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Abstract
We prove ratio asymptotic for sequences of multiple orthogonal poly-
nomials with respect to a Nikishin system of measures N (o1,...,0m)
such that for each k, o has constant sign on its support consisting on
an interval Ay, on which |o}| > 0 almost everywhere, and a set without
accumulation points in R\ Ay
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1 Introduction

Let s be a finite positive Borel measure supported on a bounded interval A of
the real line R such that s’ > 0 almost everywhere on A and let {Q,},n € Z,
be the corresponding sequence of monic orthogonal polynomials; that is, with
leading coefficients equal to one. In a series of two papers (see [15] and [16]), E.
A. Rakhmanov proved that under these conditions

neZy Qn(z) @' (00)
(uniformly on each compact subset of C\ A), where ¢(z) denotes the conformal
representation of C\ A onto {w : |w| > 1} such that ¢(00) = co and ¢’(c0) > 0.
This result attracted great attention because of its theoretical interest within the
general theory of orthogonal polynomials and its applications to the theory of
rational approximation of analytic functions. Simplified proofs of Rakhmanov’s
theorem may be found in [17] and [12].

This result has been extended in several directions. Orthogonal polynomials
with respect to varying measures (depending on the degree of the polynomial)
arise in the study of multipoint Padé approximation of Markov functions. In
this context, in [10] and [11], an analogue of Rakhmanov’s theorem for such
sequences of orthogonal polynomials was proved. Recently, S. A. Denisov [4]
(see also [13]) obtained a remarkable extension of Rakhmanov’s result to the
case when the support of s verifies supp(s) = AUeC R, where A is a bounded

interval, e is a set without accumulation points in R\ A, and s’ > 0 a.e. on
A. A version for orthogonal polynomials with respect to varying Denisov type
measures was given in [2].
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Another direction of generalization is connected with multiple orthogonal
polynomials. These are polynomials whose orthogonality relations are dis-
tributed between several measures. They appear as the common denominator
of Hermite-Padé approximations of systems of Markov functions. An interesting
class of such systems is formed by the so called Nikishin systems of functions
introduced in [14]. For Nikishin multiple orthogonal polynomials a version of
Rakhmanov’s theorem was proved in [1].

An elegant notation for Nikishin systems was proposed in [8]. Let 01,02 be
two finite Borel measures with constant sign, whose supports supp(o1), supp(o2)
are contained in non intersecting intervals of R. Set

d<01,0’2>((£) = /dliL_(? dO’l(iﬂ) = 62(1’)(10’1(1’) .
This expression defines a new measure with constant sign whose support coin-
cides with that of ;. Whenever convenient, we use the differential notation of
a measure.

Let ¥ = (01,...,0m) be a system of finite Borel measures on the real line
with constant sign and compact support containing infinitely many points. Let
Co(supp(cg)) = Ag denote the smallest interval which contains supp(oy). As-
sume that

Ay NAg1 =10, k=1,....m—1.
By definition, S = (s1,...,8m) =N (01,...,0m), where

§1 =01, 52:<01702>w~~a Sm:<gla<027"'70m>> (2)
is called the Nikishin system of measures generated by .. The system (81, ..., 8,)

of Cauchy transforms of a Nikishin system of measures gives a Nikishin system
of functions.

Fix a multi-index n = (ny,...,ny,) € Z7'. The polynomial Qy(x) is called
an n-th multiple orthogonal polynomial with respect to S if it is not identically
equal to zero, deg Qn < |n| =n1 + -+ ny, and

/Qn(m)x”dsk(x)zo, v=0,....,n; —1, k=1,...,m. (3)

In the sequel, we assume that (), is monic.

If (3) implies that deg @y = |n|, the multi-index n is said to be normal
and the corresponding monic multiple orthogonal polynomial is uniquely de-
termined. In addition, if the zeros of @)y, are simple and lie in the interior of
Co(supp(cy)) the multi-index is said to be strongly normal. (In relation to
intervals of the real line the interior refers to the Euclidean topology of R.) For
Nikishin systems with m = 1,2, 3, all multi-indices are strongly normal (see [5]).
An open question is whether or not this is true for all m € N. The best result
when m > 4 is that all

neZl(x)={neZl:A1<i<j<k<m, with n; <n; <ng}



are strongly normal (see [6]).

In [1], a Rakhmanov type theorem was proved for Nikishin systems such
that |o},| > 0 a.e. on Co(supp(oy)),k =1,...,m, and sequences of multi-indices
contained in

Z7(@®) ={neZP:1<i<j<m=n; <n;+1}.

It is easy to see that ZT'(®) C Z7'(x). Here, we assume that supp(oy) =

ApUe,k=1,...,m, where Ay, is a bounded interval of the real line, loy.| >0
a.e. on Ak, ex 1s a set without accumulation points in R\ ﬁk, and the sequence
of multi-indices on which the limit is taken is in Z'7 ().

The proof of Theorem 1.1 below uses the construction of so called second
type functions. This construction depends on the relative value of the compo-
nents of the multi-indices in Z'(*) under consideration. A crucial step in our
study consists in proving an interlacing property for the zeros of the second
type functions corresponding to “consecutive” multi-indices (see Lemma 3.2).
For this purpose, we need to be sure that the second type functions are built
using the same procedure. To distinguish different classes of multi-indices which
respond for the same construction of second type functions, we introduce the
following definition.

Definition 1.1. Suppose that n = (ny,...,n,) € Z7. Let 7, denote the
permutation of {1,2,...,m} given by

(i) = if {nj>nk for k<j, k&{m),...,m@iE—-1)}
nlt)=J n; >ng for k>j, k& {m(),...,m(E—-1)}

In words, m,(1) is the subindex of the first component of n (from left to
right) which is greater or equal than the rest, 7,(2) is the subindex of the first
component which is second largest, and so forth. For example, if ny > -+ > n,,
then 7, is the identity.

Let 7 denote a permutation of {1,2,...,m}. Set

Z0(x,7) ={n € Z7 (%) : T =T} .
Let n € Z7 and | € {1,...,m}. Define
n = (ng, .-+ L, )

Consider the (m + 1)-sheeted Riemann surface

m
R=J R,
k=0

formed by the consecutively “glued” sheets

RO::@\ﬁl, Rk::@\(kuAk_H),kZl,...,m—l, Rm:@\Am,



where the upper and lower banks of the slits of two neighboring sheets are
identified. Fix [ € {1,...,m}. There exists a conformal representation G of
R onto C such that

GO =2+0Q1), z— 00, GU(2)=C/z+0(1/2%), z— coW.

By G\" we denote the branch of GO on Ry.

Theorem 1.1. Let S = N(o1,...,0,) be a Nikishin system with supp(cy) =
ApUep, k=1,....,m, where Ay, is a bounded interval of the real line, |o},| > 0
a.e. on ﬁk, and ey is a set without accumulation points in R\ ﬁk. Let A C
77 (x) be an infinite sequence of distinct multi-indices with the property that

max( max mng — |n|) < co. Let us assume that there exists | € {1,...,m}
neA k=1,....m

and a fived permutation T of {1,...,m} such that for all n € A we have that
n,n; € Z7(*,7). Then,

z 1
liy T GO, K\ su(on), @
When m = 1 this result reduces to Denisov’s version of Rakhmanov’s theo-
rem. The proof of Theorem 1.1 follows the guidelines employed in [1] but it is
technically more complicated because of the more general assumptions on the
measures and the sequence of multi-indices.
Let 1 =(1,...,1). An immediate consequence of Theorem 1.1 is

Corollary 1.1. Let S = N(o1,...,0m) be a Nikishin system with supp(oy) =
Ay U ex,k =1,...,m, where Ay, is a bounded interval of the real line, |o}| >
0 a.e. on Ek, and e is a set without accumulation points in R\ Ek Let
A C ZT(*) be an infinite sequence of distinct multi-indices with the property

max( max mng — |n|) < co. Then,
neA k=1,....m

22 ()
The paper is organized as follows. In Section 2 we introduce and study an
auxiliary system of second type functions. An interlacing property for the zeros
of the polynomials @), and of the second type functions is proved in Section 3.
Using the interlacing property of zeros and results on ratio and relative asymp-
totic of polynomials orthogonal with respect to varying measures, in Section 4
a system of boundary value problems is derived which implies the existence of
limit in (4). Actually, a more general result is proved which also contains the
ratio asymptotic of the second type functions.

Qnia(2) _ ﬁ G{(z), K cC\supp(or). (5)
=1

2 Functions of second type and orthogonality properties

Fix n = (n1,...,n,) € Z7(*) and consider @y the n-th multi-orthogonal
polynomial with respect to a Nikishin system S = N (X), ¥ = (o1,...,0,). For



short, in the sequel we denote Ay, = Co(supp(og)),k = 1,...,m. Inductively,

we define functions of second type ¥y, £ = 0,1,...,m, systems of measures
Tk = (a’ljﬂ, ey 0k ) E=0,1,...,m— 1, Co(supp(af)) C Aj, which generate
Nikishin systems, and multi-indices n* € Z:_“*k(*)Jc = 0,...,m — 1. Take
Uno= Qn,n’=n, and X°=X.

Suppose that n* = (nﬁ+l,...7nﬁl), vk = (a,’§+1,...,a7’§1) and ¥, 5 have

already been defined, where 0 < k < m — 2. Let
n" ! = (niié, kY ez (%)

be the multi-index obtained deleting from n* the first component nffk which
verifies

ny =max{n?: k+1<j<m}
The components of n*t1 and n* are related as follows:
ko k+1 ko _ okl ok ktl k o_  k+1
Mps1 = M igyees My 1 = nT: Mgy 1 = M gy, Mgy = nitt,
Denote 4 (2)
KT
Voun() = [ Tk o), (©
Ak,+1 zZ—X
where s¥ = (of ,,...,0F ) is the corresponding component of the Nikishin
system S¥ = N'(3F) = (sf,4,...,s5).
In order to define 3**! we introduce the following notation. Set
Sﬁj=<0f,...,0‘;§>, k+1<i<j<m,

where o € ¥*. In page 390 of [9] it is proved that there exists a finite measure

Tilfj with constant sign such that

Co(supp(Tfj)) C CO(SHPP(SZJ‘))
1

814(2)

= lf](z) + ﬁk](z)

where lﬁj is a certain polynomial of degree 1. That Co(supp(sf’j)) C A; easily

follows by induction. We wish to remark that the continuous part of supp(sﬁ j)
and supp(7/;

A; (there is one such zero between two consecutive mass points of s¥ ;) become
;

) coincide, but not their isolated parts. In fact, zeros of fsfj on
poles of ?ij (mass points of Ti’fj).
Suppose that r, = k + 1. In this case, we take

yhtl = (JZ+2,...,U§1) = (U,ﬁié, .. .,Uf,j'l)

deleting the first measure of X*. If 7, > k + 2, then ¥+ is defined by

k ~k k ~k E ook E 2 k
(Tk+2ﬁ.k,sk+27,.kd7k+37,.k, e S 1 ATy s S A0 1,0 2y o),



k+1
J
the system X**! are supported on disjoint intervals; therefore, £*1 generates

a Nikishin system. To conclude we define

\Ijn,m—l (.23)

where Co(supp(o; ™)) C Aj,j = k+2,...,m. Any two consecutive measures in

Upm(2) = ds™ (z).
wn(e) = [ Femet el

If ny > --- > n,,, we have that n* = (ngy1,...,nm), 28 = (Gha1, .-, 0m)
and Uy, (2) = fAk \Ij“‘z"%i(l’)dok(x), k=1,...,m. Basically, this is the situation

considered in [1].
To fix ideas let us turn our attention to the cases m = 2 and m = 3. We
denote by C(f; i) the Cauchy transform of fdu; that is,

Zf(_xl du(x) .

(i) = [

In the following tables, we omit the line corresponding to k& = 0 because by
definition X0 = X, Uno=Qn and n® =n.

Table 1: m=2
m=2 k| me_1 Wh ok =k nF
ny >no | 1 1 C(Qn;o1) (o2) | (n2)
ny < ng 1 2 C(Qn; <01,U2>) (7-2) (nl)
Table 2: m =3
m=3 k Thk—1 \I/nJg Ek nk
ny>ng >ng | 1 1 C(Qn;o1) (02,03) (n2,n3)
2 2 C(Un,1;02) (o3) (n3)
ny>n3 >ng | 1 1 C(Qn;01) (02,03) (n2,n3)
2 3 C(Wn,1;(02,03)) (3) (n2)
ng >np>n3 | 1 2 C(Qn; (01,02)) (12, (03,02)) (n1,n3)
2 2 C(¥n,1;72), ({o3,02)) (n3)
ng >n3>ni | 1 2 C(Qn; (01,02)) (12, (03,02)) (n1,n3)
2 3 C(¥n,1;(m2,03,02)) (73,2) (n1)
ng>ng >ng | 1 3 C(@n;(o1,02,03)) | (712,3,(13,02,03)) | (n1,n2)
2 2 C(Un,1;72,3) ((r3,02,03)) (n2)

In Theorem 2 of [6] it was proved that the functions ¥y, ;, verify the following
orthogonality relations. For each £k =0,1,...,m — 1,

/ Uy () dst(2) =0, v=0,1,....08 ~1, i=k+1,....m, (7)
Apt1

where s = (of, |,...,0F).

1Y



We wish to underline that since Z2 (x) = Z2, all multi-indices with two
components have associated functions of second type. However, for m = 3 the
case n; < my < ng has not been considered (see Table 2). The rest of this
section will be devoted to the construction of certain functions Wy ; for this
case and to the proof of the orthogonality relations they satisfy. We use the
following auxiliary result.

Lemma 2.1. Let s39 = (03,02). Then

:9\3)2(.’1?) d7'273($> - Eg(z) 5 su o
Lam et o S, ©

where C1 = 02(A2)/s2.3(Asz).

Proof. We employ two useful relations. The first one is

02(¢) 33(C) = 82,3(¢) +532(¢), ¢ €C\ (supp(oz) Usupp(as)).  (9)

The proof is straightforward and may be found in Lemma 4 of [5]. The second
one was mentioned above and states that there exists a polynomial [5 3 of degree
1 and a measure 73 3 such that

1 ~
— =Ta3(2) +123(2), z€C\supp(oz). (10)
52,3(2)
Notice that 22(2) )
o2(Z2 =1
— —-C1=0(=-)eH(C\A
S -a=o(i)entia

Let T be a positively oriented smooth closed Jordan curve such that A, and
{z}UAj3 lie on the bounded and unbounded connected components, respectively,
of C\T. By Cauchy’s integral formula, we have

5az) 1 [(5(O) L\ A1 [ 50 d
¢ (§2,3<<> Cl)z—fzm/p?z,g(oz—@

Ss(z) ' 2mi)p
Multiply and divide the expression under the last integral sign by o3 and use
(9) to obtain

o2(2) o 1 523(0) +832(0) d¢ 1 / 53,2(C) d¢
r 03(¢)52,3(¢) 2 = ¢~

/5\2)3(2) e Tm T a3(<)§2,3(C) z —C o Tm

Taking account of (10) it follows that
02(2) o 1 53,2(0) (72,3(C) +l23(Q))d¢ 1 / 53,2(€) T2,3(Q)d¢
r

S25(2) ' 2mi Jr 53(0) P, = omi

a3(¢) 2—¢

Now, substitute 72 3(¢) by its integral expression and use the Fubini and Cauchy
theorems to obtain

o2(2) . _ [ 1 53.2(¢) dg¢ () — 53,2(7) dr2 3(2)
52.3(2) Cl_/27ri/1~53(g)(zfg‘)§—xd2’3() /33(:0) 2—x

which is what we set out to prove. U




We are ready to define the functions of second type and to prove the orthog-
onality properties they verify for multi-indices with 3 components not in Zi(*)

(with n; <

ng < TL3).

Lemma 2.2. Fiz n = (ny,ns,n3) € Zf_ where n1 < ng < ng and consider Qn
the n-th orthogonal polynomial associated to a Nikishin system S = (s1, S2,83) =

N(oy,09,0

Then

3) . Set \Iln,() = Qn7

a(z) = /A Tna@) 82(0) ;).

z—x o3(x)

/ t”@n,l(t)#()dTgyg(t):O, 0§1/§n2—1
Ao o3(t

St
/t"\I/n,Q(t)SZ"“’()dfw(t):o, 0<v<mn—1.
As a

(11)

(12)

(13)

(14)

(15)

(16)

Remark 2.1. The measure §32d72 3/03 supported on Ay cannot be written in
the form (72 3, u) for some measure p supported on Ag, so there is no X! and

S1 in this case.
Proof. The relations (13) follow directly from the definition of Q. Let us justify
(14) and (15).

For 0 < v <ny; — 1(< ng — 3), applying Fubini’s theorem,

/A 2 1 Wy 1 (8) dros(t) = /A 2 # N C’t?“_(? ds13(z) dra3(t)

t¥ — ¥ + v

—_ N Qn(x) /AQ ?dTQ,‘?,(t)dSlﬁ(ﬂj)

Qn(z)pu(x)dsy3(x) — / " Qn(x) T23(x) d sy 3(x),
Ay Ay

where p,(z) = fA2 % drs 3(t) is a polynomial of degree at most n; —2. Since
ds1 3(z) = S23(x)doi(x) and To3(x) S2,3(z) = 1 — l2,3(x) S2,3(z), the measure
(x) is equal to doi(x) — lo,3(x) ds1,3(x). Therefore, applying (13)
both integrals vanish and we obtain (14). Actually, we only needed that n; <

?2’3 (.’13) d8173

ng—l.



IfO<v<ny—1(<ng—2),

A ng \I/n’l(t) /SE,Z(t) d7'273(t) _ A n 83 2(t) Qn(‘r) d8113(.’£) dTQ’B(t)

o3(t) a3(t) Ja, t—x

tY — ¥ + ¥ S Q(t)
= n /\’ d t d
AlQ (x) /A2 =2 Gsh) T2,3(t) ds1,3(x)

v (/9\3’2@) d72’3(t)
[ Qe | S T

By Lemma 2.1, the last expression is equal to

G [ Qu)a dnato) - [ Qul)e” v 220 G
A 52,3(2)
= — Qn(z) 2" ds12(x) =0
A

taking into account that dsi 3(x) = S2,3(x) do1(z) and (13). This proves (15).
It would have been sufficient to require no < ngs.
Let us prove (16). Take 0 < v <n; — 1, we have

fo e Zg a0 = [ | S a0 2 )
7 §3,2() — ¥ + ¥ 53 3(t)
[, §3<x> LT Sy e dna
= [ pule) nste) 228 )
Aoy 03(@
\Pn71($) IV §372(£C) §273(t) dng(t)
+ /A 53(2) /A oalt) t—a sl

where p, () is the polynomial defined by

/A3tv_ac 823()d32()

t—=x 0'2()

of degree < my; — 2. Applying (15), the first integral after the last equality
equals zero since n; < ny (though n1 < ng 4+ 1 would have been sufficient). If
we interchange the sub-indices 2 and 3 in Lemma 2.1, we obtain

So3(t) d t
As O'Q(t) t—x 83 Q(t)
where Cy = 03(A3)/s32(As). Therefore, using (17), (15) and (14), it follows
that
g V' 539(t S93(t) d t
/ n,l(aj\)x 83,2()/ 83’3() 7-3’2()d7-2,3(x)
Ao 0'3(1') As Ug(t) t—=x
:9\3 g(t) 33(1‘)
— [ w, v 33, Cy— 2 d -0,
[t 255 (02 2255 anato
since n1 < no. This completes the proof. O



3 Interlacing property of zeros and varying measures

As we have pointed out, from the definition Z7'(x) = Z7',m = 1,2. We have
introduced adequate functions of second type also when m = 3 and ny < ny < ng
which were the only multi-indices initially not in Z3 (x). To unify notation, in
the rest of the paper we will consider that Z3 (x) = Z3..

In this section, we show that for n € Z7'(x), m € N, the functions ¥y, k =
0,...,m—1, have exactly |nk| simple zeros in the interior of A1 and no other
zeros on C\ Ag. The zeros of “consecutive” Uy, j, satisfy an interlacing property.
These properties are proved in Lemma 3.2 below which complements Theorem
2.1 (see also Lemma 2.1) in [1] and substantially enlarges the class of multi-
indices for which it is applicable. The concept of AT system is crucial in its
proof.

Definition 3.1. Let (w1,ws,...,wm) be a collection of functions which are
analytic on a neighborhood of an interval A. We say that it forms an AT-
system for the multi-index n = (ny,ng,...,n,y) on A if whenever one chooses

polynomials P, ,..., P,, with deg(P,;) < n; — 1, not all identically equal to
zero, the function

Poy () wi(2) + -+ + P, (2) win (2)

m

has at most |n| — 1 zeros on A, counting multiplicities. (wi,...,wy) is an
AT-system on A if it is an AT-system on that interval for all n € Z'7".

Theorem 1 of [5] (for m = 3) and Theorem 1 of [6] prove the following.

Lemma 3.1. Let (s1,...,8m-1) =N(01,...,0m—1),m > 2, be a Nikishin sys-
tem of m — 1 measures. Then (1,51,...,8m—1) forms an AT system on any
interval A disjoint from Ay with respect to any n € Z7 ().

Recall that n; denotes the multi-index obtained adding 1 to the Ith compo-
nent of n.

Lemma 3.2. Let S = N (01,...,0m) be a Nikishin system. Letn € Z7'(x),m €
N, then for each k = 0,...,m — 1, the function ¥y 1, has ezactly In*| simple
zeros in the interior of Apy1 and no other zeros on C\ Ag. Let I denote the
closure of any one of the connected components of A1 \supp(a’,§+1), then Uy, i
has at most one simple zero on I. Assume that 1 € {1,2,...,m} is such that
n,n; € Z1'(*,7) for a fivred permutation 7. Then, for each k € {0,...,m — 1}
between two consecutive zeros of Wy, . lies exactly one zero of Wy, ;; and viceversa
(that is, the zeros of Uy, i and Wy on Aptq interlace).

Proof. Assume that n,n; € Z7(x,7). We claim that for any real constants
A,B,|A|+|B| >0, and k € {0,1,...,m — 1}, the function

Gn,k(x) = A\I/r,’k(x) + B\I/nhk(m)

has at most |n*| + 1 zeros in C\ A (counting multiplicities) and at least |n*|

simple zeros in the interior of Ag11 (Ag = ). We prove this by induction on k.

10



Let £ = 0. The polynomial Gy o = A¥y g + By, o is not identically equal
to zero, and |n| < deg(Gh, ) In| + 1. Therefore, Gy has at most n| + 1
zeros in C. Let h;,j = 1,...,m, denote polynomials, where deg(h;) < n; — 1.
According to (7),

Gno(z) Y hj(2)82,;(x)doy (z) =0 (18)
Al j:1
(/8\2’1 = 1).
In the sequel, we call change knot a point on the real line where a function
changes its sign. Notice that for each k € {0,...,m —1}, Gn is a real function

when restricted to the real line. Assume that G has N < |n| — 1 change
knots in the interior of A;. We can find polynomials h;,j =1,...,m,deg(h;) <
n; — 1, such that Z;n:l h;js2 ; has a simple zero at each change knot of Gnp
on A; and a zero of order |n| — 1 — N at one of the extreme points of A;. By
Lemma 3.1, (1,822,...,52,,) forms an AT system with respect to n € Z7'(x);
therefore, ZT:I h;ss ; can have no other zero on Ay, but this contradicts (18)
since Gn 0 Z;nzl h;5s ; would have a constant sign on A; (and supp(c1) contains
infinitely many points). Therefore, Gy has at least |n| change knots in the
interior of A;. Consequently, all the zeros of G are simple and lie on R as
claimed.

Assume that for each k € {0,...,k — 1},1 < k < m — 1, the claim is
satisfied whereas it is violated when k = k. Let h; denote polynomials such
that deg(h;) < nf — 1,k +1 < j < m. Using (7) or (13)-(16) according to the
situation (to blmphfy the writing we use the notation of (7) but the arguments
are the same when m = 3 and n; < ng < ng; in particular, in this case,
dsgo = d81’3, dS},l = §3’2d7'273/63 and d832 = §273d7'372/32)

m
[ Gunl@) 3 hi(@s, (@)dot () =0 (19
At j=r+1
(8F 42,541 = 1). Arguing as above, since (1,55, 5 . 9,---,50n42,,) forms an AT
system with respect to n" € Z'"""(x), we conclude that Gy . has at least |n"|
change knots in the interior of A 1.

Let us suppose that Gy 4 has at least [n”|+2 zeros in C\ A, and let Wy, ,; be
the monic polynomial whose zeros are those points (counting multiplicities). The
complex zeros of Gy, (if any) must appear in conjugate pairs since Gy . (Z) =

Gh, i (2); therefore, the coefficients of Wy, ,;, are real numbers. On the other hand,
from (7) ((13) or (15) when necessary)

Tn 1 — xnrx—l 1
e
0 —/ Guop1(r)——————ds; " (7).

Therefore,

Gnﬁ(z): 3—1 :C - lGnK 1(x)dsni1 (I):O % ’ z— 00,
) A Th—1 . +1

Z’n’rm— 1
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and taking into consideration the degree of Wy, .., we obtain

szn,H 1 . rk—1

Let T be a closed Jordan curve which surrounds A, and such that all the
zeros of Wy, lie in the exterior of I Using Cauchy’s theorem, the integral
expression for Gy, ., Fubini’s theorem, and Cauchy’s integral formula, for each
j=0,...,[n"" + 1, we have

1 J n,K 1 J n,K—
0= - 72 G . (Z) dz = ; / - / ¢ : 1(x) ds?’j71 (x)dz =
218 Jp Whak(2) 270 Jr War(2) Ja, z2—x K-t

2Gnp-1(7) | 4
— = Ldsi T (),
A, W,k () Nfl( )

which implies that Gy ,—1 has at least \n"_l\ + 2 change knots in the interior
of A,. This contradicts our induction hypothesis since this function can have
at most [n"~!| + 1 zeros in C\ A,_1 D A,. Hence Gy, has at most [n®| + 1
zeros in C\ A, as claimed.

Taking B = 0 the assumption n; € Z7'(*,7) is not required, and the argu-
ments above lead to the proof that Wy, ; has at most [n*| zeros on C\ Ay since
Qn = ¥y 0 has at most |n| zeros on C. Consequently, the zeros of ¥y, 5, in C\ Ay
are exactly the |n*| simple ones it has in the interior of Ayy;.

Let I be the closure of a connected component of Ay \supp(oy, ) and let
us assume that I contains two consecutive simple zeros x;,zg of ¥y, ;. Taking
B =0and A =1, we can rewrite (19) as follows

U,z i
Lo ety 2 @ @m0 =0, (20

where deg(h;) <n¥—1,j = k+1,...,m. The measure (x —x1)(x —z2)doy_, (z)
has a constant sign on Ayy1 and U, x(2)/(x — 21)(z — x2) has |n*| — 2 change
knots on Agy1. Using again Lemma 3.1, we can construct appropriate polyno-
mials h; to contradict (20). Therefore, I contains at most one zero of ¥y, .
Fix y e R\ Ay and k € {0,1,...,m — 1}. It cannot occur that Uy, x(y) =
U, x(y) = 0. If this was so, y would have to be a simple zero of ¥y, ;, and ¥y, .
Therefore, (W, i)' (y) 7 0 # (Wn4)'(y). Taking A =1, B = W), ,(4)/ W, (1),
we find that

Gnk(y) = (A¥nk + BYy, ) (y) = (Gux)'(y) =0,

which means that Gy has at least a double zero at y against what we proved
before.
Now, taking A = Wy, 1(y), B = =¥, 1 (y), we have that |A| + |B| > 0. Since

Yoy k() ¥nk(Y) = Ynk(y)¥n, x(y) =0,

12



and the zeros on R\ Ay of Uy, 1 (4)¥n i(2) — ¥nk(y)Un, x(z) with respect to
x are simple, using again what we proved above, it follows that

Uk (U)W (1) — U (y) Wiy, 1 (y) # 0.

But Wn, k(¥) ¥y 1Y) — Ynk(y) ¥y, 1 (y) is a continuous real function on R\ Ay
so it must have constant sign on each one of the intervals forming R\ Ag; in
particular, its sign on Ay, is constant.

We know that Uy, ; has at least |n’“\ simple zeros in the interior of Ag,;.
Evaluating Wn, k(y) V5, £ (¥) — ¥n,k(y) ¥}, 1 (y) at two consecutive zeros of Wy, ,
since the sign of ¥/ ..k at these tWO points changes the sign of ¥, ;, must also
change. Using Bolzano s theorem we find that there must be an intermediate
zero of Wy, . Analogously, one proves that between two consecutive zeros of
Wn i on Agyq there is one of Wy, ;. Thus, the interlacing property has been

proved. O

Let Qun k+1,k=0,...,m — 1, denote the monic polynomial whose zeros are
equal to those of ¥y, ;. on Agiq. From (7) ((13), (15), or (16) when necessary)

k k
n n
2Tk — X Tk

0:/ \Ilnﬁkxidsfx
) s @)

(Recall that when m = 3 and n; < ny < ng, we take ds) = dsi3,ds} =
/5\3’2d7'2’3/6'\3 and dS%2 = /5\2’3d7'3’2/6'\2‘) Therefore,

k
1 e Uy, (x 1
o) = < [ X0ask (@)= 0 (i) o 2o,
k+1

ank zZ—X VAR

and taking into consideration the degree of Qp k42 (by definition Qn mt1 = 1),
we obtain

zj\IJnIH»l 1 : k
——— =0 = H(C\ A =0,... —1.
=0 (L) €HE M), G =

Let T' be a closed Jordan curve which surrounds Ag;; such that all the
zeros of Qn k42 lie in the exterior of I'. Using Cauchy’s theorem, the integral
expression for Wy, 11, Fubini’s theorem, and Cauchy’s integral formula, for each

j=0,...,)n%| — 1 (we also define Qn o = 1), we have
1 AN U,
= - Z Tnk+102) 7k+1(z)dz / / k( )dsrk( )dz =
218 Jr Qnkt2(2) 27i Qn, k+2( ) Jaw, #—=
; Hy 1 (z)dsk ()
2 Qn pt1(T : k , k=0,....m—1, 21
fo PO G e 21
where v
Hn,k+1=M k=0,....,m,
Qn,k+1

13



has constant sign on Ay, 1.
This last relation implies that

/ Q@ -QE) o (0 Hy i1 (x)dsE, (x)
N P Qb () Qu g2 (2)

k"

:O’

where @) is any polynomial of degree < |n®|. If we use this formula with @ =
@n,k+1 and Q = Qn k12, respectively, we obtain

Qn +1(2) Hner1(2)dsy, ()

Apyr 27T Qn,k(2)Qn,k+2()

1 Qi’kjul@) Hn,kJrl(x)dS];k (m)
Qni+1(2) Jay,, 22— 7 Qnir(®)Qnki2(2)

and
Qn o1 (z) Ho g1 (2)dst, (2)
Appr 2= T Qni(2)Qnki2(2)

1 / U i(z)dst (2)
Agt1

Qn,k+2(2)

Equating these two relations and using the definition of Wy, 41 and Hy j2, We
obtain

zZ—XT

B Q3 i1 (2) Hy g1 (z)dst, (@) _
Hyjosa(2) = e ) k=0,...,m—1. (22)

Notice that from the definition Hy; = 1.

For each k =1,...,m, set
. U, d sffl T
K1 = [ Q|G| Tl By
’ A Qn,k () |@n,k—1(2)Qn,k11(2)]
where |s| denotes the total variation of the measures s. Take
Kn k
Kno=1, kpnr=—=">—, k=1,....m.
0 - Kn,kfl
Define
Onk = knk@nk s Pnk= Kﬁ,k_1Hn,k , (24)
and 1
hnk(x)dsy " (z
Ao (@) k(2)dsy 7 (2) (25)

© Qni-1(2)Qnpr(2)
Notice that the measure pn j has constant sign on Ay. Let €, ) be the sign of
Pn,k- From (21) and the notation introduced above, we obtain

/ ¥ qn,k(x)d|pnk|(z) =0, 1/:07...,\nk_1\—1, kE=1,....m, (26)
Ag

14



and g, , is orthonormal with respect to the varying measure |pn |- On the other
hand, using (22) it follows that

hn7k+1(z):sn,k/ n 1 )d| wil@), k=1,....m. 27)

A 2T
Lemma 3.3. Let S = N (o1, ...,0m) be a Nikishin system such that supp(oy) =
ApUer, k=1,...,m, where Ay is a bounded interval of the real line, |o| > 0

a.e. on Ay, and e is a set without accumulation points in R\ Ap. Let A C
7T (%) be an infinite sequence of distinct multi-indices with the property that

maj:;c(k max mny, — |n|) < co. For any continuous function f on supp(oy ')
ne ,m
1 dx

lim f s z)d|pni|(z) = = flz , 28

i [ 1@ @dpnsle) = - [ )i )
where Ay, = [ak, bg]. In particular,

1
im e hnps1(2) = , K cC\supp(of™), 29
lim en khn k41 (2) CETAICETS \'supp (o) (29)

where \/(z —bg)(z —ag) > 0 if z > 0. Consequently, for k = 1,...,m, each
point of supp(or 1)\ Ay, is a limit of zeros of {Qnx},n € A.

Proof. We will proof this by induction on k. For k = 1, using Corollary 3 in [2],
it follows that

| bl 1 o
t [, S = 7 7 (b —0)@— @)

where f is continuous on supp(o;). Take f(r) = (z — x)~! where z € C\
supp(oy). According to (27) and the previous limit one obtains that
1
lim ey 1hno(z) = =: ho(2),
neR mfna(e) = Ty = )

pointwise on C \ supp(cq). Since
1

/ a1 (2) d|s, |(x)
Ay 2= |Qn,2(x)| d(IC,supp(ol)) ’
where d(/C,supp(c1)) denotes the distance between the two compact sets, the
sequence {hn 2}, n € A, is uniformly bounded on compact subsets of C\supp(o1)
and (29) follows for k = 1.

Let ¢ € supp(o1) \ Ay, Take r > 0 sufficiently small so that the circle

C, = {z: |z — ¢| = r} surrounds no other point of supp(s1) \ A; and contains
no zero of gn 1,n € A. From (29) for k =1

En1l !
imi/ 1217 n’Q(Z)dz:L, hQ(Z)dz:O.
neA 27 Jo, €n,1hn2(2) 27 Jo, ha(2)

z € K c C\ supp(oy),
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From the definition, ¥y, 1,n € A, has either a simple pole at ( or @ 1 has a
zero at (. In the second case there is nothing to prove. Let us restrict our
attention to those n € A such that ¥, 1,n € A, has a simple pole at (. Then,
hn2 = KﬁlenJ\IJml/Qn’g also has a simple pole at . Using the argument
principle, it follows that for all sufficiently large |n|,n € A, Qy 1 must have a
simple zero inside C,.. The parameter r can be taken arbitrarily small; therefore,
the last statement of the lemma readily follows and the basis of induction is
fulfilled.

Let us assume that the lemma is satisfied for k € {1,...,k —1},1 <k < m,
and let us prove that it is also true for k. From (29) applied to k — 1, we have

that
1

VI = by (@ = ax1)[’

uniformly on A, C C\ supp(ci_7). It follows that {|hn,|d|sE7L[},n € A,
is a sequence of Denisov type measures according to Definition 3 in [2] and
({|hneld]si 2 1} {|Qnr—1Qnnt1]}: 1), m € A, is strongly admissible as in Def-
inition 2 of [2] for each | € Z (see paragraph just after both definitions in the
referred paper). Therefore, we can apply Corollary 3 in [2] of which (28) is a
particular case. In the proof of Corollary 3 of [2] (see also Theorem 9 in [3]) it is
required that deg(Qn x—1@n,k+1) —2deg(Qn,x) < C where C > 0 is a constant.
For k = 1 this is trivially true (with C = 0). Since we apply an induction
procedure on k, in order that this requirement be fulfilled for all k € {1,...,m}
we impose that rrrlleaf(k_r?axm mny, — |n|) < oo. From (28), (29) and the rest of

)

ilenzl\ |hn s ()] =

the statements of the lemma immediately follow just as in the case when k = 1.
With this we conclude the proof. O

Remark 3.1. The last statement of Lemma 3.3 concerning the convergence of
the zeros of Qn,1 outside A; to the mass points of o1 on supp(o1) \ A; can be
proved without the assumption that |o}.| > 0 a.e. on A k=1,...,m. This is
an easy consequence of Theorem 1 in [7]. From the proof of Lemma 3.3 it also
follows that if we only have |o},| > 0 a.e. on Apk=1,....,m',m' < m, then
(28)-(29) are satisfied for kK =1,...,m’ and the statement concerning the zeros
holds for k=1,...,m' + 1.

Lemma 3.4. Let S = N (o1,...,0.) be a Nikishin system such that supp(oy) =
Ay U ex, k=1,...,m, where Ay, is a bounded interval of the real line, |o},| > 0
a.e. on &k, and ey is a set without accumulation points in R\ Ek. Let A C
ZT(*) be an infinite sequence of distinct multi-indices with the property that

max( max mnyg — n|) < co. Let us assume that there exists | € {1,...,m}
neA k=1,....m

and a fized permutation T of {1,...,m} such that for all n € A we have that

n,n; € Z7(*,7). Then, for each k = 1,...,m, and each compact set K C
C\ supp(o} ") there exist positive constants Cy 1(K), Cr 2(K) such that
o | @nyk(2) @n, 6 (2)
Cr1(K) < inf | =222 < —b 2 < O 2(K),
) S B Qun@ | = 2R Quite) | = 2
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for all sufficiently large |n|,n € A.

Proof. The uniform bound from above and below on each fixed compact subset
K Cc C\ Ag (for all n € A) is a direct consequence of the interlacing property of
the zeros of Qn, 1 and Qn . In fact, comparing distances to z € K of consecutive
interlacing zeros, it is easy to verify that

Qﬂz,k('z)

Qn,k(z) Qn,k(z)

where dy denotes the diameter of X U Ay and d; denotes the distance between

K and Ag. It is not needed that |o},| > 0 or max( max mng — |n|) < co.
neA k=1,....m

2
d1 < inf thk(Z) = %7
dy

<su
zek - P

zeK

These restrictions come in so as to guarantee that the zeros of the polyno-
mials Qn, r and Qp i lying in Ay \ Supp(allj_l) converge to the mass points as
Lemma 3.3 asserts in this case. Then, we can allow K C C\ supp(o’ljfl). Let K
be such. Notice that K can intersect at most a finite number Iy, . .., Ins(Ip = 0)
of the open intervals forming Ay \ supp(o,]:_l). The polynomials @, and
@n,r can have at most one zero in each of those intervals. Consequently, for
all n|,n € A, sufficiently large, the zeros of Qn, r and Qn lie at a positive

distance ¢ from K. Now, it is easy to show that
~ M
B (%)
dy \ &

- < 3
d <d> < inf

where dy denotes the diameter of U (A \ Ufiolj) and d; the distance between
K and Ay \ UM I;. O

thk(z)

Qn,k(2)

in,k(z)

Qn,k(2)

< sup
zeK

4 Proof of main results

In this final section, S = N (o3, ...,0,) is a Nikishin system with supp(cy) =
Ay U ex, k=1,...,m, where Ay, is a bounded interval of the real line, |o},| >0
a.e. on ﬁk, and e is a set without accumulation points in R\ 5;@ Let A C
Z7 (%) be a sequence of distinct multi-indices. Let us assume that there exists
le{l,...,m} and a fixed permutation 7 of {1,...,m} such that for all n € A
we have that n,n; € Z7'(*, 7). From Lemma 3.4 we know that the sequences

{in,k/Qn,k}neA, kzl,...,m,

are uniformly bounded on each compact subset of C\ supp(a,lj_l) for all suf-
ficiently large |n|. By Montel’s theorem, there exists a subsequence of multi-
indices A’ C A and a collection of functions F},, holomorphic in C \ supp(o}*),

respectively, such that

lim Ok (2) = ﬁél)(z), K cC\supp(op™h), k=1,...,m. (30)

neA’ ka(z)
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In principle, the functions F lgl) may depend on A’. We shall see that this
is not the case and, therefore, the limit in (30) holds for n € A. First, let us
obtain some general information on the functions ﬁ,gl).

The points in supp(of =) \ Ay, are isolated singularities of f‘,gl). Let ¢ €
supp(a’,:_l) \ Ag. By Lemma 3.3 each such point is a limit of zeros of Qn , and
Qn,.k as |n| — oco,n € A, and in a sufficiently small neighborhood of them, for
each n € A, there can be at most one such zero of these polynomials (so there is
exactly one, for all sufficiently large [n|). Let limpep (n = ¢ where Qn 1 (¢n) = 0.
From (30)

lim (2 — Cn)@n, k(2)

lm o = G- ORE), K e (C\suwplop ™) u{ch

and (z — C)ﬁ,ﬁl)(z) is analytic in a neighborhood of (. Hence ( is not an es-
sential singularity of ﬁ,il). Taking into consideration that Qn, x,n € A also
has a sequence of zeros converging to (, from the argument principle it follows
that ¢ is a removable singularity of F, lgl) which is not a zero. By Lemma 3.4
we also know that the sequence of functions |Qn, k/@n k|, € A, is uniformly
bounded from below by a positive constant for all sufficiently large |n|. There-
fore, in C \ supp(of~') the function f,gl) is also different from zero. Accord-
ing to the definition of Qpn x and Qn, x and Lemma 3.2, for k = 1,...,771(]),
we have that degQn, x = |nf~'| = [n*7!| + 1 = degQnr + 1 whereas, for
k=7"")+1,...,m, we obtain that deg Qn, x = [nf"!| = [n*~| = deg Qu.x.
Consequently, for £ = 1,...,771(l), the function ﬁ,gl) has a simple pole at in-
finity and (ﬁél))’(oo) = 1, whereas, for k = 771(I) + 1,...,m, it is analytic at
infinity and ﬁél)(oo) = 1.

Now let us prove that the functions F ,gl) satisfy a system of boundary value
problems.

Lemma 4.1. Let S = N(o1,...,0m) be a Nikishin system with supp(oy) =
ApUep, k=1,....,m, where Ay, is a bounded interval of the real line, |o},| > 0
a.e. on ﬁk, and ey is a set without accumulation points in R\ ﬁk. Let A C
77 (x) be a sequence of distinct multi-indices such that rlrlleaj)f(k:r?ax mng — |n|) <

2]

0o. Let us assume that there exists 1 € {1,...,m} and a fized permutation T of
{1,...,m} such that for alln € A we have that n,n; € Z7 (%, 7). Take A" C A

such that (30) holds. Then, there exists a normalization F,gl), k=1,...,m,
by positive constants, of the functions ﬁ,gl), k=1,...,m, given in (30), which
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verifies the system of boundary value problems
) FY 1/FY e H(C\ Ay,
2)  (F")(00) >0, k=1,...,77}(),
2)  FY0)>0, k=r'0)+1,...,m, (31)

1 ~
3) IR @) —p—p—— =1,z €Ay,
(ED, B (@)

where Fél) = Fgll = 1.

Proof. The assertions 1), 2), and 2’) were proved above for the functions F ,El).
Consequently, they are satisfied for any normalization of these functions by
means of positive constants.

From (26) applied to n and n;, for each k =1,...,m, we have
/ 2" Qn,k(x)d|pn,k|(z) =0, I/:O,...,|1’1k71| -1,
Ap
and
/A " Qn, k(2)gn .k (2)d|pn x| () =0, v=0,..., |n;€_1| -1,
k

where
g k(l‘) _ ‘Qn,k—l(x)Qn,k—&-l(x)‘ |h‘nz,k($)| dp k(x) _ hnﬁk(x)d'slﬁkill(z)

" ‘in,kfl(x)an,k+l(m)‘ |hnk(x)| ’ ™ Qn,kfl(x)Qn,kJrl(x)
From (29) and (30)

lim gn x(2) = |(F B, ) ()] (32)

neA’

uniformly on Ag.

Fix k€ {77'(1) + 1,...,m}. As mentioned above, for this selection of k we
have that deg Qn, x = deg Qnr = [n*~!|. Using Theorems 1 and 2 of [2], and
(30), it follows that

o Qnk(z)  Sk(z) & =(0) = k1
lim S = =Sp(z) =F, " (2), K C C\ supp(o , (33
neA’ ka(z) Sk(OO) k( ) k ( ) \ pp( k ) ( )
where S;, denotes the Szegdé function on C \ ﬁk with respect to the weight
|F]£l_)1(x)F,§21(x)\*1, € Ag. The function Sy, is uniquely determined by

1) S, 1/S, e HC\ Ay),
3) |Sk(x)| mzl, xEAk.
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Now, fix k € {1,...,771(])}. In this situation degQn, » = degQnr +1 =
[n*~1| 4+ 1. Let @, () be the monic polynomial of degree |n*~1| orthogonal
with respect to the varying measure gn xd|pn, k|- Using the same arguments as
above, we have

lim nk(2) _ Sk(2)
nen’ ank(z) Sk(OO)
On the other hand, since deg Qn,,x = deg @, ;, +1 and both of these polynomials

are orthogonal with respect to the same varying weight, by Theorem 1 of [2]
and (30), it follows that

. Qnk(2) _ w(z)
1 : =
neh Qh(2) (oo

= Si(z), K c T\ supp(af ™). (35)

y=oz),  KcC) supp(oy '), (36)

where ¢y, denotes the conformal representation of C \ Ay, onto {w : |w| > 1}
such that ¢y (c0) = co and @) (c0) > 0. The function ¢y is uniquely determined
by

1) pwl/er € HC\ Ay),

2)  ¢h(c0) >0, (37)

3) lop(z)| =1, z€Ay.

From (35) and (36), we obtain

lim, Cj“(()) — B = EO(), KcClsupp(el ). (39)
Thus,
_ Q. = _ -1
(i ., e
and from (34) and (39) it follows that
FO@)P—e—t 1 eX., k=l...m, (40)
(EL RS D@ @
where (Skpl)?(00), k=1,...,771()
wk:{ 5% (00), ’ k:Tll(l7)+1,..’.,m. (41)
Now, let us show that there exist positive constants cx,k = 1,...,m, such

that the functions F,gl) = ckﬁ,gl) satisfy (31). In fact, according to (40) for any
such constants ¢;, we have that

1 2 N
|F’§l)(m)‘2 l 1 = % ) x € Ay, k=1,....,m,
’(Flif)lFngL)(x)’ Ck—1Ck+1Wk
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where ¢y = ¢, +1 = 1. The problem reduces to finding appropriate constants ¢y,

such that
2
—k 1, k=1,...,m. (42)
Ck—1Ck41Wk

Taking logarithm, we obtain the linear system of equations
2log ¢y, — log cg—1 — log cp41 = logwy, k=1,....,m (43)

(co = ¢m+1 = 1) on the unknowns log ¢y . This system has a unique solution
with which we conclude the proof. O

Consider the (m + 1)-sheeted compact Riemann surface R introduced in
Section 1. Given [l € {1,...,m}, let 1 be a singled valued function defined on
‘R onto the extended complex plane satisfying

C 1
1 _ 1
W) = L1 0(5), 52— ool
PO(2)=Crz+0(1), z— ool
where C; and C, are nonzero constants. Since the genus of R is zero, ()

exists and is uniquely determined up to a multiplicative constant. Consider the
branches of 1), corresponding to the different sheets k = 0,1,...,m of R

l/f(l : {?/}(l)}k:o .

0)

We normalize ¢ so that
II )| =1, C;eR\{0}. (44)

Certainly, there are two 9() verifying this normalization.

Given an arbitrary function F'(z) which has in a neighborhood of infinity a
Laurent expansion of the form F(z) = CzF + O(zF71),C # 0, and k € Z, we
denote _

F:=F/C.

C' is called the leading coefficient of F. When C € R, sg(F(c0)) will represent
the sign of C.

Since the product of all the branches H?:o w,gl) is a single valued analytic
function in C without singularities, by Liouville’s Theorem it is constant and
because of the normalization introduced above this constant is either 1 or —1.
In particular, the function appearing in (4) equals

(! T 71l
G(() ())(z) _ 1/@/1(() ()) ()) (45)

u:js

If ) is such that C; € R\ {0}, then

P () =9p0(z), zeR.
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In fact, let ¢(2) := ¥ (Z). ¢ and ¥V have the same divisor; consequently, there
exists a constant C' such that ¢ = Cy". Comparing the leading coefficients of
the Laurent expansion of these functions at 0o(?)| we conclude that C' = 1 since
Cy e R\ {0}.

In terms of the branches of 1), the symmetry formula above means that
for each k =0,1,...,m:

DR\ (ApUALy) — R

(Ao = Ayt = 0); therefore, the coefficients (in particular, the leading one) of

the Laurent expansion at co of these branches are real numbers, sg(w,(cl)(oo)) is
defined, and

! 1 1 X
U @s) = o () =il (@e), @€ B, (46)
We are ready to state and prove our main result.

Theorem 4.1. Let S = N(o1,...,0m) be a Nikishin system with supp(oy) =
ApUeg, k=1,...,m, where Ay is a bounded interval of the real line, |o}| > 0

a.e. on Ay, and ey is a set without accumulation points in R\ A,. Let A C

Z(*) be a sequence of distinct multi-indices such that ma/:{(( max mng — |n|) <
nec =1,...

=1,....m

00. Let us assume that there exists | € {1,...,m} and a fixed permutation T of
{1,...,m} such that for alln € A we have that n,n; € Z7 (*,7). Let {Qunx}7;,
n € A, be the corresponding sequences of polynomials defined in section 3. Then,
for each fized k € {1,...,m}, we have

where

m . m .
F = sg (H s (”)(oo)) I »5 ®. (48)
v=~k

v=~k

Proof. Since the families of functions
{an,k/Qn,k}neA , k=1,...,m,

are uniformly bounded on each compact subset K C C\ supp(cof—?) for all suffi-
ciently large |n|,n € A, uniform convergence on compact subsets of the indicated
region follows from proving that any convergent subsequence has the same limit.
According to Lemma 4.1 the limit functions, appropriately normalized, of a con-
vergent subsequence satisfy the same system of boundary value problems (31).
According to Lemma 4.2 in [1] this system has a unique solution.

It remains to show that the functions defined in (48) satisfy (31). When
multiplying two consecutive branches, the singularities on the common slit can-

—1 ~
cel out; therefore, 1) takes place since only the singularities of ¢,(€T ) on Ap
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remain. From the definition ofw(fl(l)) it also follows that for k = 1,--- ,771(1),

F, ,5[) has at infinity a simple pole, whereas it is regular and different from zero
when k = 771(I) + 1,--- ,m. The factor sign in front of (48) guarantees the
positivity claimed in 2) and 2').

In order to verify 3), notice that F(l)/Flgl)1 = sg(vy, (T L ( ))/¢ l))
Therefore, if k=2,...,m
|F,£”<x>|2 _ )
l l =1
EL@EL @ P @)
on account of (46). For k = 1, from the definition and (46)

=1

) J/‘Ezk,

l m
|F1( )(x)lz _ 1) 2 (.,-*1(1)) _ *l(l)) —1, A
=l Y @P ] v )= |H Wi D(a)] = v €A,
[ Fy ()] v=2
since [, 1/137_1(0) is constantly equal to 1 or —1 on all C. O

Theorem 1.1 is a particular case of Theorem 4.1 on account of (45).

Proof of Corollary 1.1. Let
A =ANZY(x,7),

where 7 is a given permutation of {1,...,m}. We are only interested in those
A, with infinitely many terms. There are at most m! such subsequences. For
n € A; fixed, denote n,(;,j € {1,...,m}, the multi-index obtained adding
one to all j components 7(1),...,7(j) of n. (Notice that this notation differs
from that introduced previously for n;.) In particular, n ¢, = n+1. It is
easy to verify that for all j € {1,...,m}, n ;) € A;. For all n € A, and each
ke{l,...,m}, we have

—1
Qnitk _ TT Dnoginh

Qn,k =0 Qn,<j>,k ’

where Qn, royk = = @Qn,k- From (47) it follows that

. QnJrlk 0 kol
nl(l:'A NE HF , K c C\ supp(o; 7).

The right side does not depend on [, since all possible values intervene. There-
fore, the limit is the same for all 7 and thus

-~ Quiik(2) 1T =0 k=1

lim —————~ = F.(2), K C C\ supp(o . 49

I i) 1] L (2) \ supp(of ') (49)
Formula (5) is (49) for k =1 on account of (45) and (48). O

The following corollary complements Theorem 4.1. The proof is similar to
that of Corollary 4.1 in [1].
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Corollary 4.1. Let S = N(o1,...,04) be a Nikishin system with supp (o) =
ApUer,k=1,...,m, where Ay, is a bounded interval of the real line, |o},| > 0
a.e. on &k, and ey is a set without accumulation points in R\ Bk Let A C
7T (*) be a sequence of distinct multi-indices such that rélea[i((kinllaxm mny, — |n|) <

Loy

oo. Let us assume that there exists | € {1,...,m} and a fixred permutation
7 of {1,...,m} such that for all n € A we have that n,n; € Z7'(x, 7). Let
{tnk = EnkxQnr}i i, n € A, be the system of orthonormal polynomials as de-
fined in (24) and {Kn 7., € A, the values given by (23). Then, for each
fixred k =1,...,m, we have

. Knjk )
lim —2% = 50
L S (50)
. Knk 1 1
O o
and )
i k(2) () =) k—
ng\m—nk F."(2), z € K C C\supp(o; 1), (52)
where
U] l _
W__ S W _ [ EDY(0), k=177, 53
T 0 0 T FO%), k=704 1,..m, (53)
CL_1Ck41 k

and the F,El) are defined by (48).

Proof. By Theorem 4.1, we have limit in (32) along the whole sequence A.
Reasoning as in the deduction of formulas (33) and (38), but now in connection
with orthonormal polynomials (see Theorems 1 and 2 of [2]), it follows that

qﬂl,k(z) _ (S ® )(Z)a k= 17""7—_1(”7 -1
e = 60 £ e C\smonio ),

Si(2), k=110 +1,...,m, Tk

where Sy, is defined in (34). This formula, divided by (33) or (38) according to
the value of k gives

. Rn,k Ck
lim 202 = /oy =

b
neA Kp g \/Ck—1Ck+1

where wy, is defined in (41), and the ¢ are the normalizing constants found in
Lemma 3.1 solving the linear system of equations (43) which ensure that

Fél)zckﬁél), k=1,....,m,

with F,gl) satisfying (31) and thus given by (48). Since (ﬁ,gl))’(oo) =1Lk =
1,...,77(1), and (ﬁ,ﬁl))(oo) =1L,k=7"Y)+1,...,m, formula (50) immedi-
ately follows with ng) as in (53).
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From the definition of ky 1, we have that

Kn,k:/fn,l"’ﬁnk-

)

Taking the ratio of these constants for the multi-indices n and n; and using (50),
we get (51). Formula (52) is an immediate consequence of (50) and (47). O

Remark 4.1. We have imposed two types of restrictions on the class of multi-
indices under consideration. The first one refers to being in Z7'(*). This is
connected with a long standing question in the theory of multiple orthogonal
polynomials; namely, if for any m all multi-indices of a Nikishin system are
strongly normal or not. We have proved our results in the largest class of multi-
indices known to be strongly normal. Should this conjecture be solved in the
positive sense, our methods would allow to eliminate this condition as we have
done for the cases m = 1,2, 3.

The second restriction ma}\((k max mny — |n|) < oo is connected with the
ne =1,....m

use of Lemma 3.3. This condition means that all components of the multi-indices
are of the same order and that orthogonality is, basically, equally distributed
between all measures. The proof of (28) requires the density of certain classes of
rational functions with fixed poles (in our case at the zeros of the polynomials
Qn,k—1@n k+1 and numerator of degree twice the order of orthogonality) in the
space of continuous functions on a given interval. In general, this is not true if
the rational functions are such that the degree of the denominator is much larger
in order than that of the numerator (as |n| — oo). This is what may occur if we
eliminate the restriction above. It can be relaxed to ny = |n|/m+O(log|n|), k =
1,...,m, without changing the structure of the Riemann surface which describes
the solution of the problem, but not much more. In limiting situations (for
example, if one of the components of the multi-indices is not allowed to grow at
all) some of the sheets may even disappear. The description of the solution in
the most general situation is very difficult and technically complicated. On the
other hand, in applications, the diagonal case (ny = |n|/m,k=1,...,m,) and
nearby indices are the most important.
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