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Abstract

We prove ratio asymptotic for sequences of multiple orthogonal poly-
nomials with respect to a Nikishin system of measures N (σ1, . . . , σm)
such that for each k, σk has constant sign on its support consisting on
an interval e∆k, on which |σ′k| > 0 almost everywhere, and a set without

accumulation points in R \ e∆k.
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1 Introduction

Let s be a finite positive Borel measure supported on a bounded interval ∆ of
the real line R such that s′ > 0 almost everywhere on ∆ and let {Qn}, n ∈ Z+,
be the corresponding sequence of monic orthogonal polynomials; that is, with
leading coefficients equal to one. In a series of two papers (see [15] and [16]), E.
A. Rakhmanov proved that under these conditions

lim
n∈Z+

Qn+1(z)
Qn(z)

=
ϕ(z)
ϕ′(∞)

, K ⊂ C \∆ (1)

(uniformly on each compact subset of C\∆), where ϕ(z) denotes the conformal
representation of C\∆ onto {w : |w| > 1} such that ϕ(∞) = ∞ and ϕ′(∞) > 0.
This result attracted great attention because of its theoretical interest within the
general theory of orthogonal polynomials and its applications to the theory of
rational approximation of analytic functions. Simplified proofs of Rakhmanov’s
theorem may be found in [17] and [12].

This result has been extended in several directions. Orthogonal polynomials
with respect to varying measures (depending on the degree of the polynomial)
arise in the study of multipoint Padé approximation of Markov functions. In
this context, in [10] and [11], an analogue of Rakhmanov’s theorem for such
sequences of orthogonal polynomials was proved. Recently, S. A. Denisov [4]
(see also [13]) obtained a remarkable extension of Rakhmanov’s result to the
case when the support of s verifies supp(s) = ∆̃∪ e ⊂ R, where ∆̃ is a bounded
interval, e is a set without accumulation points in R \ ∆̃, and s′ > 0 a.e. on
∆̃. A version for orthogonal polynomials with respect to varying Denisov type
measures was given in [2].
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2Dpto. de Matemáticas, Universidad Carlos III de Madrid, Avda. Universidad 15, 28911
Leganés, Madrid (SPAIN) <lago@math.uc3m.es>

1

Nota adhesiva
Published in: Advances in Mathematics, 2008, vol. 218, n. 4, p. 1081-1106



Another direction of generalization is connected with multiple orthogonal
polynomials. These are polynomials whose orthogonality relations are dis-
tributed between several measures. They appear as the common denominator
of Hermite-Padé approximations of systems of Markov functions. An interesting
class of such systems is formed by the so called Nikishin systems of functions
introduced in [14]. For Nikishin multiple orthogonal polynomials a version of
Rakhmanov’s theorem was proved in [1].

An elegant notation for Nikishin systems was proposed in [8]. Let σ1, σ2 be
two finite Borel measures with constant sign, whose supports supp(σ1), supp(σ2)
are contained in non intersecting intervals of R. Set

d〈σ1, σ2〉(x) =
∫
dσ2(t)
x− t

dσ1(x) = σ̂2(x)dσ1(x) .

This expression defines a new measure with constant sign whose support coin-
cides with that of σ1. Whenever convenient, we use the differential notation of
a measure.

Let Σ = (σ1, . . . , σm) be a system of finite Borel measures on the real line
with constant sign and compact support containing infinitely many points. Let
Co(supp(σk)) = ∆k denote the smallest interval which contains supp(σk). As-
sume that

∆k ∩∆k+1 = ∅ , k = 1, . . . ,m− 1 .

By definition, S = (s1, . . . , sm) = N (σ1, . . . , σm), where

s1 = σ1, s2 = 〈σ1, σ2〉, . . . , sm = 〈σ1, 〈σ2, . . . , σm〉〉 (2)

is called the Nikishin system of measures generated by Σ. The system (ŝ1, . . . , ŝm)
of Cauchy transforms of a Nikishin system of measures gives a Nikishin system
of functions.

Fix a multi-index n = (n1, . . . , nm) ∈ Zm
+ . The polynomial Qn(x) is called

an n-th multiple orthogonal polynomial with respect to S if it is not identically
equal to zero, degQn ≤ |n| = n1 + · · ·+ nm, and∫

Qn(x)xνdsk(x) = 0, ν = 0, . . . , nk − 1, k = 1, . . . ,m. (3)

In the sequel, we assume that Qn is monic.
If (3) implies that degQn = |n|, the multi–index n is said to be normal

and the corresponding monic multiple orthogonal polynomial is uniquely de-
termined. In addition, if the zeros of Qn are simple and lie in the interior of
Co(supp(σ1)) the multi–index is said to be strongly normal. (In relation to
intervals of the real line the interior refers to the Euclidean topology of R.) For
Nikishin systems with m = 1, 2, 3, all multi-indices are strongly normal (see [5]).
An open question is whether or not this is true for all m ∈ N. The best result
when m ≥ 4 is that all

n ∈ Zm
+ (∗) = {n ∈ Zm

+ :6 ∃ 1 ≤ i < j < k ≤ m, with ni < nj < nk}
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are strongly normal (see [6]).
In [1], a Rakhmanov type theorem was proved for Nikishin systems such

that |σ′k| > 0 a.e. on Co(supp(σk)), k = 1, . . . ,m, and sequences of multi-indices
contained in

Zm
+ (~) = {n ∈ Zm

+ : 1 ≤ i < j ≤ m⇒ nj ≤ ni + 1} .

It is easy to see that Zm
+ (~) ⊂ Zm

+ (∗). Here, we assume that supp(σk) =
∆̃k ∪ ek, k = 1, . . . ,m, where ∆̃k is a bounded interval of the real line, |σ′k| > 0
a.e. on ∆̃k, ek is a set without accumulation points in R \ ∆̃k, and the sequence
of multi-indices on which the limit is taken is in Zm

+ (∗).
The proof of Theorem 1.1 below uses the construction of so called second

type functions. This construction depends on the relative value of the compo-
nents of the multi-indices in Zm

+ (∗) under consideration. A crucial step in our
study consists in proving an interlacing property for the zeros of the second
type functions corresponding to “consecutive” multi-indices (see Lemma 3.2).
For this purpose, we need to be sure that the second type functions are built
using the same procedure. To distinguish different classes of multi-indices which
respond for the same construction of second type functions, we introduce the
following definition.

Definition 1.1. Suppose that n = (n1, . . . , nm) ∈ Zm
+ . Let τn denote the

permutation of {1, 2, . . . ,m} given by

τn(i) = j if
{
nj > nk for k < j, k 6∈ {τn(1), . . . , τn(i− 1)}
nj ≥ nk for k > j, k 6∈ {τn(1), . . . , τn(i− 1)} .

In words, τn(1) is the subindex of the first component of n (from left to
right) which is greater or equal than the rest, τn(2) is the subindex of the first
component which is second largest, and so forth. For example, if n1 ≥ · · · ≥ nm

then τn is the identity.
Let τ denote a permutation of {1, 2, . . . ,m}. Set

Zm
+ (∗, τ) = {n ∈ Zm

+ (∗) : τn = τ} .

Let n ∈ Zm
+ and l ∈ {1, . . . ,m}. Define

nl := (n1, . . . , nl−1, nl + 1, nl+1, . . . , nm) .

Consider the (m+ 1)-sheeted Riemann surface

R =
m⋃

k=0

Rk,

formed by the consecutively “glued” sheets

R0 := C \ ∆̃1, Rk := C \ (∆̃k ∪ ∆̃k+1), k = 1, . . . ,m− 1, Rm = C \ ∆̃m,
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where the upper and lower banks of the slits of two neighboring sheets are
identified. Fix l ∈ {1, . . . ,m}. There exists a conformal representation G(l) of
R onto C such that

G(l)(z) = z +O(1) , z →∞(0), G(l)(z) = C/z +O(1/z2) , z →∞(l).

By G(l)
k we denote the branch of G(l) on Rk.

Theorem 1.1. Let S = N (σ1, . . . , σm) be a Nikishin system with supp(σk) =
∆̃k ∪ ek, k = 1, . . . ,m, where ∆̃k is a bounded interval of the real line, |σ′k| > 0
a.e. on ∆̃k, and ek is a set without accumulation points in R \ ∆̃k. Let Λ ⊂
Zm

+ (∗) be an infinite sequence of distinct multi-indices with the property that
max
n∈Λ

( max
k=1,...,m

mnk − |n|) < ∞. Let us assume that there exists l ∈ {1, . . . ,m}

and a fixed permutation τ of {1, . . . ,m} such that for all n ∈ Λ we have that
n,nl ∈ Zm

+ (∗, τ). Then,

lim
n∈Λ

Qnl
(z)

Qn(z)
= G

(τ−1(l))
0 (z), K ⊂ C \ supp(σ1) . (4)

When m = 1 this result reduces to Denisov’s version of Rakhmanov’s theo-
rem. The proof of Theorem 1.1 follows the guidelines employed in [1] but it is
technically more complicated because of the more general assumptions on the
measures and the sequence of multi-indices.

Let 1 = (1, . . . , 1). An immediate consequence of Theorem 1.1 is

Corollary 1.1. Let S = N (σ1, . . . , σm) be a Nikishin system with supp(σk) =
∆̃k ∪ ek, k = 1, . . . ,m, where ∆̃k is a bounded interval of the real line, |σ′k| >
0 a.e. on ∆̃k, and ek is a set without accumulation points in R \ ∆̃k. Let
Λ ⊂ Zm

+ (∗) be an infinite sequence of distinct multi-indices with the property
max
n∈Λ

( max
k=1,...,m

mnk − |n|) <∞. Then,

lim
n∈Λ

Qn+1(z)
Qn(z)

=
m∏

l=1

G
(l)
0 (z), K ⊂ C \ supp(σ1) . (5)

The paper is organized as follows. In Section 2 we introduce and study an
auxiliary system of second type functions. An interlacing property for the zeros
of the polynomials Qn and of the second type functions is proved in Section 3.
Using the interlacing property of zeros and results on ratio and relative asymp-
totic of polynomials orthogonal with respect to varying measures, in Section 4
a system of boundary value problems is derived which implies the existence of
limit in (4). Actually, a more general result is proved which also contains the
ratio asymptotic of the second type functions.

2 Functions of second type and orthogonality properties

Fix n = (n1, . . . , nm) ∈ Zm
+ (∗) and consider Qn the n-th multi-orthogonal

polynomial with respect to a Nikishin system S = N (Σ), Σ = (σ1, . . . , σm). For
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short, in the sequel we denote ∆k = Co(supp(σk)), k = 1, . . . ,m. Inductively,
we define functions of second type Ψn,k, k = 0, 1, . . . ,m, systems of measures
Σk = (σk

k+1, . . . , σ
k
m), k = 0, 1, . . . ,m − 1,Co(supp(σk

j )) ⊂ ∆j , which generate
Nikishin systems, and multi-indices nk ∈ Zm−k

+ (∗), k = 0, . . . ,m − 1. Take
Ψn,0 = Qn,n0 = n, and Σ0 = Σ.

Suppose that nk = (nk
k+1, . . . , n

k
m), Σk = (σk

k+1, . . . , σ
k
m) and Ψn,k have

already been defined, where 0 ≤ k ≤ m− 2. Let

nk+1 = (nk+1
k+2, . . . , n

k+1
m ) ∈ Zm−k−1

+ (∗)

be the multi-index obtained deleting from nk the first component nk
rk

which
verifies

nk
rk

= max{nk
j : k + 1 ≤ j ≤ m}.

The components of nk+1 and nk are related as follows:

nk
k+1 = nk+1

k+2, . . . , n
k
rk−1 = nk+1

rk
, nk

rk+1 = nk+1
rk+1, . . . , n

k
m = nk+1

m .

Denote

Ψn,k+1(z) =
∫

∆k+1

Ψn,k(x)
z − x

dsk
rk

(x) , (6)

where sk
rk

= 〈σk
k+1, . . . , σ

k
rk
〉 is the corresponding component of the Nikishin

system Sk = N (Σk) = (sk
k+1, . . . , s

k
m).

In order to define Σk+1 we introduce the following notation. Set

sk
i,j = 〈σk

i , . . . , σ
k
j 〉, k + 1 ≤ i ≤ j ≤ m,

where σk
i ∈ Σk. In page 390 of [9] it is proved that there exists a finite measure

τk
i,j with constant sign such that

Co(supp(τk
i,j)) ⊂ Co(supp(sk

i,j))

1
ŝk

i,j(z)
= lki,j(z) + τ̂k

i,j(z)

where lki,j is a certain polynomial of degree 1. That Co(supp(sk
i,j)) ⊂ ∆i easily

follows by induction. We wish to remark that the continuous part of supp(sk
i,j)

and supp(τk
i,j) coincide, but not their isolated parts. In fact, zeros of ŝk

i,j on
∆i (there is one such zero between two consecutive mass points of sk

i,j) become
poles of τ̂k

i,j (mass points of τk
i,j).

Suppose that rk = k + 1. In this case, we take

Σk+1 = (σk
k+2, . . . , σ

k
m) = (σk+1

k+2 , . . . , σ
k+1
m )

deleting the first measure of Σk. If rk ≥ k + 2, then Σk+1 is defined by

(τk
k+2,rk

, ŝk
k+2,rk

dτk
k+3,rk

, . . . , ŝk
rk−1,rk

dτk
rk,rk

, ŝk
rk,rk

dσk
rk+1, σ

k
rk+2, . . . , σ

k
m) ,
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where Co(supp(σk+1
j )) ⊂ ∆j , j = k+2, . . . ,m. Any two consecutive measures in

the system Σk+1 are supported on disjoint intervals; therefore, Σk+1 generates
a Nikishin system. To conclude we define

Ψn,m(z) =
∫

∆m

Ψn,m−1(x)
z − x

dsm−1
m (x) .

If n1 ≥ · · · ≥ nm, we have that nk = (nk+1, . . . , nm),Σk = (σk+1, . . . , σm)
and Ψn,k(z) =

∫
∆k

Ψn,k−1(x)
z−x dσk(x), k = 1, . . . ,m. Basically, this is the situation

considered in [1].
To fix ideas let us turn our attention to the cases m = 2 and m = 3. We

denote by C(f ;µ) the Cauchy transform of fdµ; that is,

C(f ;µ)(z) =
∫

f(x)
z − x

dµ(x) .

In the following tables, we omit the line corresponding to k = 0 because by
definition Σ0 = Σ, Ψn,0 = Qn and n0 = n.

Table 1: m=2

m = 2 k rk−1 Ψn,k Σk nk

n1 ≥ n2 1 1 C(Qn; σ1) (σ2) (n2)
n1 < n2 1 2 C(Qn; 〈σ1, σ2〉) (τ2) (n1)

Table 2: m = 3

m = 3 k rk−1 Ψn,k Σk nk

n1 ≥ n2 ≥ n3 1 1 C(Qn; σ1) (σ2, σ3) (n2, n3)
2 2 C(Ψn,1; σ2) (σ3) (n3)

n1 ≥ n3 > n2 1 1 C(Qn; σ1) (σ2, σ3) (n2, n3)
2 3 C(Ψn,1; 〈σ2, σ3〉) (τ3) (n2)

n2 > n1 ≥ n3 1 2 C(Qn; 〈σ1, σ2〉) (τ2, 〈σ3, σ2〉) (n1, n3)
2 2 C(Ψn,1; τ2), (〈σ3, σ2〉) (n3)

n2 ≥ n3 > n1 1 2 C(Qn; 〈σ1, σ2〉) (τ2, 〈σ3, σ2〉) (n1, n3)
2 3 C(Ψn,1; 〈τ2, σ3, σ2〉) (τ3,2) (n1)

n3 > n1 ≥ n2 1 3 C(Qn; 〈σ1, σ2, σ3〉) (τ2,3, 〈τ3, σ2, σ3〉) (n1, n2)
2 2 C(Ψn,1; τ2,3) (〈τ3, σ2, σ3〉) (n2)

In Theorem 2 of [6] it was proved that the functions Ψn,k verify the following
orthogonality relations. For each k = 0, 1, . . . ,m− 1,∫

∆k+1

xνΨn,k(x) dsk
i (x) = 0, ν = 0, 1, . . . , nk

i − 1, i = k + 1, . . . ,m , (7)

where sk
i = 〈σk

k+1, . . . , σ
k
i 〉.
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We wish to underline that since Z2
+(∗) = Z2

+, all multi-indices with two
components have associated functions of second type. However, for m = 3 the
case n1 < n2 < n3 has not been considered (see Table 2). The rest of this
section will be devoted to the construction of certain functions Ψn,k for this
case and to the proof of the orthogonality relations they satisfy. We use the
following auxiliary result.

Lemma 2.1. Let s3,2 = 〈σ3, σ2〉. Then∫
∆2

ŝ3,2(x)
σ̂3(x)

dτ2,3(x)
(z − x)

+ C1 =
σ̂2(z)
ŝ2,3(z)

, z ∈ C \ supp(σ2) , (8)

where C1 = σ2(∆2)/s2,3(∆2).

Proof. We employ two useful relations. The first one is

σ̂2(ζ) σ̂3(ζ) = ŝ2,3(ζ) + ŝ3,2(ζ), ζ ∈ C \ (supp(σ2) ∪ supp(σ3)) . (9)

The proof is straightforward and may be found in Lemma 4 of [5]. The second
one was mentioned above and states that there exists a polynomial l2,3 of degree
1 and a measure τ2,3 such that

1
ŝ2,3(z)

= τ̂2,3(z) + l2,3(z), z ∈ C \ supp(σ2) . (10)

Notice that
σ̂2(z)
ŝ2,3(z)

− C1 = O
(

1
z

)
∈ H(C \∆2)

Let Γ be a positively oriented smooth closed Jordan curve such that ∆2 and
{z}∪∆3 lie on the bounded and unbounded connected components, respectively,
of C \ Γ. By Cauchy’s integral formula, we have

σ̂2(z)
ŝ2,3(z)

− C1 =
1

2πi

∫
Γ

(
σ̂2(ζ)
ŝ2,3(ζ)

− C1

)
dζ

z − ζ
=

1
2πi

∫
Γ

σ̂2(ζ)
ŝ2,3(ζ)

dζ

z − ζ
.

Multiply and divide the expression under the last integral sign by σ̂3 and use
(9) to obtain

σ̂2(z)
ŝ2,3(z)

− C1 =
1

2πi

∫
Γ

ŝ2,3(ζ) + ŝ3,2(ζ)
σ̂3(ζ)ŝ2,3(ζ)

dζ

z − ζ
=

1
2πi

∫
Γ

ŝ3,2(ζ)
σ̂3(ζ)ŝ2,3(ζ)

dζ

z − ζ
.

Taking account of (10) it follows that

σ̂2(z)
ŝ2,3(z)

− C1 =
1

2πi

∫
Γ

ŝ3,2(ζ)
σ̂3(ζ)

(τ̂2,3(ζ) + l2,3(ζ))dζ
z − ζ

=
1

2πi

∫
Γ

ŝ3,2(ζ)
σ̂3(ζ)

τ̂2,3(ζ)dζ
z − ζ

.

Now, substitute τ̂2,3(ζ) by its integral expression and use the Fubini and Cauchy
theorems to obtain

σ̂2(z)
ŝ2,3(z)

− C1 =
∫

1
2πi

∫
Γ

ŝ3,2(ζ)
σ̂3(ζ)(z − ζ)

dζ

ζ − x
dτ2,3(x) =

∫
ŝ3,2(x)
σ̂3(x)

dτ2,3(x)
z − x

,

which is what we set out to prove.
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We are ready to define the functions of second type and to prove the orthog-
onality properties they verify for multi-indices with 3 components not in Z3

+(∗)
(with n1 < n2 < n3).

Lemma 2.2. Fix n = (n1, n2, n3) ∈ Z3
+ where n1 < n2 < n3 and consider Qn

the n-th orthogonal polynomial associated to a Nikishin system S = (s1, s2, s3) =
N (σ1, σ2, σ3) . Set Ψn,0 = Qn,

Ψn,1(z) =
∫

∆1

Qn(x)
z − x

d s1,3(x) , (11)

Ψn,2(z) =
∫

∆2

Ψn,1(x)
z − x

ŝ3,2(x)
σ̂3(x)

d τ2,3(x) . (12)

Then ∫
∆1

tν Ψn,0(t) d s1,j(t) = 0, 0 ≤ ν ≤ nj − 1, 1 ≤ j ≤ 3 (13)∫
∆2

tν Ψn,1(t) d τ2,3(t) = 0, 0 ≤ ν ≤ n1 − 1 (14)∫
∆2

tν Ψn,1(t)
ŝ3,2(t)
σ̂3(t)

d τ2,3(t) = 0, 0 ≤ ν ≤ n2 − 1 (15)∫
∆3

tν Ψn,2(t)
ŝ2,3(t)
σ̂2(t)

d τ3,2(t) = 0, 0 ≤ ν ≤ n1 − 1. (16)

Remark 2.1. The measure ŝ3,2dτ2,3/σ̂3 supported on ∆2 cannot be written in
the form 〈τ2,3, µ〉 for some measure µ supported on ∆3, so there is no Σ1 and
S1 in this case.

Proof. The relations (13) follow directly from the definition of Qn. Let us justify
(14) and (15).

For 0 ≤ ν ≤ n1 − 1(≤ n3 − 3), applying Fubini’s theorem,∫
∆2

tν Ψn,1(t) dτ2,3(t) =
∫

∆2

tν
∫

∆1

Qn(x)
t− x

ds1,3(x) dτ2,3(t)

=
∫

∆1

Qn(x)
∫

∆2

tν − xν + xν

t− x
d τ2,3(t) d s1,3(x)

=
∫

∆1

Qn(x) pν(x) d s1,3(x)−
∫

∆1

xνQn(x) τ̂2,3(x) d s1,3(x) ,

where pν(x) =
∫
∆2

tν−xν

t−x dτ2,3(t) is a polynomial of degree at most n1−2. Since
ds1,3(x) = ŝ2,3(x)dσ1(x) and τ̂2,3(x) ŝ2,3(x) = 1 − l2,3(x) ŝ2,3(x), the measure
τ̂2,3(x) ds1,3(x) is equal to d σ1(x) − l2,3(x) ds1,3(x). Therefore, applying (13)
both integrals vanish and we obtain (14). Actually, we only needed that n1 ≤
n3 − 1.
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If 0 ≤ ν ≤ n2 − 1(≤ n3 − 2),∫
∆2

tν Ψn,1(t)
ŝ3,2(t)
σ̂3(t)

dτ2,3(t) =
∫

∆2

tν
ŝ3,2(t)
σ̂3(t)

∫
∆1

Qn(x)
t− x

ds1,3(x) dτ2,3(t)

=
∫

∆1

Qn(x)
∫

∆2

tν − xν + xν

t− x

ŝ3,2(t)
σ̂3(t)

dτ2,3(t) ds1,3(x)

=
∫

∆1

Qn(x)xν

∫
∆2

ŝ3,2(t)
σ̂3(t)

dτ2,3(t)
t− x

ds1,3(x)

By Lemma 2.1, the last expression is equal to

C1

∫
∆1

Qn(x)xν ds1,3(x)−
∫

∆1

Qn(x)xν σ̂2(x)
ŝ2,3(x)

ds1,3(x)

= −
∫

∆1

Qn(x)xν ds1,2(x) = 0

taking into account that ds1,3(x) = ŝ2,3(x) dσ1(x) and (13). This proves (15).
It would have been sufficient to require n2 ≤ n3.

Let us prove (16). Take 0 ≤ ν ≤ n1 − 1, we have∫
∆3

tν Ψn,2(t)
ŝ2,3(t)
σ̂2(t)

dτ3,2(t) =
∫

∆3

tν
∫

∆2

Ψn,1(x)
t− x

ŝ3,2(x)
σ̂3(x)

dτ2,3(x)
ŝ2,3(t)
σ̂2(t)

dτ3,2(t)

=
∫

∆2

Ψn,1(x)
ŝ3,2(x)
σ̂3(x)

∫
∆3

tν − xν + xν

t− x

ŝ2,3(t)
σ̂2(t)

dτ3,2(t) dτ2,3(x)

=
∫

∆2

pν(x) Ψn,1(x)
ŝ3,2(x)
σ̂3(x)

dτ2,3(x)

+
∫

∆2

Ψn,1(x)xν ŝ3,2(x)
σ̂3(x)

∫
∆3

ŝ2,3(t)
σ̂2(t)

dτ3,2(t)
t− x

dτ2,3(x)

where pν(x) is the polynomial defined by∫
∆3

tν − xν

t− x

ŝ2,3(t)
σ̂2(t)

dτ3,2(t),

of degree ≤ n1 − 2. Applying (15), the first integral after the last equality
equals zero since n1 < n2 (though n1 ≤ n2 + 1 would have been sufficient). If
we interchange the sub-indices 2 and 3 in Lemma 2.1, we obtain∫

∆3

ŝ2,3(t)
σ̂2(t)

dτ3,2(t)
t− x

= − σ̂3(x)
ŝ3,2(t)

+ C2 , (17)

where C2 = σ3(∆3)/s3,2(∆3). Therefore, using (17), (15) and (14), it follows
that ∫

∆2

Ψn,1(x)xν ŝ3,2(t)
σ̂3(x)

∫
∆3

ŝ2,3(t)
σ̂2(t)

dτ3,2(t)
t− x

dτ2,3(x)

=
∫

∆2

Ψn,1(x)xν ŝ3,2(t)
σ̂3(x)

(
C2 −

σ̂3(x)
ŝ3,2(t)

)
dτ2,3(x) = 0 ,

since n1 ≤ n2. This completes the proof.
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3 Interlacing property of zeros and varying measures

As we have pointed out, from the definition Zm
+ (∗) = Zm

+ ,m = 1, 2. We have
introduced adequate functions of second type also whenm = 3 and n1 < n2 < n3

which were the only multi-indices initially not in Z3
+(∗). To unify notation, in

the rest of the paper we will consider that Z3
+(∗) = Z3

+.
In this section, we show that for n ∈ Zm

+ (∗),m ∈ N, the functions Ψn,k, k =
0, . . . ,m−1, have exactly |nk| simple zeros in the interior of ∆k+1 and no other
zeros on C\∆k. The zeros of “consecutive” Ψn,k satisfy an interlacing property.
These properties are proved in Lemma 3.2 below which complements Theorem
2.1 (see also Lemma 2.1) in [1] and substantially enlarges the class of multi-
indices for which it is applicable. The concept of AT system is crucial in its
proof.

Definition 3.1. Let (ω1, ω2, . . . , ωm) be a collection of functions which are
analytic on a neighborhood of an interval ∆. We say that it forms an AT-
system for the multi-index n = (n1, n2, . . . , nm) on ∆ if whenever one chooses
polynomials Pn1 , . . . , Pnm

with deg(Pnj
) ≤ nj − 1, not all identically equal to

zero, the function

Pn1(x)w1(x) + · · ·+ Pnm
(x)wm(x)

has at most |n| − 1 zeros on ∆, counting multiplicities. (ω1, . . . , ωm) is an
AT-system on ∆ if it is an AT-system on that interval for all n ∈ Zm

+ .

Theorem 1 of [5] (for m = 3) and Theorem 1 of [6] prove the following.

Lemma 3.1. Let (s1, . . . , sm−1) = N (σ1, . . . , σm−1),m ≥ 2, be a Nikishin sys-
tem of m − 1 measures. Then (1, ŝ1, . . . , ŝm−1) forms an AT system on any
interval ∆ disjoint from ∆1 with respect to any n ∈ Zm

+ (∗).

Recall that nl denotes the multi-index obtained adding 1 to the lth compo-
nent of n.

Lemma 3.2. Let S = N (σ1, . . . , σm) be a Nikishin system. Let n ∈ Zm
+ (∗),m ∈

N, then for each k = 0, . . . ,m − 1, the function Ψn,k has exactly |nk| simple
zeros in the interior of ∆k+1 and no other zeros on C \ ∆k. Let I denote the
closure of any one of the connected components of ∆k+1 \supp(σk

k+1), then Ψn,k

has at most one simple zero on I. Assume that l ∈ {1, 2, . . . ,m} is such that
n,nl ∈ Zm

+ (∗, τ) for a fixed permutation τ . Then, for each k ∈ {0, . . . ,m − 1}
between two consecutive zeros of Ψnl,k lies exactly one zero of Ψn,k and viceversa
(that is, the zeros of Ψnl,k and Ψn,k on ∆k+1 interlace).

Proof. Assume that n,nl ∈ Zm
+ (∗, τ). We claim that for any real constants

A,B, |A|+ |B| > 0, and k ∈ {0, 1, . . . ,m− 1}, the function

Gn,k(x) = AΨn,k(x) +BΨnl,k(x)

has at most |nk| + 1 zeros in C \∆k (counting multiplicities) and at least |nk|
simple zeros in the interior of ∆k+1 (∆0 = ∅). We prove this by induction on k.
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Let k = 0. The polynomial Gn,0 = AΨn,0 + BΨnl,0 is not identically equal
to zero, and |n| ≤ deg(Gn,0) ≤ |n| + 1. Therefore, Gn,0 has at most |n| + 1
zeros in C. Let hj , j = 1, . . . ,m, denote polynomials, where deg(hj) ≤ nj − 1.
According to (7), ∫

∆1

Gn,0(x)
m∑

j=1

hj(x)ŝ2,j(x)dσ1(x) = 0 (18)

(ŝ2,1 ≡ 1).
In the sequel, we call change knot a point on the real line where a function

changes its sign. Notice that for each k ∈ {0, . . . ,m−1}, Gn,k is a real function
when restricted to the real line. Assume that Gn,0 has N ≤ |n| − 1 change
knots in the interior of ∆1. We can find polynomials hj , j = 1, . . . ,m,deg(hj) ≤
nj − 1, such that

∑m
j=1 hj ŝ2,j has a simple zero at each change knot of Gn,0

on ∆1 and a zero of order |n| − 1 −N at one of the extreme points of ∆1. By
Lemma 3.1, (1, ŝ2,2, . . . , ŝ2,m) forms an AT system with respect to n ∈ Zm

+ (∗);
therefore,

∑m
j=1 hj ŝ2,j can have no other zero on ∆1, but this contradicts (18)

since Gn,0

∑m
j=1 hj ŝ2,j would have a constant sign on ∆1 (and supp(σ1) contains

infinitely many points). Therefore, Gn,0 has at least |n| change knots in the
interior of ∆1. Consequently, all the zeros of Gn,0 are simple and lie on R as
claimed.

Assume that for each k ∈ {0, . . . , κ − 1}, 1 ≤ κ ≤ m − 1, the claim is
satisfied whereas it is violated when k = κ. Let hj denote polynomials such
that deg(hj) ≤ nκ

j − 1, κ + 1 ≤ j ≤ m. Using (7) or (13)-(16) according to the
situation (to simplify the writing we use the notation of (7) but the arguments
are the same when m = 3 and n1 < n2 < n3; in particular, in this case,
ds0r0

= ds1,3, ds
1
r1

= ŝ3,2dτ2,3/σ̂3 and ds2r2
= ŝ2,3dτ3,2/σ̂2)∫

∆κ+1

Gn,κ(x)
m∑

j=κ+1

hj(x)ŝκ
κ+2,j(x)dσ

κ
κ+1(x) = 0 (19)

(ŝκ
κ+2,κ+1 ≡ 1). Arguing as above, since (1, ŝκ

κ+2,κ+2, . . . , ŝ
κ
κ+2,m) forms an AT

system with respect to nκ ∈ Zm−κ
+ (∗), we conclude that Gn,κ has at least |nκ|

change knots in the interior of ∆κ+1.
Let us suppose that Gn,κ has at least |nκ|+2 zeros in C\∆κ and let Wn,κ be

the monic polynomial whose zeros are those points (counting multiplicities). The
complex zeros of Gn,κ (if any) must appear in conjugate pairs since Gn,κ(z) =
Gn,κ(z); therefore, the coefficients of Wn,κ are real numbers. On the other hand,
from (7) ((13) or (15) when necessary)

0 =
∫

∆κ

Gn,κ−1(x)
z

nκ−1
rκ−1 − x

nκ−1
rκ−1

z − x
dsκ−1

rκ−1
(x) .

Therefore,

Gn,κ(z) =
1

znκ−1
rκ−1

∫
∆κ

x
nκ−1

rκ−1Gn,κ−1(x)
z − x

dsκ−1
rκ−1

(x) = O
(

1

znκ−1
rκ−1+1

)
, z →∞ ,
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and taking into consideration the degree of Wn,κ , we obtain

zjGn,κ

Wn,κ
= O

(
1
z2

)
∈ H(C \∆κ) , j = 0, . . . , |nκ−1|+ 1 .

Let Γ be a closed Jordan curve which surrounds ∆κ and such that all the
zeros of Wn,κ lie in the exterior of Γ. Using Cauchy’s theorem, the integral
expression for Gn,κ, Fubini’s theorem, and Cauchy’s integral formula, for each
j = 0, . . . , |nκ−1|+ 1, we have

0 =
1

2πi

∫
Γ

zjGn,κ(z)
Wn,κ(z)

dz =
1

2πi

∫
Γ

zj

Wn,κ(z)

∫
∆κ

Gn,κ−1(x)
z − x

dsκ−1
rκ−1

(x)dz =

∫
∆κ

xjGn,κ−1(x)
Wn,κ(x)

dsκ−1
rκ−1

(x) ,

which implies that Gn,κ−1 has at least |nκ−1| + 2 change knots in the interior
of ∆κ. This contradicts our induction hypothesis since this function can have
at most |nκ−1| + 1 zeros in C \∆κ−1 ⊃ ∆κ. Hence Gn,κ has at most |nκ| + 1
zeros in C \∆κ as claimed.

Taking B = 0 the assumption nl ∈ Zm
+ (∗, τ) is not required, and the argu-

ments above lead to the proof that Ψn,k has at most |nk| zeros on C \∆k since
Qn = Ψn,0 has at most |n| zeros on C. Consequently, the zeros of Ψn,k in C\∆k

are exactly the |nk| simple ones it has in the interior of ∆k+1.
Let I be the closure of a connected component of ∆k+1 \ supp(σk

k+1) and let
us assume that I contains two consecutive simple zeros x1, x2 of Ψn,k. Taking
B = 0 and A = 1, we can rewrite (19) as follows∫

∆k+1

Ψn,k(x)
(x− x1)(x− x2)

m∑
j=k+1

hj(x)ŝk
k+2,j(x)(x−x1)(x−x2)dσk

k+1(x) = 0 , (20)

where deg(hj) ≤ nk
j −1, j = k+1, . . . ,m. The measure (x−x1)(x−x2)dσk

k+1(x)
has a constant sign on ∆k+1 and Ψn,k(x)/(x− x1)(x− x2) has |nk| − 2 change
knots on ∆k+1. Using again Lemma 3.1, we can construct appropriate polyno-
mials hj to contradict (20). Therefore, I contains at most one zero of Ψn,k.

Fix y ∈ R \∆k and k ∈ {0, 1, . . . ,m − 1}. It cannot occur that Ψnl,k(y) =
Ψn,k(y) = 0. If this was so, y would have to be a simple zero of Ψnl,k and Ψn,k.
Therefore, (Ψnl,k)′(y) 6= 0 6= (Ψn,k)′(y). Taking A = 1, B = −Ψ′

n,k(y)/Ψ′
nl,k

(y),
we find that

Gn,k(y) = (AΨn,k +BΨnl,k)(y) = (Gn,k)′(y) = 0 ,

which means that Gn,k has at least a double zero at y against what we proved
before.

Now, taking A = Ψnl,k(y), B = −Ψn,k(y), we have that |A|+ |B| > 0. Since

Ψnl,k(y)Ψn,k(y)−Ψn,k(y)Ψnl,k(y) = 0 ,
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and the zeros on R \∆k of Ψnl,k(y)Ψn,k(x) − Ψn,k(y)Ψnl,k(x) with respect to
x are simple, using again what we proved above, it follows that

Ψnl,k(y)Ψ′
n,k(y)−Ψn,k(y)Ψ′

nl,k
(y) 6= 0 .

But Ψnl,k(y)Ψ′
n,k(y)−Ψn,k(y)Ψ′

nl,k
(y) is a continuous real function on R \∆k

so it must have constant sign on each one of the intervals forming R \ ∆k; in
particular, its sign on ∆k+1 is constant.

We know that Ψnl,k has at least |nk| simple zeros in the interior of ∆k+1.
Evaluating Ψnl,k(y)Ψ′

n,k(y)−Ψn,k(y)Ψ′
nl,k

(y) at two consecutive zeros of Ψnl,k,
since the sign of Ψ′

nl,k
at these two points changes the sign of Ψn,k must also

change. Using Bolzano’s theorem we find that there must be an intermediate
zero of Ψn,k. Analogously, one proves that between two consecutive zeros of
Ψn,k on ∆k+1 there is one of Ψnl,k. Thus, the interlacing property has been
proved.

Let Qn,k+1, k = 0, . . . ,m− 1, denote the monic polynomial whose zeros are
equal to those of Ψn,k on ∆k+1. From (7) ((13), (15), or (16) when necessary)

0 =
∫

∆k+1

Ψn,k(x)
znk

rk − xnk
rk

z − x
dsk

rk
(x)

(Recall that when m = 3 and n1 < n2 < n3, we take ds0r0
= ds1,3, ds

1
r1

=
ŝ3,2dτ2,3/σ̂3 and ds2r2

= ŝ2,3dτ3,2/σ̂2.) Therefore,

Ψn,k+1(z) =
1

znk
rk

∫
∆k+1

xnk
rk Ψn,k(x)
z − x

dsk
rk

(x) = O
(

1

znk
rk

+1

)
, z →∞ ,

and taking into consideration the degree of Qn,k+2 (by definition Qn,m+1 ≡ 1),
we obtain

zjΨn,k+1

Qn,k+2
= O

(
1
z2

)
∈ H(C \∆k+1) , j = 0, . . . , |nk| − 1 .

Let Γ be a closed Jordan curve which surrounds ∆k+1 such that all the
zeros of Qn,k+2 lie in the exterior of Γ. Using Cauchy’s theorem, the integral
expression for Ψn,k+1, Fubini’s theorem, and Cauchy’s integral formula, for each
j = 0, . . . , |nk| − 1 (we also define Qn,0 ≡ 1), we have

0 =
1

2πi

∫
Γ

zjΨn,k+1(z)
Qn,k+2(z)

dz =
1

2πi

∫
Γ

zj

Qn,k+2(z)

∫
∆k+1

Ψn,k(x)
z − x

dsk
rk

(x)dz =

∫
∆k+1

xjQn,k+1(x)
Hn,k+1(x)dsk

rk
(x)

Qn,k(x)Qn,k+2(x)
, k = 0, . . . ,m− 1 , (21)

where
Hn,k+1 =

Qn,kΨn,k

Qn,k+1
, k = 0, . . . ,m ,

13



has constant sign on ∆k+1.
This last relation implies that∫

∆k+1

(Q(z)−Q(x))
z − x

Qn,k+1(x)
Hn,k+1(x)dsk

rk
(x)

Qn,k(x)Qn,k+2(x)
= 0 ,

where Q is any polynomial of degree ≤ |nk|. If we use this formula with Q =
Qn,k+1 and Q = Qn,k+2, respectively, we obtain∫

∆k+1

Qn,k+1(x)
z − x

Hn,k+1(x)dsk
rk

(x)
Qn,k(x)Qn,k+2(x)

=

1
Qn,k+1(z)

∫
∆k+1

Q2
n,k+1(x)
z − x

Hn,k+1(x)dsk
rk

(x)
Qn,k(x)Qn,k+2(x)

and ∫
∆k+1

Qn,k+1(x)
z − x

Hn,k+1(x)dsk
rk

(x)
Qn,k(x)Qn,k+2(x)

=

1
Qn,k+2(z)

∫
∆k+1

Ψn,k(x)dsk
rk

(x)
z − x

.

Equating these two relations and using the definition of Ψn,k+1 and Hn,k+2, we
obtain

Hn,k+2(z) =
∫

∆k+1

Q2
n,k+1(x)
z − x

Hn,k+1(x)dsk
rk

(x)
Qn,k(x)Qn,k+2(x)

, k = 0, . . . ,m− 1 . (22)

Notice that from the definition Hn,1 ≡ 1.
For each k = 1, . . . ,m, set

K−2
n,k =

∫
∆k

Q2
n,k(x)

∣∣∣∣Qn,k−1(x)Ψn,k−1(x)
Qn,k(x)

∣∣∣∣ d|sk−1
rk−1

|(x)
|Qn,k−1(x)Qn,k+1(x)|

, (23)

where |s| denotes the total variation of the measures s. Take

Kn,0 = 1 , κn,k =
Kn,k

Kn,k−1
, k = 1, . . . ,m .

Define
qn,k = κn,kQn,k , hn,k = K2

n,k−1Hn,k , (24)

and

dρn,k(x) =
hn,k(x)dsk−1

rk−1
(x)

Qn,k−1(x)Qn,k+1(x)
. (25)

Notice that the measure ρn,k has constant sign on ∆k. Let εn,k be the sign of
ρn,k. From (21) and the notation introduced above, we obtain∫

∆k

xνqn,k(x)d|ρn,k|(x) = 0, ν = 0, . . . , |nk−1| − 1, k = 1, . . . ,m , (26)
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and qn,k is orthonormal with respect to the varying measure |ρn,k|. On the other
hand, using (22) it follows that

hn,k+1(z) = εn,k

∫
∆k

q2n,k(x)
z − x

d|ρn,k|(x) , k = 1, . . . ,m . (27)

Lemma 3.3. Let S = N (σ1, . . . , σm) be a Nikishin system such that supp(σk) =
∆̃k ∪ ek, k = 1, . . . ,m, where ∆̃k is a bounded interval of the real line, |σ′k| > 0
a.e. on ∆̃k, and ek is a set without accumulation points in R \ ∆̃k. Let Λ ⊂
Zm

+ (∗) be an infinite sequence of distinct multi-indices with the property that
max
n∈Λ

( max
k=1,...,m

mnk − |n|) <∞. For any continuous function f on supp(σk−1
k )

lim
n∈Λ

∫
∆k

f(x)q2n,k(x)d|ρn,k|(x) =
1
π

∫
e∆k

f(x)
dx√

(bk − x)(x− ak)
, (28)

where ∆̃k = [ak, bk]. In particular,

lim
n∈Λ

εn,khn,k+1(z) =
1√

(z − bk)(z − ak)
, K ⊂ C \ supp(σk−1

k ) , (29)

where
√

(z − bk)(z − ak) > 0 if z > 0. Consequently, for k = 1, . . . ,m, each
point of supp(σk−1

k ) \ ∆̃k, is a limit of zeros of {Qn,k},n ∈ Λ.

Proof. We will proof this by induction on k. For k = 1, using Corollary 3 in [2],
it follows that

lim
n∈Λ

∫
∆1

f(x)q2n,1(x)
d|s0r0

|(x)
|Qn,2(x)|

=
1
π

∫
e∆1

f(x)
dx√

(b1 − x)(x− a1)
,

where f is continuous on supp(σ1). Take f(x) = (z − x)−1 where z ∈ C \
supp(σ1). According to (27) and the previous limit one obtains that

lim
n∈Λ

εn,1hn,2(z) =
1√

(z − b1)(z − a1)
=: h2(z) ,

pointwise on C \ supp(σ1). Since∣∣∣∣∣
∫

∆1

q2n,1(x)
z − x

d|s0r0
|(x)

|Qn,2(x)|

∣∣∣∣∣ ≤ 1
d(K, supp(σ1))

, z ∈ K ⊂ C \ supp(σ1) ,

where d(K, supp(σ1)) denotes the distance between the two compact sets, the
sequence {hn,2},n ∈ Λ, is uniformly bounded on compact subsets of C\supp(σ1)
and (29) follows for k = 1.

Let ζ ∈ supp(σ1) \ ∆̃1. Take r > 0 sufficiently small so that the circle
Cr = {z : |z − ζ| = r} surrounds no other point of supp(σ1) \ ∆̃1 and contains
no zero of qn,1,n ∈ Λ. From (29) for k = 1

lim
n∈Λ

1
2πi

∫
Cr

εn,1h
′
n,2(z)

εn,1hn,2(z)
dz =

1
2πi

∫
Cr

h′2(z)
h2(z)

dz = 0 .
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From the definition, Ψn,1,n ∈ Λ, has either a simple pole at ζ or Qn,1 has a
zero at ζ. In the second case there is nothing to prove. Let us restrict our
attention to those n ∈ Λ such that Ψn,1,n ∈ Λ, has a simple pole at ζ. Then,
hn,2 = K2

n,1Qn,1Ψn,1/Qn,2 also has a simple pole at ζ. Using the argument
principle, it follows that for all sufficiently large |n|,n ∈ Λ, Qn,1 must have a
simple zero inside Cr. The parameter r can be taken arbitrarily small; therefore,
the last statement of the lemma readily follows and the basis of induction is
fulfilled.

Let us assume that the lemma is satisfied for k ∈ {1, . . . , κ− 1}, 1 ≤ κ ≤ m,
and let us prove that it is also true for κ. From (29) applied to κ− 1, we have
that

lim
n∈Λ

|hn,κ(x)| = 1√
|(x− bκ−1)(x− aκ−1)|

,

uniformly on ∆κ ⊂ C \ supp(σκ−2
κ−1). It follows that {|hn,κ|d|sκ−1

rκ−1
|},n ∈ Λ,

is a sequence of Denisov type measures according to Definition 3 in [2] and
({|hn,κ|d|sκ−1

rκ−1
|}, {|Qn,κ−1Qn,κ+1|}, l),n ∈ Λ, is strongly admissible as in Def-

inition 2 of [2] for each l ∈ Z (see paragraph just after both definitions in the
referred paper). Therefore, we can apply Corollary 3 in [2] of which (28) is a
particular case. In the proof of Corollary 3 of [2] (see also Theorem 9 in [3]) it is
required that deg(Qn,k−1Qn,k+1)− 2 deg(Qn,k) ≤ C where C ≥ 0 is a constant.
For k = 1 this is trivially true (with C = 0). Since we apply an induction
procedure on k, in order that this requirement be fulfilled for all k ∈ {1, . . . ,m}
we impose that max

n∈Λ
( max
k=1,...,m

mnk − |n|) < ∞. From (28), (29) and the rest of

the statements of the lemma immediately follow just as in the case when k = 1.
With this we conclude the proof.

Remark 3.1. The last statement of Lemma 3.3 concerning the convergence of
the zeros of Qn,1 outside ∆̃1 to the mass points of σ1 on supp(σ1) \ ∆̃1 can be
proved without the assumption that |σ′k| > 0 a.e. on ∆̃k, k = 1, . . . ,m. This is
an easy consequence of Theorem 1 in [7]. From the proof of Lemma 3.3 it also
follows that if we only have |σ′k| > 0 a.e. on ∆̃k, k = 1, . . . ,m′,m′ ≤ m, then
(28)-(29) are satisfied for k = 1, . . . ,m′ and the statement concerning the zeros
holds for k = 1, . . . ,m′ + 1.

Lemma 3.4. Let S = N (σ1, . . . , σm) be a Nikishin system such that supp(σk) =
∆̃k ∪ ek, k = 1, . . . ,m, where ∆̃k is a bounded interval of the real line, |σ′k| > 0
a.e. on ∆̃k, and ek is a set without accumulation points in R \ ∆̃k. Let Λ ⊂
Zm

+ (∗) be an infinite sequence of distinct multi-indices with the property that
max
n∈Λ

( max
k=1,...,m

mnk − |n|) < ∞. Let us assume that there exists l ∈ {1, . . . ,m}

and a fixed permutation τ of {1, . . . ,m} such that for all n ∈ Λ we have that
n,nl ∈ Zm

+ (∗, τ). Then, for each k = 1, . . . ,m, and each compact set K ⊂
C \ supp(σk−1

k ) there exist positive constants Ck,1(K), Ck,2(K) such that

Ck,1(K) ≤ inf
z∈K

∣∣∣∣Qnl,k(z)
Qn,k(z)

∣∣∣∣ ≤ sup
z∈K

∣∣∣∣Qnl,k(z)
Qn,k(z)

∣∣∣∣ ≤ Ck,2(K),
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for all sufficiently large |n|,n ∈ Λ.

Proof. The uniform bound from above and below on each fixed compact subset
K ⊂ C \∆k (for all n ∈ Λ) is a direct consequence of the interlacing property of
the zeros of Qnl,k and Qn,k. In fact, comparing distances to z ∈ K of consecutive
interlacing zeros, it is easy to verify that

d1 ≤ inf
z∈K

∣∣∣∣Qnl,k(z)
Qn,k(z)

∣∣∣∣ ≤ sup
z∈K

∣∣∣∣Qnl,k(z)
Qn,k(z)

∣∣∣∣ ≤ d2
2

d1
,

where d2 denotes the diameter of K ∪∆k and d1 denotes the distance between
K and ∆k. It is not needed that |σ′k| > 0 or max

n∈Λ
( max
k=1,...,m

mnk − |n|) <∞.

These restrictions come in so as to guarantee that the zeros of the polyno-
mials Qnl,k and Qn,k lying in ∆k \ supp(σk−1

k ) converge to the mass points as
Lemma 3.3 asserts in this case. Then, we can allow K ⊂ C \ supp(σk−1

k ). Let K
be such. Notice that K can intersect at most a finite number I0, . . . , IM (I0 = ∅)
of the open intervals forming ∆k \ supp(σk−1

k ). The polynomials Qnl,k and
Qn,k can have at most one zero in each of those intervals. Consequently, for
all |n|,n ∈ Λ, sufficiently large, the zeros of Qnl,k and Qn,k lie at a positive
distance ε from K. Now, it is easy to show that

d̃1

(
ε

d2

)M

≤ inf
z∈K

∣∣∣∣Qnl,k(z)
Qn,k(z)

∣∣∣∣ ≤ sup
z∈K

∣∣∣∣Qnl,k(z)
Qn,k(z)

∣∣∣∣ ≤ d̃2
2

d̃1

(
d2

ε

)M

,

where d̃2 denotes the diameter of K∪ (∆k \∪M
j=0Ij) and d̃1 the distance between

K and ∆k \ ∪M
j=0Ij .

4 Proof of main results

In this final section, S = N (σ1, . . . , σm) is a Nikishin system with supp(σk) =
∆̃k ∪ ek, k = 1, . . . ,m, where ∆̃k is a bounded interval of the real line, |σ′k| > 0
a.e. on ∆̃k, and ek is a set without accumulation points in R \ ∆̃k. Let Λ ⊂
Zm

+ (∗) be a sequence of distinct multi-indices. Let us assume that there exists
l ∈ {1, . . . ,m} and a fixed permutation τ of {1, . . . ,m} such that for all n ∈ Λ
we have that n,nl ∈ Zm

+ (∗, τ). From Lemma 3.4 we know that the sequences

{Qnl,k/Qn,k}n∈Λ , k = 1, . . . ,m,

are uniformly bounded on each compact subset of C \ supp(σk−1
k ) for all suf-

ficiently large |n|. By Montel’s theorem, there exists a subsequence of multi-
indices Λ′ ⊂ Λ and a collection of functions F̃ l

k, holomorphic in C \ supp(σk−1
k ),

respectively, such that

lim
n∈Λ′

Qnl,k(z)
Qn,k(z)

= F̃
(l)
k (z), K ⊂ C \ supp(σk−1

k ), k = 1, . . . ,m. (30)
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In principle, the functions F̃ (l)
k may depend on Λ′. We shall see that this

is not the case and, therefore, the limit in (30) holds for n ∈ Λ. First, let us
obtain some general information on the functions F̃ (l)

k .
The points in supp(σk−1

k ) \ ∆̃k are isolated singularities of F̃ (l)
k . Let ζ ∈

supp(σk−1
k ) \ ∆̃k. By Lemma 3.3 each such point is a limit of zeros of Qn,k and

Qnl,k as |n| → ∞,n ∈ Λ, and in a sufficiently small neighborhood of them, for
each n ∈ Λ, there can be at most one such zero of these polynomials (so there is
exactly one, for all sufficiently large |n|). Let limn∈Λ ζn = ζ where Qn,k(ζn) = 0.
From (30)

lim
n∈Λ′

(z − ζn)Qnl,k(z)
Qn,k(z)

= (z − ζ)F̃ (l)
k (z), K ⊂ (C \ supp(σk−1

k )) ∪ {ζ} ,

and (z − ζ)F̃ (l)
k (z) is analytic in a neighborhood of ζ. Hence ζ is not an es-

sential singularity of F̃ (l)
k . Taking into consideration that Qnl,k,n ∈ Λ also

has a sequence of zeros converging to ζ, from the argument principle it follows
that ζ is a removable singularity of F̃ (l)

k which is not a zero. By Lemma 3.4
we also know that the sequence of functions |Qnl,k/Qn,k|,n ∈ Λ, is uniformly
bounded from below by a positive constant for all sufficiently large |n|. There-
fore, in C \ supp(σk−1

k ) the function F̃
(l)
k is also different from zero. Accord-

ing to the definition of Qn,k and Qnl,k and Lemma 3.2, for k = 1, . . . , τ−1(l),
we have that degQnl,k = |nk−1

l | = |nk−1| + 1 = degQn,k + 1 whereas, for
k = τ−1(l) + 1, . . . ,m, we obtain that degQnl,k = |nk−1

l | = |nk−1| = degQn,k.
Consequently, for k = 1, . . . , τ−1(l), the function F̃

(l)
k has a simple pole at in-

finity and (F̃ (l)
k )′(∞) = 1, whereas, for k = τ−1(l) + 1, . . . ,m, it is analytic at

infinity and F̃ (l)
k (∞) = 1.

Now let us prove that the functions F̃ (l)
k satisfy a system of boundary value

problems.

Lemma 4.1. Let S = N (σ1, . . . , σm) be a Nikishin system with supp(σk) =
∆̃k ∪ ek, k = 1, . . . ,m, where ∆̃k is a bounded interval of the real line, |σ′k| > 0
a.e. on ∆̃k, and ek is a set without accumulation points in R \ ∆̃k. Let Λ ⊂
Zm

+ (∗) be a sequence of distinct multi-indices such that max
n∈Λ

( max
k=1,...,m

mnk − |n|) <

∞. Let us assume that there exists l ∈ {1, . . . ,m} and a fixed permutation τ of
{1, . . . ,m} such that for all n ∈ Λ we have that n,nl ∈ Zm

+ (∗, τ). Take Λ′ ⊂ Λ
such that (30) holds. Then, there exists a normalization F

(l)
k , k = 1, . . . ,m,

by positive constants, of the functions F̃ (l)
k , k = 1, . . . ,m, given in (30), which
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verifies the system of boundary value problems

1) F
(l)
k , 1/F (l)

k ∈ H(C \ ∆̃k) ,

2) (F (l)
k )′(∞) > 0 , k = 1, . . . , τ−1(l) ,

2′) F
(l)
k (∞) > 0 , k = τ−1(l) + 1, . . . ,m ,

3) |F (l)
k (x)|2 1

|(F (l)
k−1 F

(l)
k+1)(x)|

= 1, x ∈ ∆̃k ,

(31)

where F (l)
0 ≡ F

(l)
m+1 ≡ 1.

Proof. The assertions 1), 2), and 2’) were proved above for the functions F̃ (l)
k .

Consequently, they are satisfied for any normalization of these functions by
means of positive constants.

From (26) applied to n and nl, for each k = 1, . . . ,m, we have∫
∆k

xνQn,k(x)d|ρn,k|(x) = 0, ν = 0, . . . , |nk−1| − 1 ,

and ∫
∆k

xνQnl,k(x)gn,k(x)d|ρn,k|(x) = 0 , ν = 0, . . . , |nk−1
l | − 1 ,

where

gn,k(x) =
|Qn,k−1(x)Qn,k+1(x)|
|Qnl,k−1(x)Qnl,k+1(x)|

|hnl,k(x)|
|hn,k(x)|

, dρn,k(x) =
hn,k(x)dsk−1

rk−1
(x)

Qn,k−1(x)Qn,k+1(x)
.

From (29) and (30)

lim
n∈Λ′

gn,k(x) = |(F̃ (l)
k−1F̃

(l)
k+1)(x)|

−1 (32)

uniformly on ∆k.
Fix k ∈ {τ−1(l) + 1, . . . ,m}. As mentioned above, for this selection of k we

have that degQnl,k = degQn,k = |nk−1|. Using Theorems 1 and 2 of [2], and
(30), it follows that

lim
n∈Λ′

Qnl,k(z)
Qn,k(z)

=
Sk(z)
Sk(∞)

= S̃k(z) = F̃
(l)
k (z) , K ⊂ C \ supp(σk−1

k ) , (33)

where Sk denotes the Szegő function on C \ ∆̃k with respect to the weight
|F̃ (l)

k−1(x)F̃
(l)
k+1(x)|−1, x ∈ ∆̃k. The function Sk is uniquely determined by

1) Sk, 1/Sk ∈ H(C \ ∆̃k) ,
2) Sk(∞) > 0 ,

3) |Sk(x)|2 1∣∣(F̃ (l)
k−1F̃

(l)
k+1)(x)

∣∣ = 1, x ∈ ∆̃k .

(34)
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Now, fix k ∈ {1, . . . , τ−1(l)}. In this situation degQnl,k = degQn,k + 1 =
|nk−1| + 1. Let Q∗n,k(x) be the monic polynomial of degree |nk−1| orthogonal
with respect to the varying measure gn,kd|ρn,k|. Using the same arguments as
above, we have

lim
n∈Λ′

Q∗n,k(z)
Qn,k(z)

=
Sk(z)
Sk(∞)

= S̃k(z) , K ⊂ C \ supp(σk−1
k ) . (35)

On the other hand, since degQnl,k = degQ∗n,k+1 and both of these polynomials
are orthogonal with respect to the same varying weight, by Theorem 1 of [2]
and (30), it follows that

lim
n∈Λ′

Qnl,k(z)
Q∗n,k(z)

=
ϕk(z)
ϕ′k(∞)

= ϕ̃k(z) , K ⊂ C \ supp(σk−1
k ) , (36)

where ϕk denotes the conformal representation of C \ ∆̃k onto {w : |w| > 1}
such that ϕk(∞) = ∞ and ϕ′k(∞) > 0. The function ϕk is uniquely determined
by

1) ϕk, 1/ϕk ∈ H(C \ ∆̃k) ,
2) ϕ′k(∞) > 0 ,

3) |ϕk(x)| = 1, x ∈ ∆̃k .

(37)

From (35) and (36), we obtain

lim
n∈Λ′

Qnl,k(z)
Qn,k(z)

= (S̃kϕ̃k)(z) = F̃
(l)
k (z) , K ⊂ C \ supp(σk−1

k ) . (38)

Thus,

F̃
(l)
k =

{
S̃kϕ̃k , k = 1, . . . , τ−1(l) ,
S̃k , k = τ−1(l) + 1, . . . ,m ,

(39)

and from (34) and (39) it follows that

|F̃ (l)
k (x)|2 1∣∣(F̃ (l)

k−1F̃
(l)
k+1)(x)

∣∣ =
1
ωk

, x ∈ ∆̃k , k = 1, . . . ,m , (40)

where

ωk =
{

(Skϕ
′
k)2(∞) , k = 1, . . . , τ−1(l) ,

S2
k(∞) , k = τ−1(l) + 1, . . . ,m .

(41)

Now, let us show that there exist positive constants ck, k = 1, . . . ,m, such
that the functions F (l)

k = ckF̃
(l)
k satisfy (31). In fact, according to (40) for any

such constants ck we have that

|F (l)
k (x)|2 1∣∣(F (l)

k−1F
(l)
k+1)(x)

∣∣ =
c2k

ck−1ck+1ωk
, x ∈ ∆̃k , k = 1, . . . ,m ,
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where c0 = cm+1 = 1. The problem reduces to finding appropriate constants ck
such that

c2k
ck−1ck+1ωk

= 1 , k = 1, . . . ,m . (42)

Taking logarithm, we obtain the linear system of equations

2 log ck − log ck−1 − log ck+1 = logωk , k = 1, . . . ,m (43)

(c0 = cm+1 = 1) on the unknowns log ck . This system has a unique solution
with which we conclude the proof.

Consider the (m + 1)-sheeted compact Riemann surface R introduced in
Section 1. Given l ∈ {1, . . . ,m}, let ψ(l) be a singled valued function defined on
R onto the extended complex plane satisfying

ψ(l)(z) =
C1

z
+O(

1
z2

), z →∞(0)

ψ(l)(z) = C2 z +O(1), z →∞(l)

where C1 and C2 are nonzero constants. Since the genus of R is zero, ψ(l)

exists and is uniquely determined up to a multiplicative constant. Consider the
branches of ψ(l), corresponding to the different sheets k = 0, 1, . . . ,m of R

ψ(l) := {ψ(l)
k }m

k=0 .

We normalize ψ(l) so that
m∏

k=0

|ψ(l)
k (∞)| = 1, C1 ∈ R \ {0}. (44)

Certainly, there are two ψ(l) verifying this normalization.
Given an arbitrary function F (z) which has in a neighborhood of infinity a

Laurent expansion of the form F (z) = Czk + O(zk−1), C 6= 0, and k ∈ Z, we
denote

F̃ := F/C .

C is called the leading coefficient of F . When C ∈ R, sg(F (∞)) will represent
the sign of C.

Since the product of all the branches
∏m

k=0 ψ
(l)
k is a single valued analytic

function in C without singularities, by Liouville’s Theorem it is constant and
because of the normalization introduced above this constant is either 1 or −1.
In particular, the function appearing in (4) equals

G
(τ−1(l))
0 (z) = 1/ψ̃(τ−1(l))

0 (z) =
m∏

k=1

ψ̃
(τ−1(l))
k (z) . (45)

If ψ(l) is such that C1 ∈ R \ {0}, then

ψ(l)(z) = ψ(l)(z), z ∈ R.
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In fact, let φ(z) := ψ(l)(z). φ and ψ(l) have the same divisor; consequently, there
exists a constant C such that φ = Cψ(l). Comparing the leading coefficients of
the Laurent expansion of these functions at ∞(0), we conclude that C = 1 since
C1 ∈ R \ {0}.

In terms of the branches of ψ(l), the symmetry formula above means that
for each k = 0, 1, . . . ,m:

ψ
(l)
k : R \ (∆̃k ∪ ∆̃k+1) −→ R

(∆̃0 = ∆̃m+1 = ∅); therefore, the coefficients (in particular, the leading one) of
the Laurent expansion at ∞ of these branches are real numbers, sg(ψ(l)

k (∞)) is
defined, and

ψ
(l)
k (x±) = ψ

(l)
k (x∓) = ψ

(l)
k+1(x±), x ∈ ∆̃k+1. (46)

We are ready to state and prove our main result.

Theorem 4.1. Let S = N (σ1, . . . , σm) be a Nikishin system with supp(σk) =
∆̃k ∪ ek, k = 1, . . . ,m, where ∆̃k is a bounded interval of the real line, |σ′k| > 0
a.e. on ∆̃k, and ek is a set without accumulation points in R \ ∆̃k. Let Λ ⊂
Zm

+ (∗) be a sequence of distinct multi-indices such that max
n∈Λ

( max
k=1,...,m

mnk − |n|) <

∞. Let us assume that there exists l ∈ {1, . . . ,m} and a fixed permutation τ of
{1, . . . ,m} such that for all n ∈ Λ we have that n,nl ∈ Zm

+ (∗, τ). Let {Qn,k}m
k=1,

n ∈ Λ, be the corresponding sequences of polynomials defined in section 3. Then,
for each fixed k ∈ {1, . . . ,m}, we have

lim
n∈Λ

Qnl,k(z)
Qn,k(z)

= F̃
(l)
k (z), z ∈ K ⊂ C \ supp(σk−1

k ) (47)

where

F
(l)
k := sg

(
m∏

ν=k

ψ(τ−1(l))
ν (∞)

)
m∏

ν=k

ψ(τ−1(l))
ν . (48)

Proof. Since the families of functions

{Qnl,k/Qn,k}n∈Λ , k = 1, . . . ,m,

are uniformly bounded on each compact subset K ⊂ C\ supp(σk−1
k ) for all suffi-

ciently large |n|,n ∈ Λ, uniform convergence on compact subsets of the indicated
region follows from proving that any convergent subsequence has the same limit.
According to Lemma 4.1 the limit functions, appropriately normalized, of a con-
vergent subsequence satisfy the same system of boundary value problems (31).
According to Lemma 4.2 in [1] this system has a unique solution.

It remains to show that the functions defined in (48) satisfy (31). When
multiplying two consecutive branches, the singularities on the common slit can-
cel out; therefore, 1) takes place since only the singularities of ψ(τ−1(l))

k on ∆̃k
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remain. From the definition of ψ(τ−1(l)) it also follows that for k = 1, · · · , τ−1(l),
F

(l)
k has at infinity a simple pole, whereas it is regular and different from zero

when k = τ−1(l) + 1, · · · ,m. The factor sign in front of (48) guarantees the
positivity claimed in 2) and 2′).

In order to verify 3), notice that F (l)
k /F

(l)
k−1 = sg(ψ(τ−1(l))

k−1 (∞))/ψ(τ−1(l))
k−1 .

Therefore, if k = 2, . . . ,m,

|F (l)
k (x)|2

|F (l)
k−1(x)F

(l)
k+1(x)|

=
|ψ(τ−1(l))

k (x)|
|ψ(τ−1(l))

k−1 (x)|
= 1, x ∈ ∆̃k,

on account of (46). For k = 1, from the definition and (46)

|F (l)
1 (x)|2

|F (l)
2 (x)|

= |ψ(τ−1(l))
1 (x)|2|

m∏
ν=2

ψ(τ−1(l))
ν (x)| = |

m∏
ν=0

ψ(τ−1(l))
ν (x)| = 1, x ∈ ∆̃1,

since
∏m

ν=0 ψ
(τ−1(l))
ν is constantly equal to 1 or −1 on all C.

Theorem 1.1 is a particular case of Theorem 4.1 on account of (45).

Proof of Corollary 1.1. Let

Λτ = Λ ∩ Zm
+ (∗, τ) ,

where τ is a given permutation of {1, . . . ,m}. We are only interested in those
Λτ with infinitely many terms. There are at most m! such subsequences. For
n ∈ Λτ fixed, denote nτ(j), j ∈ {1, . . . ,m}, the multi-index obtained adding
one to all j components τ(1), . . . , τ(j) of n. (Notice that this notation differs
from that introduced previously for nl.) In particular, nτ(m) = n + 1. It is
easy to verify that for all j ∈ {1, . . . ,m}, nτ(j) ∈ Λτ . For all n ∈ Λτ and each
k ∈ {1, . . . ,m}, we have

Qn+1,k

Qn,k
=

m−1∏
j=0

Qnτ(j+1),k

Qnτ(j),k
,

where Qnτ(0),k = Qn,k. From (47) it follows that

lim
n∈Λτ

Qn+1,k(z)
Qn,k(z)

=
m∏

l=1

F̃
(l)
k (z) , K ⊂ C \ supp(σk−1

k ) .

The right side does not depend on l, since all possible values intervene. There-
fore, the limit is the same for all τ and thus

lim
n∈Λ

Qn+1,k(z)
Qn,k(z)

=
m∏

l=1

F̃
(l)
k (z) , K ⊂ C \ supp(σk−1

k ) . (49)

Formula (5) is (49) for k = 1 on account of (45) and (48). �
The following corollary complements Theorem 4.1. The proof is similar to

that of Corollary 4.1 in [1].
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Corollary 4.1. Let S = N (σ1, . . . , σm) be a Nikishin system with supp(σk) =
∆̃k ∪ ek, k = 1, . . . ,m, where ∆̃k is a bounded interval of the real line, |σ′k| > 0
a.e. on ∆̃k, and ek is a set without accumulation points in R \ ∆̃k. Let Λ ⊂
Zm

+ (∗) be a sequence of distinct multi-indices such that max
n∈Λ

( max
k=1,...,m

mnk − |n|) <

∞. Let us assume that there exists l ∈ {1, . . . ,m} and a fixed permutation
τ of {1, . . . ,m} such that for all n ∈ Λ we have that n,nl ∈ Zm

+ (∗, τ). Let
{qn,k = κn,kQn,k}m

k=1,n ∈ Λ, be the system of orthonormal polynomials as de-
fined in (24) and {Kn,k}m

k=1,n ∈ Λ, the values given by (23). Then, for each
fixed k = 1, . . . ,m, we have

lim
n∈Λ

κnl,k

κn,k
= κ

(l)
k , (50)

lim
n∈Λ

Knl,k

Kn,k
= κ

(l)
1 · · ·κ(l)

k , (51)

and

lim
n∈Λ

qnl,k(z)
qn,k(z)

= κ
(l)
k F̃

(l)
k (z), z ∈ K ⊂ C \ supp(σk−1

k ) , (52)

where

κ
(l)
k =

c
(l)
k√

c
(l)
k−1c

(l)
k+1

, c
(l)
k =

{
(F (l)

k )′(∞) , k = 1, . . . , τ−1(l) ,
F

(l)
k (∞) , k = τ−1(l) + 1, . . . ,m ,

(53)

and the F (l)
k are defined by (48).

Proof. By Theorem 4.1, we have limit in (32) along the whole sequence Λ.
Reasoning as in the deduction of formulas (33) and (38), but now in connection
with orthonormal polynomials (see Theorems 1 and 2 of [2]), it follows that

lim
n∈Λ

qnl,k(z)
qn,k(z)

=
{

(Skϕk)(z) , k = 1, . . . , τ−1(l) ,
Sk(z) , k = τ−1(l) + 1, . . . ,m ,

K ⊂ C \ supp(σk−1
k ) ,

where Sk is defined in (34). This formula, divided by (33) or (38) according to
the value of k gives

lim
n∈Λ

κnl,k

κn,k
=
√
ωk =

ck√
ck−1ck+1

,

where ωk is defined in (41), and the ck are the normalizing constants found in
Lemma 3.1 solving the linear system of equations (43) which ensure that

F
(l)
k ≡ ckF̃

(l)
k , k = 1, . . . ,m ,

with F
(l)
k satisfying (31) and thus given by (48). Since (F̃ (l)

k )′(∞) = 1, k =
1, . . . , τ−1(l), and (F̃ (l)

k )(∞) = 1, k = τ−1(l) + 1, . . . ,m, formula (50) immedi-
ately follows with κ(l)

k as in (53).
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From the definition of κn,k , we have that

Kn,k = κn,1 · · ·κn,k .

Taking the ratio of these constants for the multi-indices n and nl and using (50),
we get (51). Formula (52) is an immediate consequence of (50) and (47).

Remark 4.1. We have imposed two types of restrictions on the class of multi-
indices under consideration. The first one refers to being in Zm

+ (∗). This is
connected with a long standing question in the theory of multiple orthogonal
polynomials; namely, if for any m all multi-indices of a Nikishin system are
strongly normal or not. We have proved our results in the largest class of multi-
indices known to be strongly normal. Should this conjecture be solved in the
positive sense, our methods would allow to eliminate this condition as we have
done for the cases m = 1, 2, 3.

The second restriction max
n∈Λ

( max
k=1,...,m

mnk − |n|) < ∞ is connected with the

use of Lemma 3.3. This condition means that all components of the multi-indices
are of the same order and that orthogonality is, basically, equally distributed
between all measures. The proof of (28) requires the density of certain classes of
rational functions with fixed poles (in our case at the zeros of the polynomials
Qn,k−1Qn,k+1 and numerator of degree twice the order of orthogonality) in the
space of continuous functions on a given interval. In general, this is not true if
the rational functions are such that the degree of the denominator is much larger
in order than that of the numerator (as |n| → ∞). This is what may occur if we
eliminate the restriction above. It can be relaxed to nk = |n|/m+O(log |n|), k =
1, . . . ,m, without changing the structure of the Riemann surface which describes
the solution of the problem, but not much more. In limiting situations (for
example, if one of the components of the multi-indices is not allowed to grow at
all) some of the sheets may even disappear. The description of the solution in
the most general situation is very difficult and technically complicated. On the
other hand, in applications, the diagonal case (nk = |n|/m, k = 1, . . . ,m, ) and
nearby indices are the most important.
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