Z) = a(k+3) (Z) _p(k+3) (Z) " , k=0,1,..., (17)

(D(z) = DO)(z)) and 11@(2) is the n-th principal section of D*)(z). This matrix is a
particular case of (2). Taking (14), (15), and (16) into consideration, the characteristic



equation associated with (13) is
0=det DU (A2 4+ (=1)N ' Py(2) det DI ()N +
n <a<0>(z) . a<N*1>(z))2 det DU () (18)
where
Py (z) = det DG (z) — (a<i+ﬂ‘+2>(z))2 det DY) (2)
= det 75§VN_1)(2) — (a(o) (z))2 det Dy_o(2) .

For the proof of the last equality see Lemma 5, page 8 in [2]. This means that Py does
not depend on ¢ + j. .
For z € Q such that det D%tjlﬂ)(z) # 0, the solutions of (18) are

—1)N z —1)k 2))? — a()z---a(_)zz
o) = VPV + (D) ¢<PN<2>> HaOE) )

and (18) may be expressed as
0=X 4+ (=1)NTPy(2)A + A(2). (20)
Lemma 4 With the notation used in Lemma 1, for each z € Q) we have

E = {z€Q:3€{0,...,N—1},det DY _ (2) = 0}, (21)
I(z) = (=1)VPxn(2). (22)

Consequently,
F={ze€Q:|\(2)|=X>)|}.

Proof.- Let z € . I(z) is independent of [ € {0,..., N — 1} because for different values
of [ it represents the trace of different similar matrices. For m =1,..., N, set

a;(m) B.m)\ [0 —(a®(2))° 0 — (a™V(2))?
( Y=(m)  d.(m) > N ( 1 (b(o)(z ) ) S ( 1 (b<m1)(z ) ) ’

where I(z) = a.(N) + 0.(N) = o9 (2) + 6 (2). Let us prove

az(m) = (a(o))2 (=1)™~1 det Dp,_o(z2)

ﬁz(m) = (CL(O))2 (_1)m det 5m_1(z) m

m) = ()Y Ve (0 T (23)
5.(m) (—1)™det DYV (2)



We proceed by induction. For m = 1,2, (23) is trivial (considering that 5@% (2) =
0, 5(()(1)(2) = 1). Let us assume that (23) holds for m = s, where 1 < s < N. Tak-
ing into consideration that

(obal ey (o

we obtain (23) for m = s+ 1.

In particular, (23) is true for m = N. Since I(z) = a,(N) +J,(NN) we obtain (22). On
the other hand, for each I € {0,..., N — 1} it immediately follows that p(!)(z) = 0 if and
only if f()(2)y®)(z) = 0. Repeating the arguments used in proving (23), we can obtain
the entries of the matrix given by (10). We get

a(z) = (a) (~)V"det DY,(2)
BOG) = (a®)’ (~)N det DY, (2)
0 N-1 got DED (24)
T(z) = (=17 detDy_y(2)
50 (2) (—1)N det DIV (2)
Using the formulas for 3()(z) and v()(z) it follows that (21) takes place. O

The set E is given by the zeros of N analytic functions in €2 which are not identically
equal to zero in §2; therefore, its points can only accumulate on 0f).

For each j € Z; fixed, the sequence {wn (2)},n € N, given by (3) associated with
the matrix (17) satisfies the following three term recurrence relation for z € Q \ E,

0=, 1y (2) + (DN Py () (2) + AR)BY) )y (2), mEN,  (25)
which is (13) in this case. Thus, for z € Q\ E the sequence {meﬂ( z)}, m € N, verifies

0=cmi1+ (—l)N_lPN(z)cm + A(2)em—1,m>0. (26)

The associated characteristic equation is also (20), and its solutions A1, Ae, verify A\j(z) #
Ao(z) for z € Q\ I'. Therefore, for z € Q \ I', any solution of (26) can be expressed as

cm = A(2)(M(2))™ + B(2)(A2(2))™
In particular, taking ¢, = w%\u_i(z) with initial conditions fﬁgj)(z) {Dg\j,)ﬂ( ) (form =0,1,
respectively), we can determine A(z) and B(z) obtaining

) )™ = @)™ ) (M ()™ = Qa(2)™ )
meJri(Z) - /\1(2) )\22( ) wN+z’(z) _A(Z) )\1( ) )\2(2:) w; (Z)
w%L( ) — A2< Yo (z) W (2) = M) (2)

= Ar(2)™ =
Ai(z) = Aa(2) Ai(z) = Aa(2)
In the sequel we assume that the root in (19) is taken so that |A2(2)| < [A1(z)| for z € Q\T.

(From (27), we obtain the strong asymptotic behavior of the functions @fﬁ\, 4i(2).

Ao(2)™ . (27)



Theorem 1 For eachi, j€ {0,1,...,N — 1} fized, we have

b () _ TRi(2) = Xe(2)3(2)
e ()" M(E) = ha(2)

uniformly on compact subsets of Q\ (I' U E).

Proof.- The result follows dividing (27) by (A1(z))™ and taking into consideration that
lim,,, (A2(2)/A1(2))™ = 0 uniformly on compact subsets of Q\ T". O

Corollary 1 a) Letiy,is € {0,1,...,N — 1} and j1,jo € N be fized. We have

~(51) iy
w(£+1)1\/+11( z) B w%ﬂr)“(z) — Xe(2)w (J1)<Z)

T ARG ()~ RE)E )

A1(2) (29)

uniformly on each compact subset of '\ (F UFEU E), where

={CeC: w%)ﬂ(C) - AQ(C)ng)(C) =0 for somei,je{0,1,...,N—1}}.

In particular, for each j € {0,1,...,N — 1} fized, we have

@S;ZN(Z)

o m = A1(2) (30)

uniformly on each compact subset of '\ (F UFEU E]> , where
Ej={CeC: w%)ﬂ(g) - Ag(()@z@(@ =0 for somei e {0,1,...,N —1}}.

b) Let j € Z, be fizred. For each fized z € Ej, if i € {0,...,N — 1} is such that
w](\]/)+z( ) — Aa2(z)w (])( ) =0, then we have

~(J) ( )

YmtyN+i\F) = Ma(z). (31)

@g\fﬂ('z)

Proof.- To obtain (29), take into consideration that in (28) the limit is different from zero
for z € Q\ (FUEUE').

Givenj € {0,1,...,N—1},ifi e {0,1,...,N —1} andzeQ\(PUEqu> the limit

n (28) is not zero. Therefore, for n = mN + i it is sufficient to take limit as m — oo in

| @y (2)
) BT
@ (2) 9 (2)

( )



in order to obtain (30).

If i € {0,...,N — 1} is such that w%)ﬂ(z) — )\g(z)ng)(z) = 0, from (27) we obtain

wEQ+1)N+i(2) - )\Q(z)zﬂg\,+i(z) = 0 for each m € N. From here we deduce (31). O

In the sequel, j € Z, is fixed and fU)(z) is the limit of the continued fraction (11) for
the purely periodic case.

Remark 1 Giveni € {1,2,...,N — 1} and z € Q\ (['U E), according to (12),

~(+1)
~ , 2 ,
F9z) == (aUY(z)) lim w (32)
m—oo ()
me—l—i(Z)

Then, by Theorem 1, if there exists somei € {0,..., N—1} such that ﬁ%) (z)—)\g(z)ﬁ?(j)(z) #

. +1 7
0 we have the following explicit expression for fU),
~(j+1) ~(j+1)
f(j)(z) _ (a(j+1)(z))2 wNJrifl(Z) - )\2(2’)111@'7.1 (2) (33)
Tk(2) = D2 (2)
~(j+1) ~(j+1)
- () T O T M@

Moreover, with the condition above, (33) is independent of i.

WeA can extend (33) to the case when @%)Jri(z)—)\g(z)zﬂgj)(z) =0foralli=0,...,N—1
but @](\‘}El)(z) - )\2(2)@5‘3“)(2) # 0 for some iy € {0,...N — 1}. In this case, from (32)

and Theorem 1 (applied to j and j + 1) we know that z € EU) and fU)(z) = oo in (33).
Corollary 2 If EY) is the set of poles of f@)(z) on Q\ (I' U E), then

[\ (TUE)NE; CEY.

Proof.- Let z € [Q\ (U E)| N Ej be fixed. Since z € E'j, we have that there exists
ip €{0,1,..., N — 1} such that

T sip(2) = ()" (), meN, (34)
(see (31)). If
W, (2) = Aa(2)@ (2) # 0 for some i € {0,..., N — 1}, (35)
~(5)
o “Qm&&ﬂv+xz) . , .
from (28) we obtain lim 5 = A1(z). From Poincaré’s Theorem (see [7]) applied
_ " me+i(z) . )
0 (25), if z ¢ EU) we know that there exists the limit of the ratio @glN(z)/@,(f)(z) Thus,

this limit must be A;(z), which is false (see (34)). In other words, if (35) holds we arrive
to z € EY and the proof is finished.



Now assume that @3 (z) — Aa(z )~(j)( )=0foralli e {0,...,N —1}; that is,

N+i
9N (2) = Ca(2)m 3P (z), meN, i=0,...,N-1. (36)
If @(j)( ) = 0 for some i € {0,.. - 1} then from (36) and Lemma 2 we have z € EU),
Suppose w( (z) #0 for all i € {0 — 1}. We want to show that

w%i%f(z) — M(2)BIV(2) £0 (37)

for some i1 € {0,..., N — 1} because, in this case, also z € E@) (see (33) and (36)).
In fact, if @%il) (2) — Xa(2)w; (j+ )( )=0foralli=0,...,N —1 we have, again by
(31), . .
Do) = Qe(2)" (), meN.

From this and (36),

(5+1) 177(#11)(2) ()
wTiN+i71(z):fv(TwTiN+i(z), meN, i=0,...,N—1. (38)
w;” (2)
But z € @\ (I'U F) and from Lemma 1 we know that the continued fraction (11) (corre-
sponding to the periodic case) converges. Therefore,

SR O BT A © N L6
T2 @(z) (aUtD(2))?

(see (12)). That is, the ratio wz]J{ )( )/w ( ) is independent of ¢, and (38) means that

{w,” U H ( ) }n and {N(] (2)}n are two linearly independent solutions of recurrence (5) (for
the perlodlc case). However, this is not possible because of the convergence in (11) (see
[10, Th. 1, pag. 192]). Thus, (37) holds as we needed to prove. O
€)

For the study of the quotient w, | \(2)/ w )(z) the following result is useful

Lemma 5 ([5], Th. 6, page 1754) Let the continued fraction

ai

a2
b+ ——————
as

by + —
b3+-‘

be such that lim, 6. = & and limsup,, |62 < ||, where &\, 52 are the zeros of the polyno-
mial 62 — b, — a, = 0. We have that if (39) converges to a finite value then lim,, H, = &'
where

H, = by +

an—1

bn—1'+
bn_o + ] as

10



()

Theorem 2 The ratio w, | (z)/ng)(z) converges uniformly on each compact subset of
Q\ (TUEU E(j)) to the root of greater absolute value of (20).

Proof.- According to Lemma 2 there are no accumulation points of the zeros of the

functions w(j)(z) in 2\ (FUEUE(j)). Therefore, for z € 0\ (FUEUE(j)) and i €
{0,1,..., N — 1} fixed, Poincaré’s Theorem applied to the recurrence relation (13) guar-
antees pointwise limit of the ratio wgfqi DN+
of the roots A\;(z) of the characteristic equation (20). Moreover, also from Lemma 2 we

know that there exists mg € Z4 such that

(z)/wggvﬂ(z) , m — o0, this limit being one

wEirz—l)N-}-z’(z) 7& 07 m 2 my . (40)

On the other hand, since limy, wg\?i]\lfﬂﬂﬂ)(z) = @](\l}t]i+l)(2) and z ¢ E we can also
suppose that -

w](\(/TI*l)NﬂﬂH)(z) 75 0, m>mg. (41)

We assume that mg is chosen such that mg > 2 and

Vm,itj(2) # 0 # dmivj(z), m >mo

(see (15) and (16)). Under these conditions, from (13), we have

Uonipnn ) () Omiti(?)
Wi e

= bris(2) - T - (42
Om1ivi(2) =y i(2)

(4
w(qjm—1)N+z'(Z)

Let us show that the limit of the quotient is at each point of Q\ (TUE U E(j)) the
root of greater absolute value. For this, we apply Lemma 5 to the continued fraction

C

) (43)
wmoN+z(Z) . ’YmO’Z_A'_](Z)
() o
w(mo—l)NJri(Z) Omg it (2) — Ymo+1,i45 (%)

Omo+1,i44(2) —

(where ¢ # 0 is arbitrary) for z € Q\ (TUEUE (j)) fixed. By Lemma 1 and the conver-
gence of Yy, 545 and dy, 45 this fraction converges uniformly on compact subsets of Q\ T’
to a meromorphic function. With the notation used in Lemma 5, let 6%, = 6% (2),k = 1,2,
be the roots of 62 — §,i4j(2)8 + Ym.i+j(2) = 0. Clearly, 5% — A\p(2),m — oo, k = 1,2.

11



(Recall that |A\1(z)| > |A2(2)|.) Thus, to apply Lemma 5 it is sufficient to prove that z
is not a pole of the limit function in (43). In other words, we want to show that the
continued fraction

— Ymo,itj(2) (44)
S i (2) — Ymo+1,i+5 (2)
Omo+1,i+5(2) =
does not converge to — g?}NH(z)/w((QO_l)NH(z).
The numerators {U(Z+] 1) (z)} and denominators {vgﬂ )(z)} of the partial fractions of

(44) are analytic functions which are solution of the recurrence relation
Wn = Omotn—1,i+5(2)Wn—1 — Ymo4n—1,i+j(2)Wn—2, n>1, (45)

with initial conditions given by e Jerr1)(,2:) =1, véiﬂﬂ)(z) = 0 and v(jlﬂ')(z) =0, v[()iH)(z) =
1, respectively.
Suppose that

j+1 j j+1
((7]7)10 1)N+z(z)w1(ioN)+i—l(Z) o wgz)N+i(z)wEino_)1)N+i_1(Z) 7& 0. (46)

oty (2} and {wfll (@)Y of

(45) are linearly independent (see [10, pag. 196 |). Therefore, each solution of (45) can
be expressed as a linear combination of these solutions. In particular, using the initial
conditions we obtain

This condition means that the solutions {w

(4 (J+1) (4 (J+1)
S+ _ w(Zno+n)N+i<z)wﬂioN+ifl(z) - wr)]loNJri(Z)w(moJrn)NJrl 1(2) n>0
MEQO—1)N+i(Z)w£rJL:J\lf)+z’—1(Z) - wr(7J12)N+i(Z)wEinJ;1)1)N+z 1(2)
and
) (3+1) (9) (3+1)
i) w(fnoJrn)NJri(Z)w(fno—l)NHA(Z) - w(fnofl)NJri(Z)w(fnoJrn)NJrifl(Z)
W= G+D 0 G+) , n20
Wimo— )N+ () WimgNpi—1(2) = Wity (2w, 4 (2)
Thus, the partial fractions for (44) are
(+1)
G oy @ )w(mo+n)N+i—1(z)
(i+j+1) moN—+i—1 moN+1 ()
v w(mo+n)N+i(Z)
— = — , n>0, (47)
G ‘ ‘ Wbt (2)
n (G+1) (2) — W (2) (mo+n)N-+i—1
(mo—1)N+i—1 (mo—1)N+i () ( )
w(mg—i—n)N-‘,—i z

(see (40)). If the limit function in (44) takes the value — moN+z( )/w (mo—1 N+Z( z), taking
limit in (47) as n — oo we have

) (4)(2)
(3+1) (7) fY
wm 11— ( ) + wm 7,( ) j
oN+i—1 oN+ 1(2) B w%NH(z)
A e G
(+1) () f w? (2
w(inofl)NHfl(z) —i—w(ino N 2) S 32+1( ) (mo 1)N+z( )
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(see (12)). But z ¢ EU)
we arrive to a contradiction with (46).

and f J)( ) # oo. Then we can simplify the expression above and
This fact proofs that, under this condition, the

limit in (44) is not — moN+z( )/w(J) 1)Nﬂ.(z) for z € Q\ (TUEUEWY) and, therefore,
for these points the limit of w?) (z )/w(]) (2) is A\ (2).

(m+1)N+i

mN—+i

Suppose now that (46) is false; that is,

+1 j +1)
gfﬁo 1)N+z(z) gLoN)Jri—l(Z) - wfi())zw(Z) Eino 1)N+i— 1(2)=0.
Then we have
. o , o
wgg\fﬂ(z)wgi@:—i)NHq(z) - wEZrz—‘,-l)N—‘ri(Z)wgrjj\}ii*l(z) =0, m=>mo—1, (48)
(see again [10, pag. 196]). From this, if wfﬁ#ﬁi_l(z) = 0 for some m > my — 1 we have
wfgﬁﬁi_l(z) = 0 for all m > mp—1. Change j to j+1in (6). For s = N and n = mN+i—2
We'obtain there wfﬂ&?iﬁ(z) =0 (see (41)). But wﬁi#ji_l(z) = wgﬁﬁid(z) = 0 implies
w(()]+1)(z) =0 (see (5)), which is false. Hence,
w%;\rﬁﬂ (2)#0, m>mo—1. (49)
Because of (48) and (49) we can write
(G+1) ()
w(in+1)N+ifl(z) B 7]n+1)N+z< z) > e — 1
1 = s ~mo— 1.
wg;jiq (2) w%\/ﬂ (2)
Proceeding by induction, suppose
wIth () #0, m>mo—1, k=12, .k, (50)
and (G+4) )
w,’ () w! (2) ~
T = SIS mzme =1, k=12 0k, G1)
me+i—k(Z) mN-H(Z)

where k < mN + i. We want to proof that (50) and (51) also hold for k+1<mN +i.
Replace j by j+k—1andnby nN+i—k+1in (4). Taking into account (50) we

have -
(j+k+1)
1 —b - 2 nJN—i-i—E—l(Z) > -1 (52)
(j+k) (2) B j+k(2)_aj+%+1 w(j-&-z) _(2) =T .
YnNgick” nN+i—k
w(HEfQ (2)
nN-+i—k+1
;From (51) and (50),
(G+k) - (j+F)
w(mf”N*"*’“(z) - wmiv“—%(z) m>mg— 1 (53)
W=D (2) w1 (2)

(m+1)N+i—k+1

mN+i—k+1

13



Write (52) for n = m and n = m+ 1 respectively. Comparing both expressions and taking
into account (53) we arrive to

(j+k+1) (2) (j+k+1)
- w T (2)
(mtDNtizh—l 7 _ _mNyick-177 s (54)
(G+k) (z) wP T _(2)
(m+1)N+i—k mN+i—k
Hence, if wfi;]:i)%_l(z) = 0 for some m > mg — 1 we have that the same is true for all
m > mg — 1. Rgplacejbyj—i—%—kl in (6). Taking there s = N and n=mN+i—Fk—2
we obtain w! T, (z) = 0. This is,
mN+i—k—2
Wveioia () = (@) =0, mzmo—1. (55)

If k =mN +i— 1 then w(()j+k+1)(z) = 0 which is false. If K < mN + i — 2, from (55) we

arrive to s o
wIHFHD. (2) = w9 TFD (2) =

mN+i—k—3 k

(j4+k+1)
=W z)=20
mN+i—k—4 0 (2) ’

which also is false because of (5). Therefore, we deduce that (50) holds for k = k + 1.
Now, we can rewrite (54) in the form

(j+k+1) (j+k)

(m+1)N+z‘—E—1( ) _ (m+1)N+i—E(z) m>me—1:
(+k+1) (2) W) (2) ’ - ’
mN+i—k—1 mN+i—k

that is, we also have (51) for k = k + 1.
We just proved that (50) and (51) hold for m > mg—1 and k < mN +i. In particular,
take k = (m —m+ 1)N, being m fixed such that m € Z;, m > mp. Then

j+(m—m+1)N (4)

’E%N(-i-i : )(Z) _ Y4+ ?) m>mo— 1
wil i V@) w2

Taking limits as m — oo,

~(7) (4)

w (z w m Z(2:)
W = tim DT € O (2), Ma(2)} (56)
w(Fn—l)N-&-i(Z) W N1i(2)

Therefore, taking limits in (56) as m — oo,

L L )
w%Nﬂ(z) ~ fim w%\fﬂ(z) i w(]m+1)N+i(z)
wgo—l)NH(z) m {‘7873—1)1\1“(2) " wg%\fﬂ(z)

(the sequence on the left hand of (56) is a constant sequence). If the above limit is A2(2),
because of Corollary 1 (see (30)) and Corollary 2 we have

ze E;n[Q\ (TUE) c EY. (57)
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On the other hand, taking £ = (m —m + 1)N + 1, m as above, and proceeding in the
same form that before, we obtain from (51)

~(j+1 (4)
lim ngN—zi—l(z) i w(m+1)N+i(z) ~o(2)
m ——~ m —————— .
" E%“@+—i)N+i—1 ) wfi?vH(Z)

Hence, as in (57), z € EUtY. In other words, z € EW N EUTY | which is not possible
because of Lemma 3. Therefore, the limit in (56) is A1(z), as we wanted to prove.

To conclude the proof, we show that the sequence {w 1 N+Z/me+Z} ,m € N,
is uniformly bounded on each compact subset of Q\ (FUE UE(J)). Let z1 € Q\
(F UEUEU )) be fixed. It will be sufficient to prove that there exists a closed disk centered
at z1, entirely contained in 2\ (F UFEU E(j)), on which { éj)+1 N+l/me+Z} ,neN,is

uniformly bounded.
Let &1 > 0 be such that D, (z1) C Q\ ([ UE U EW), where D, (21) := {z : [z — 21| <

e1}. Using Lemma 2, there exists ny = ni(e1) such that wfﬁvﬂ(z) # 0 for z € D¢, (21)

and m > nj. Let w(J)( ) = wl(,j)(z)/ (aj(2)aj+1(2)...ap(2)). From (13) we have

250) Om,i+j () Vit ()

w .+ W . =0
Pl DON+ T g AN+ VT Q1) N4 - - Q)N DN
(58)
for m > 1, and uniformly on compact subsets of 2 we have that
O it s —_1\Vp o

lim mt _ | )1 5 N lim ity =1. (59)

M AmN+it1 - - - G(m41)N+i Al M A(m—1)N+it+1 -+ - A(m4+1)N+i

Here and in the sequel we will refrain from writing the variable z.
The characteristic equation associated with (58) is

(_1)N_1PN

2
NG

§+1=0,

and its roots are
i =N/AY? =12,

with X1X2 = 1. Recall that A1, and hence Xl, is the root of greater absolute value at each

z. Therefore, \/):1| >1> ’/):2‘ Let p := |/)\\1(zl)\ — 1. Obviously, p > 0. Since

&9
i\21 ~
lim M =1 (21)

m—o0 wﬁﬁvﬂ(zl)

there exists ny > ni such that

~(7)

w m i(zl) >

%—)\1(,21) <p, m>ny. (60)
meJri(Zl)
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Let us rewrite (58) as

~(4)

Yont)N+i _ Om,i+j B Ym,i+j 1 (61)
@fﬁvﬂ AmN+it1 - Qmt )N+i  A(m—1)N+i+1 - - - A(m+1)N+i @%VH
~(37)
W(im—1)N+i

for m > ny and z € D, (z1). Taking (59) into consideration and the continuity of the
function (—1)NPN/A1/2, there exists n3 > ng such that

O, itj ~ (=D)NVPy(z1) Om,it _ (=)NPy
AmN+it1 -« C(m41)N-4i A(z)'/? AmN+it1 -« Qlmt1)N+i Al/2
(=DNPy  (=1)NPy(21) P’
- e~ > Z 9 D 9 62
+‘ Al/z A(Zl)]-/Q 3’)\1(21)’ m n3 S EQ(Zl) ( )

where 0 < g9 < g1 depends on z; and the function Py /Al/ 2, Moreover, there exists
n4 > ng such that

o 2
it —1‘ < p—, m>ng, z€ D (z) (63)
A(m—1)N+i+1 - - Gm+1)N+i 3
and
Vit P
<l4+=, m>nyg, z€D.,(21). (64)
A(m—1)N+it+1 - - - Ym+1)N+i 3

The function @g;)NH/@Ei)‘;—l)NH is continuous at z = z;. From this and (60), we have

~(7)
w’n4N+i N

—5 —A(z1)| <p, z€Dqy(x1) (65)
w(n471)N+i

(where 0 < e3 < g9 depends on z; and ny). Therefore,

—(j) !

Wy N+i 0N -1
) = (Ae) | =
W ,
(na—1)N+i
~()
W , ~
G (=)
W(ng—1)N+i )
= |- i(j)) < 5 , 2 € Dey(21).
Wn (SN wy, 7 N
%)\1(21) % ‘/\1(21)‘
Winy—1)N+i Winy—1)N+i

Also, from (65) and the way in which p was selected

73(]')]\[ 4
1:’)\1(21)’—,0< A(])Miﬂ , 2 € Deg(21).

’rL4—1)N+i
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Hence .
a9 a . 1 P
) = () | < . z€D(21). (66)

{081)4—1)N+i ‘X1(21)

Returning to (61), for m = n4 we have (notice that N+ X = (—=1)N Py /AY?)

~(7)

w(n4+1)N+z‘ —X1(Z1) _ [ Onag,itj . (—1)NPN(21)_]
@§4)N+i AngN+i+1 - - Uyt 1)N+i A(z)1/?
A -1
~(7)
Vna,itj WnaN+i _ X2(zl) +
A(ny—1)N+it+1 - - - C(ng+1)N+i @gﬁi_l)NH
Aa(21) [1 — Tnasit] ] :

A(ng—1)N+i+1 - - - A(ng+1)N+i

Therefore, taking absolute values in the previous equality and taking into consideration
(62), (63), (64), and (66), we obtain for z € D.,(21)

., DN4itj = P’ Py P 1 p?
N R ()| < (145 tEg=e (67)
Wy Ntitj 3 ‘/\1(21)‘ )Al(h)‘ ’>\1(2’1)‘

which is (65) with n4 replaced by ng + 1. In turn, this gives (66) and, consequently, (67)
with n4 replaced by n4 + 1. Repeating this process we conclude that

~(7)

W .
+1)N+i
% —AM(z1)|<p, m>ng, z€D(z),
W N+i
as we needed to prove. O

For N =1, Theorem 2 indicates that for each j € N fixed there is uniform convergence
of the quotient wﬁf}rl / wl ), n — 0o, on each compact subset of Q\ (I'U EW) since in this
case E = (). Now, (13) and (5) coincide, with n = m + i + 1. Its characteristic equation
(20) given by A2 — b(2)\ + a(z) = 0 has for roots

b(z) £ /b(2)? — 4a(z)?
5 ;

A = k=1,2.

In the limiting case, when the difference equation (5) has constant coefficients, we have

(A=) = Qo)™

@) () = M (2) — ha(2)

when Aj(z) # Ao(2). Therefore, the roots of ﬂ?ﬁlj)(z) lieon T' = {z : [\ (2)] = [Aa2(2)]}-
We can write

2
n) =a) i () 1) = el & = ik pa() = e VE T

17



Since |p4(€)] = |<,01(£)|7 it follows that [A1(z)| = |A2(2)]| if and only if [+ (&;)| = 1. This

occurs if and only if £, € [-1,1].
In particular, for by (z) = z + by, and ay(2)? = zbg(1 —a?), where ay, by € Ck € N, and
by — b, ap — a as k — oo, the recurrence (5) is
W) () = (2 4+ b )wdy (2) + 2y (1= @l Jullly () = 0.
If |ap| < 1, n € N, the polynomials {ng)} , n € N, are orthogonal on the unit circle with

respect to a measure whose continuous part has I' for its support. In [2], we obtained that
the set I" when a € (0, 1] is the arc of the unit circle

F={z:]z|=1, at+argb<argz <27 — o+ argb}

where a = sin /2. When a = 1 the arc reduces to the point I' = {—b}.
20 cL11] if and only if

2iy/2b(a? — 1)

b
\/§+ \/; € [-2iva2 —1,2iVa? — 1],

where the right hand represents the segment whose end points are +2iv/a? — 1. Set \/i =

If a > 1, we have &, =

re’® r >0, a € (—m, ], then £, can be written as

1 io 1 i 1 ( 1 . 1. . )
= ——(re"” + —e = —— | (r+-)cosa+1i(r——)sina ) .
& 2i\/cﬁ( r ) 2ivaz — 1 ( 7“) ( 7“)

In order that &, € [—1,1] it is necessary, in the first place, that cos a = 0; that is, 2a = 7.
Therefore, arg z = m+argb. In other words, I is contained in the half line beginning at the

1 1
W(T - ;) € [-1,1],
we have that —2rva? — 1 < r2 —1 < 2rv/a? — 1. Considering both inequalities, we obtain
that r € [a — Va2 — 1,a + Va? — 1]. Therefore, in passing from a < 1 to a > 1 the set
I' transforms from an arc of the unit circle to a segment perpendicular to the unit circle
each one passing through z = —b and symmetric with respect to this point.

In [14, sections 3 and 4] the authors study the asymptotic properties of the so called
Laurent polynomials. These polynomials { B} satisfy the recurrence relation

B (z) = (z = Bn)Bn-1(2) — anzBn_2(z),

where 3, @, > 0 and (3, — 3, a, — a(as n — 00). Our previous example generalizes the
study to the case when {a,} and {3,} are arbitrary sequences of complex numbers such
that a0 > 0 and extends Theorem 4.1 which is one of the main results of that paper.

origin which passes through —b. Secondly, in order that &, =

3 Strong asymptotic

Under conditions more restrictive than those imposed in the previous section it is
possible to deduce a result similar to Theorem 1 for the functions {wﬁlj )}, n € N. More
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prec1sely, this result depends on the proximity of the families of functions {w } and

{wn } expressed in terms of the coefficients of the recurrence (1). This fact has been used
by other authors to relate the properties of both families of functions in special situations
(see [3, Theorem 3.8] and [13, section 5.3]).

Lemma 6 The family of functions {@g)(z)}, n € N, solution to the recurrence
aUr ) (2)s, = BT (2)s, 1 — aU ) (2)s,_0, n>1, (68)

with initial conditions

S0y — VG 500 — /e
0 (2) = @D (2 Q(2) =1/a" D (2), (69)
analytic in O\ (F UEU E(j)) , verify
—ﬁgj)(z) FY9(z) B ngrll)(z)

; a(j+1)(z) 2
QY (2) = A (2 )Ez(j+3)(z) .)..a(j+”+1)(2’) 7

neN, zeQ\(CUE).  (70)

Proof.- We proceed by induction on n. For n =1 and n = 2, (70) is a direct consequence
of (68) and (69). Suppose that (70) holds for n = 1,2,...,m. Then, it is sufficient to

write (68) for n = m + 1 and take into consideration that the functions s )(z) satisfy the
recurrence relation (5) (with periodic coefficients). O

Lemma 7 Forie€ {0,1,...,N —1} and m € N, we have

z ~( iy
QmN*’(,,? OYV(z), zeq)\ (FUEUE(J)) . (71)
()
Proof.- Let z € Q\ (FUEUE(j)) and let i € {0,1,...,N — 1} be fixed. Since the
sequences {wﬁn N4t and {wﬁi}lﬂ 1}, m €N, are solutions of the recurrence relation (25),

f(j (2) _puth

mivei} s m € N given by QIP(2) = @) g
a z

is also a solution of (25). Since

(2),

then the sequence {Q

we deduce that {Q
coefficients

N _H} m € N, is solution of the difference equation with constant

A(2)Y2smi1 + ()N Py (2)8m + A(2) Y2501 = 0

whose characteristic equation

A(2)282 + ()N 1Py (2)s + A(2) /2 =0
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has for solutions Xl(z) and Xg(z). Therefore,
Qv ii2) = AE) (M) +B() (X)), m=1. (72)
JFrom the initial conditions Q N H( z) and @Eﬂ )(z), for m = 1,0, respectively, we obtain

W) =220 po ARLE) X6 )
A(2) = Aa(2) ’ A (2) = Aa(z)
Let us show that A(z) =0
In the rest of the proof, we delete the variable z from the notation. We have

Az) =

~o) _f9 g g9 e

N+ (1)) 2 WN i1 w; e T Wi

(a J+ )) ~ (a(J+1))
QN+Z 207 =~ a(+2)  qU+N+i+1) + A2 a+2) g+t
_w%) J'F(j) B @%H) 1
+i N2 +i— ~

_ 1 (ali+D) 5 (a9 £) e

a+2)  qG+i+1) aU+it+2) g (G+i+N+1) (a(j+1))2 i—1

Since qU+i+2) | qUHHN+1) = AL/2 and Ay = Ao/AY2, rearranging the terms we arrive
at

) ) ) )
~(j) N ~(j+1) G+
B <w1$+i s ) (aGtD)? (w]\]f“ 1 A )
QN+z Qi = A2q(+2) | qG+it1)
But, according to (33),

el
@Y " 2, el

Hence QNJFZ A 20\ U) — 0. Thus QNM /):1@1(-]) = (A — //\\1)@1@ and (71) follows from
(72). O

The following lemma provides relations between different functions qu(f +) (z) which we
will use later.

Lemma 8 For each k =0,1,... and for eachn € N, n >k — 1, we have

QY (2) = UV ()QUY (2)QY (=) - (73)

Proof.- For k fixed, the families of functions {a7+*+1)(z )Q(J+k (2) ;21(2)}, n>k—1,

and {@,(f )(z)} are both solutions of (68). Using the uniqueness of such solutions, in order
to conclude that they coincide it is sufficient to verify that both satisfy the same initial
conditions.
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In fact, for n = k — 1 the right hand of (73) is a(j+k+1)(z)égjfk)(z)Q,(cjzl(z) = @,(f_)l(z)

and we have the desired equality (see (69)).
For n = k, from (69) we have — 190G a0 (2) on the right hand of (73). Taking
) a(j+k+1)(z) k—1
n=k—1and s =m in (6) (adapting the formula to the purely periodic case), we have

. i . i 2 . .
@), (2) =BG (2) - (a0 (@) @V @a (). (7

k-1

Substituting j by j+ 1 and k by k — 1 in (74), it follows that
_(j+1 —(j ~(j+1 ; 2 _(j+kt1) | ~(j+1
@O (2) = B (a7 () - (a0 ) @ el ). (79)

(From (74) and (75),
~(j+k+1)<z)

SGHD N Gk (o)) 2 5D ) Wm—1
s O R T
CONE I 2 ) Tt () S
m w(2) — (aUtk+D () @ (2) "
k ( ) k-1 wrsrjl.t,_k)(z)
(76)
Taking limits in (76) as m — oo (see (32)),
@(j+1)(z) _ (a(j+k+l)(z))2 T, FUTR)(2)
7O (2) i P2 (0D (2))?
()t ) - 2 ) U ()
— (q(i+Ek+1) J
Wy’ () = (al (2))" w2 (2 - (a(j+1)(z))2
_ @)+ 85 () F9 )
@ (2) + @)y (2) 00 (2)
or, what is the same,
~ £0) . £(9) . :
(k) M0 Gy | YY) ) —(j+1)
P oy~ O] = iy B e )
That is, from (70),
A )
f(]#k) (Z) _ _a(jJrkJrl) (Z) Qk (Z)
~()
5e1(2)
£i+k) s oy
and —MQ,&J_l(z) = Ej)(z), as we needed to prove.
Remark 2 ;From Lemma 8 we have
@%3\[—1—2‘—‘,—1(2) = a(j+i+2)(z)©(()j+i+l)(Z)ég)fwi(z) , meN, 1=0,...,N—1
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From this and (71), if QmoN—Ho( z) =0 for some mg € N and ig € {0,...,N —1} we arrive
to @%7)(2) =0 for all n € N. In this case,

: £5) 4
()=~ E a6y, nen (77)
(aG+D()
(see (70)). But, as we saw in the proof of Corollary 2, (77) is not possible for z €
Q\ (1" UEU E(j)). Consequently, we have @%’(z) £ 0 for alln € N.

Remark 3 Remark 2 and Lemma 7 indicate that not only do we have strong asymptotic
for the functions QmN—H( z) but also that the relation between QmN+z( z) and Ag(z)™ is
exact and

Q"+N() =X(2), n>1, z€Q\<FUEUE(j)).
Qe

We define the functions

~(7) 7)
50)(5) = wri”(2) G) (o) — wy’ (2)
i’ (2) a2 (z) .. aUtntD ()’ i’ (2) a2 (z) .. aUtntD ()’ neN,

taking ' . ' ‘
(@) =) =1, () =p"(z) =0. (78)

Since the functions {w(] )( )} and {w(] )( )} verify the recurrences (4) and (5) (with periodic
coefficients in the first case), we obtain the following relations

(a(j+n+1)(z))2~(j+n+1)(z) ’ (79)

GH+n+1) ( N5G+n=1) () — pG+n) (50 +n) o )
a (Z)pm (Z) =b ( ) (Z) a(j+”+2)(z) m—2

Z)Pm—1

(j+n+1)( )p(j)( ): ) ( ) (4) . (aj+n(z))2 (4)
a Z)bp % ji+n\2)Pp~ 1( ) a(j+n)(z) pn—2(2)7 (80)

(m,n>2).
In the following, we study the connection between these two families of functions.

Lemma 9 Let z € Q. For each n € N we have

() =Y (2)+ (81)

| bjs(2) =0T (2) )
+ Z alits+1)(z) Pr-s (2) +

Tt (z)? aj+5+1(2)2%j+s+1)(z) 9 ()
=1 (L(j+5+1)(z)a(j+5+2) (Z) n—s—1 s—1 .

Proof.- Let z € Q be fixed. We follow the scheme of the proof of (5.13) in [13, page 108|.
We delete z from the notation. Multiplying (80) by ﬁfff’f), (79) by p( 7 1 and deleting

one expression from the other, we obtain

Qln+1) (@{nﬂi ™)) _ﬁ(nyz‘ﬂtn—l)pgjl) -
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. . 2 . . G+nty? A
i+ +n Qjin (j+n (a )" (4nt1
(bj+n —bU* )> AR Wy B piy + Wﬁg_z b

Substituting n by & and m by n — k + 1, it follows that

AT (B — B, ) =

: 2
(@) )
qUtk+2) Pn—k—1 Pr—1-

2

(b= 09 4902, — g0,
Taking £k = 1,2,...,n in the previous equality and adding the results, we obtain the
desired expression. O
Relation (81) suggests the proximity between the functions pq(lj )(z) and pY )(z) when
the coefficients of the recurrence formulas (1) corresponding to the purely periodic and
asymptotically periodic cases are close enough. This will be measured in terms of the
convergence of the series

oo
>

S=

b(z) — b(s)(z)‘ + ‘a(sﬂ)(z)Q . asﬂ(z)?‘) . (82)

The following theorem guarantees, under this restriction, a similar asymptotic behavior
for the functions wg)(z) and 1177(1])(2’).

Theorem 3 Assume that the series (82) converges uniformly on compact subsets of €.
For each i =0,1,...,N — 1, we have

(4) ~(4) —(5)
im w — bz wN—i—i(Z) — Xa(2)w;” (2)
WLOO )™ o) A1(2) — A2(2)

(83)

uniformly on compact subsets of 0\ (F UEUEU U E(j)> and ¢ is analytic in this region.

Proof.- As above, we will not write explicitly the variable z. To begin with, let us prove the
uniform boundedness on compact subsets of Q\ (F UEUEU )) of the sequence {pgf )@ﬁf )}.

Multiplying both sides of (81) by @iﬂ ) and taking account of (73),
WGP = FED+ 3 (e — WG
s=1

+

s 2
(a7 D)” = @) i) | L0 G0
ali+s+2) n—s—1 %n—s | Ps—1%s-1-

Taking absolute values,

pPQP| < [PQR|+ X [[eres - 0| 0 QY
s=1
. 2 2| | ~Aj+s+1)
. (a(]+s+1)) — (@j1s4+1) Pl ~(j+$)é(j+8) () @(j) (84)
a(j+5+2) ﬁ(j+s) Pn—s n—s Ps 11| -
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i’(jz\u‘ ~)
= [P QU A
)\7171 ‘ N+

Therefore, taking into consideration (28) and (71), for each compact subset X C Q\ (T'U
E U EY) there exists a constant C; = C;(K) (depending on K) such that

For each m € N, i € {0,1,...,N — 1}, we have ‘pmNH@Si)NH

‘pﬂ)Q(J ’<C1 n=0,1,.... (85)

Moreover, by (32), there exists Cy = C2(K) such that

~(j+s+1)
n—s—1

+
Py

Taking account of (85) and (86) in (84), we obtain that there exists C3 = C5(K) such
that

‘pg)@g)‘ < C4 (1 + i Uij —pUte)| 4
s=1

<Cy, Vs=1,2,....n, neN, (86)

(a(j+5+1))2 - (aj+s+1)2H

pgﬂzli@g@ly)

uniformly on compact subsets of €2\ (F UEU E(j)). Using the Gronwall inequality, it

follows that
. 2
(a(3+s+1)> _ (aj+s+1)2‘>} ’

]pg>@g>\ < Cyexp {03 > (]bm — Ut 4
s=1
uniformly on compact subsets of €\ (F UEU E(j)). On account of the convergence of
(82), it follows that there exists a constant C' = C'(K) such that

‘pg)@g)‘SC, n=0,1,..., (87)

uniformly on compact subsets K of Q2 \ (F UEUEU )>.
On the other hand, using (87) and again the convergence of (82), we can define the
function

(a(j+k+1>)2 _

i ~ (5 (a‘+k+1)2 ~0 j
=1+ Z { (bt = b(ﬁk))Qi(cj—)l + a(j+k+1)] Qi(cj) pl(c]—)l ,

where the series converges absolutely and uniformly on compact subsets of the prescribed
region.
In the following, we shall prove that

2
o (j+nt2) G _ _Y+nt2 (A6 | 8
i a <p"+1Q (a(j+n+2))2pn Q"“) ¢ (58)

Multlplymg (81) by Qn 11, substituting n by n+1 in (81), multiplying this last expression

by Qn and deleting one expression from the other, we obtain

pPQY), —pY),QY = (89)

| birs =BT g 5G) (i)
QY -, QY + [W (Pn] R D ANTa )
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— a2 . . . . . _ p(JH+n+1)
jtst1 +s+1) 3 s+1) 3 bjpni1 —bUTFD ~
: (A’g—sj_l )Q7(1j-|)—1 B ]A)ﬁzjjs )ngj)>] pgj—)l - qlitn+2) Qg)pg) :

(a(j+s+1))2
al+s+1) o (i+s+2)

_l’_

We know that {@5{ )} and {ﬁﬁjjss)} are solutions of the difference equation given in
(68). That is,

altnt) Q) = pUtm Q) (Gtm Q) (90)
and ' ' '
a(]+n+1)%]j‘5) _ b(]+n)A{nJ+SS)l a(]+n)ﬁ'7(7:7+85)2 (91)

Thus, multiplying (90) by ]351] +SS)1 and (91) by Qn 1, and subtracting both expressions, we
obtain

Ut 5T Q) ﬁfzjjss)@gzl} =al []A’fw] Q0 -p 0 } ‘
Iterating and taking into account the initial conditions for {@ff e )} (see (78)) we arrive to
509 a6 _puge) a9 56 (02)
Dp—s-1 — Pp—s n—1 " a(j+n+1) s—1» S=U L, ...

Considering (89) and (92), it follows that
aUtY ()

(4)
PP, - ), Q) = e Lo

n i1s i+s+1)\2 _ 2 in
=S bjss — OUF )@(J’) N (aV=HD)” — af 4 QU | . _ bitnt1 = but +1)@(j) ()
Q+nt2) sl QUtstl)gGntz) @5 | Ps—1 Q+n+2) n P

s=1

Multiplying by —al@+"+2) it follows that

05 (50,09 p9Q0),) =

n+1 o (a(j+s+1))2 — a2,
e
(a(]"r +2)) — a?+n+2Q( ) )
qli+n+2) ann )
That is,
(j+n+2) 50 Gz () 50)

a Pn+1Q an Qn+1 =1 + (93)

n+1 G+s+1))2 _ 42
. ) A0 (a A P

2 |:(bj+s — bV S)) Qo + qlit+s+1) ng) Ds—1-

s=1

Taking (82) into consideration and taking limit in (93), we arrive at (88).
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Finally, let us show that from this we deduce the result we are looking for. Substituting
n by n+ 1 in (92) and taking s = 0 we have

qlitn+2) _

— (94)
pn+1 Qn Pn Qfﬁl

Substituting this expression of a/*"*2) into (88), we obtain

Ajtnt2 2
. pn-‘rlQ(]) < j+n+2 ) Q’Ef—?—l
lim =0 =

pn+1 () _ (Gitnt2 250
nIEEOW ) = ¢ (95)

n pn
“Q@ - QY

Dividing (6) by wﬁn%\/+z+1 (for s=N,n=mN+1i,i€{0,1,...,N —1}) and taking limit

as m — oo (which is possible by Theorem 2), it follows that

(J) iy 2 —(j+i+2
m—oo () N w)
mN+i+1 lim —CmN it
mN-+i
Therefore,
©) j+i+2)\2 ~(I+i+2)
li wrgLN-i-i-l—l - (a<]+l+2)) w]\]/—ll (96)
moo U U _
Wi N +i Wy -
with uniform convergence on compact subsets of Q\ (I'U E U EY)) . From (96)
j it 2) ~(i+it+2
. pivi)N+i+l o ﬁ(rfz)N+z+1 o a(]ﬂw)w%fll )
lim —5 = lim ) = — D (97)
e PrN+i e pmN—H Wy -\
(also uniformly).
On the other hand, from (94), for n = mN + i we can write
~()
qUtir PmN i _ ! . (98)
Ain pmN+z+1 QmNJrz . QmN+z+1
Pavei M N
Moreover, because of the definition of f)ﬁ] ),
~(5)
Wy N i 1 e _
S0) N a0 gy o Ll N=1
pmN—H —
e =)
W N ep s
, ifi=0.
AT

26



Therefore, the limit of the denominator on the right hand of (98) is not zero (see Theorem
1)). From this fact and (97), dividing the numerator and denominator of the second
fraction in (95) by AL* and taking limit as m — oo in that fraction, we obtain

G A H)
pWJL)NHH Q%)NH- _ (aj+mN+i+2>2 Q%NHH
) xp ali+i+2) A

. PN +i
lim =1.
- ~(9) ~0) ~0)
e Pronvitt QmNri  @mntis
Ponei M A

That is, the limit of that fraction exists, independent of the value of 7. Using this fact in
(95) and taking limit there as n — oo, we obtain

() (4)
e

uniformly on compact subsets of 2\ (F UEUEW U E’(j)>, from which, using Theorem
1, we have (83). O
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