
Heuristic Search-Based
Stacking of Classifiers

Agapito Ledezma, Ricardo Aler and Daniel Borrajo
Universidad Carlos III de Madrid

.

Currently, the combination of several classifiers is one of the most active
fields within inductive learning. Examples of such techniques are boost-
ing, bagging and stacking. From these three techniques, stacking is
perhaps the least used one. One of the main reasons for this relates to the
difficulty to define and parameterize its components: selecting which
combination of base classifiers to use, and which classifiers to use as the
meta-classifier. The approach we present in this chapter poses this
problem as an optimization task, and then uses optimization techniques
based on heuristic search to solve it. In particular, we apply genetic
algorithms to automatically obtain the ideal combination of learning
methods for the stacking system.

INTRODUCTION
One of the most active and promising fields in inductive Machine Learning is

the ensemble of classifiers approach. An ensemble of classifiers is a set of classifiers
whose individual decisions are combined in some way to classify new examples
(Dietterich, 1997). The purpose of combining classifiers consists of improving the
accuracy of a single classifier. Experimental results show that this is usually
achieved.

There are several ways to construct such ensembles, but currently the most
frequently used ones are bagging (Breiman, 1996), boosting (Freund & Schapire,
1995) and less widely used, stacking (Wolpert, 1992). Bagging constructs a set of
classifiers by subsampling the training examples to generate different hypotheses.

Cita bibliográfica
Published in: Heuristics & Optimization for Knowledge Discovery In Heuristic and Optimization for Knowledge Discovery, Idea Group Publishing, 2002, p. 53-67

After the different hypotheses are generated, they are combined by a voting
mechanism. Boosting also uses the voting system to combine the classifiers. But,
instead of subsampling the training examples, it generates the hypotheses sequen-
tially. In each repetition, a new classifier is generated whose focus are those
instances that were handled incorrectly by the previous classifier. This is achieved
by giving a weight to each instance in the training examples and adjusting these
weights according to its importance after every iteration. Both, bagging and
boosting use classifiers generated by the same base-learning algorithm and obtained
from the same data. Finally, stacking can combine classifiers obtained from
different learning algorithms using a high level classifier –the metaclassifier- to
combine the lower level models. This is based on the fact that different classifiers
are obtained from the same data and different learning algorithms use different
biases to search the hypothesis space. This approach expects that the metaclassifier
will be able to learn how to decide between the predictions provided by the base
classifiers, to improve their accuracy, much in the same way as a committee of
experts.

 One problem associated with stacked generalization is identifying which
learning algorithm should be used to obtain the metaclassifier, and which ones
should be the base classifiers. The approach we present in this chapter poses this
problem as an optimization task, and then uses optimization techniques based on
heuristic search to solve it. In particular, we apply genetic algorithms (Holland,
1975) to automatically obtain the ideal combination of learning methods for the
stacking system.

BACKGROUND
The purpose of this section is to give enough background to understand the rest

of the paper. Here, we will explain concepts related to ensembles of classifiers,
bagging, boosting, stacking, and genetic algorithms.

Ensemble of Classifiers
The combination of multiple classifiers to improve the accuracy of a single

classifier has had good results over several datasets that appear in recent papers
about ensembles of classifiers (Bauer & Kohavi, 1999; Breiman, 1996; Freund &
Schapire, 1996; Quinlan, 1996). According to Dietterich (1997), an ensemble of
classifiers is a set of classifiers whose individual decisions are combined in some
way to classify new examples. There are many ways to construct an ensemble of
classifiers. Bauer and Kohavi (1999) have made a comparison of algorithms based
on voting systems. Dietterich (2000) carried out a survey of the main methods to
construct an ensemble of classifiers. One way to construct an ensemble of classifiers
is based on subsampling the training set to generate a different set of hypotheses and
then combine them. This is called bagging (Breiman, 1996). The second way is to
create classifiers sequentially, giving more importance to examples that were

misclassified in the previous classifier. The latter is called boosting (Schapire,
1990). Both bagging and boosting use a single learning algorithm to generate all the
classifiers, whereas stacking combines classifiers from different learning algo-
rithms. There are other methods to combine a set of classifiers (Dietterich, 2000),
but for experimental purposes in this study we consider here the most well known
methods, bagging, boosting and stacking.

Bagging
Breiman (1996) introduced the Bootstrap aggregating Algorithm (Bagging)

that generates different classifiers from different bootstrap samples and combines
decisions from the different classifiers into a single prediction by voting (the class
that gets more votes from the classifiers wins). Figure 1 shows the bagging
algorithm.

Each bootstrap sample is generated by sampling uniformly (with replacement)
the m-sized training set, until a new set with m instances is obtained. Obviously,
some of the instances of the training set will be cloned in the bootstrap sample, and
some will be missing. Then, a classifier Ci is built from each of the bootstrap samples
B1, B2, … BT. Each classifier corresponding to each bootstrap sample will focus on
some instances of the training set, and therefore the resulting classifiers will usually
differ from each other. The final classifier C* is the ensemble of the Ci classifiers
combined by means of the uniform voting system (all classifiers have equal weight).

Since an instance has probability 1-(1-1/m) m of being in the bootstrap sample,
each bootstrap replicate has, on average, 63.2% of unique training instances (1 - 1/
e = 63.2%). For this reason the generated classifiers will be different if the base
learning algorithm is unstable (e.g. decision tree or neural networks). If the
generated classifiers are good and do not correlate, the performance will be
improved. This will occur if they make few mistakes and different classifiers do not
misclassify the same instances frequently.

Figure 1. The Bagging Algorithm

The Bagging Algorithm
Input:
Training set S
Base Learning Algorithm B
Number of bootstrap samples T

Procedure:
For i = 1 to T {

S' = bootstrap sample from S (S' is a sample with replacement from S)
Ci

= B (S') (crea te a new classifier from S')
}
C*(x) = (the most often predicted label y)

Output
Classifier C*

∑
= yxCii)(

1
Yy
max

∈
arg

Boosting
Another method to construct an ensemble of classifiers is known as boosting

(Schapire, 1990), which is used to boost the performance of a weak learner. A weak
learner is a simple classifier whose error is less than 50% on training instances.
There are many variants of the boosting idea, but in this study we will describe the
widely used AdaBoost Algorithm (Adaptive Boosting) that was introduced by
Freund & Schapire (1995). Sometimes the AdaBoost algorithm is also known as
AdaBoostM1.

Figure 2 AdaBoostM1 Algorithm.

The AdaBoostM1 Algorithm
Input:
Training set S, of labelled instances: S = {(xi, yi), i = 1,2, …, m},
classes yi ∈ Y = {1, …, K}
Base Learning Algorithm (weak learner) B
Number of iteration T

Procedure:
Initialise for all i: w1(i) = 1/m Assign equal weights to

all training instances
For t = 1 to T {

for i: pt (i) = wt(i)/(Σi wt(i)) Normalise the weight
of the instances

Ct = B(pt) Apply the base learning
algorithm with the normalised
weights

weighted error on training set

If εi > 1/2 then
T= t -1
exit

βt = εi/(1- εi)

for all i: wt+1(i) = wt(i) Compute the new weights

}

Classifier

Output
Classifier C*

])([

1

1logargmax* yxC
T

t
tYy

C t =
=









∈
= ∑ β

m
i

1
=ε

∑
≠∈ jjij yxCSx)(:'

weight(x)

])([1 iii yxC
t

≠−β

Similarly to bagging, boosting manipulates the training set to generate a set of
classifiers of the same type (e.g. decision trees). But, while in bagging classifiers are
generated independently from each other, in boosting they are generated sequen-
tially, in such a way that each one complements the previous one. First, a classifier
is generated using the original training set. Then, those instances misclassified by
this classifier are given a larger weight (therefore, misclassifying this instance
makes the error larger). Next, a new classifier is obtained by using the previously
weighted training set. The training error is calculated and a weight is assigned to the
classifier in accordance with its performance on the training set. Therefore, the new
classifier should do better on the misclassified instances than the previous one,
hence complementing it. This process is repeated several times. Finally, to combine
the set of classifiers in the final classifier, AdaBoost (like bagging) uses the voting
method. But unlike bagging that use equal weights for all classifiers, in boosting the
classifiers with lower training error have a higher weight in the final decision.

More formally, let S be the training set and T the number of trials, the classifiers
C1, C2,…. CT are built in sequence from the weighted training samples (S1, S2,…,ST)
The final classifier is the combination of the set of classifiers in which the weight
of each classifier is calculated by its accuracy on its training sample. The AdaBoost
algorithm is displayed in Figure 2.

An important characteristic of the AdaBoost algorithm is that it can combine
some weak learners to produce a strong learner, so long as the error on the weighted
training set is smaller than 0.5. If the error is greater than 0.5, the algorithm finishes
the execution. Were it not so, the final prediction of the ensemble would be random.

Stacking
Stacking is the abbreviation used to refer to Stacked Generalization (Wolpert,

1992). Unlike bagging and boosting, it uses different learning algorithms to
generate the ensemble of classifiers. The main idea of stacking is to combine
classifiers from different learners such as decision trees, instance-based learners,
etc. Since each one uses different knowledge representation and different learning
biases, the hypothesis space will be explored differently, and different classifiers
will be obtained. Thus, it is expected that they will not be correlated.

Once the classifiers have been generated, they must be combined. Unlike
bagging and boosting, stacking does not use a voting system because, for example,
if the majority of the classifiers make bad predictions, this will lead to a final bad
classification. To solve this problem, stacking uses the concept of meta learner. The
meta learner (or level-1 model), tries to learn, using a learning algorithm, how the
decisions of the base classifiers (or level-0 models) should be combined.

Given a data set S, stacking first generates a subset of training sets S1, ,ST and
then follows something similar to a cross-validation process: it leaves one of the
subsets out (e.g. Sj) to use later The remaining instances S (-j)= S - Sj are used to
generate the level-0 classifiers by applying K different learning algorithms, k = 1,
…, K, to obtain K classifiers. After the level-0 models have been generated, the Sj

set is used to train the meta learner (level-1 classifier). Level-1 training data is built
from the predictions of the level-0 models over the instances in Sj , that were left out
for this purpose. Level-1 data has K attributes, whose values are the predictions of
each one of the K level-0 classifiers for every instance in Sj . Therefore, a level-1
training example is made of K attributes (the K predictions) and the target class,
which is the right class for every particular instance in Sj. Once the level-1 data has
been built from all instances in Sj, any learning algorithm can be used to generate
the level-1 model. To complete the process, the level-0 models are re-generated
from the whole data set S (this way, it is expected that classifiers will be slightly
more accurate). To classify a new instance, the level-0 models produce a vector of
predictions that is the input to the level-1 model, which in turn predicts the class.

There are many ways to apply the general idea of stacked generalization. Ting
and Witten (1997) use probability outputs from level-0 models instead of a simple
class prediction as inputs to the level-1 model. LeBlanc and Tibshirani (1993)
analyze the stacked generalization with some regularization (non-negative con-
straint) to improve the prediction performance on one artificial dataset. Other works
on stacked generalization have developed a different focus (Chan & Stolfo, 1995;
Fan, Chan & Stolfo, 1996).

Genetic Algorithms for Optimization Problems
Genetic algorithms (GA’s) are search procedures loosely connected to the

theory of evolution by means of artificial selection (Holland, 1975). In classical
search terms, GA’s can be viewed as a kind of beam search procedure. Its main three
components are:

• The beam (or population). It contains the set of points (candidate solutions or
individuals) in the search space that the algorithm is currently exploring. All
points are usually represented by means of bit strings. This domain indepen-
dent representation of candidate solutions makes GA’s very flexible.

• The search operators. They transform current candidate solutions into new
candidate solutions. Their main characteristic is that, as they operate on bit
strings, they are also domain independent. That is, they can be used to search
in any domain. GA’s operators are also based in biological analogies. The
three most frequently used operators are:
- Reproduction: it just copies the candidate solution without modification.
- Crossover: it takes two candidate solutions, mixes them and generates two

new candidate solutions. There are many variations of this operator (mainly,
single point, two point and uniform). See Figure 3.

- Mutation: it flips a single bit of a candidate solution (it mutates from 0 to 1,
or from 1 to 0). The bit is selected randomly from the bits in the individual.

• The heuristic function (or fitness function). This function measures the worth
of a candidate solution. The goal of a GA is to find candidate solutions that
maximize this function.
GA’s start from a population made up of randomly generated bit strings. Then,

genetic operators are applied to worthy candidate solutions (according to the
heuristic function) until a new population is built (the new generation). A GA
continues producing new generations until a candidate solution is found that is
considered to be good enough, or when the algorithm seems to be unable to improve
candidate solutions (or until the number of generations reaches a predefined limit).
More exactly, a GA follows the algorithm below:

1. Randomly generate initial population G(0)
2. Evaluate candidate solutions in G(0) with the heuristic function
3. Repeat until a solution is found or population converges

3.1. Apply selection-reproduction: G(i) -> Ga(0)
3.2. Apply crossover: Ga(i) -> Gb(i)
3.3. Apply mutation: Gb(i) -> Gc(i)
3.4. Obtain a new generation G(i+1) = Gc(i)
3.5. Evaluate the new generation G(i+1)
3.6. Let i=i+1

The production of a new generation G(i+1) from G(i) (steps 3.1, 3.2, and 3.3)
is as follows. First, a new population G a(i) is generated by means of selection. In
order to fill up a population of n individuals for G a(0), candidate solutions are
stochastically selected with replacement from G(i) n times. The probability for
selecting a candidate solution is the ratio between its fitness and the total fitness of
the population. This means that there will be several copies of very good candidate
solutions in Ga(0), whereas there might be none of those whose heuristic evaluation
is poor. However, due to stochasticity, even bad candidate solutions have a chance
of being present in Ga(0). This method is called ‘selection proportional to fitness’,
but there are several more, like tournament and ranking (Goldberg,1989).

Gb(i) is produced by applying crossover to a fixed percentage pc of randomly
selected candidate solutions in Ga(i). As each crossover event takes two parents and
produces two offspring, crossover happens pc/2 times. In a similar manner, Gc(i) is

Figure 3. One and Two Point Crossover Operations

00110000100

11100100010

00100100010

11110000100

00110000100

11100100010

00100100100

11110000010

One point crossover Two point crossover

obtained from Gb(0) by applying mutation to a percentage pm of candidate solutions.

GA-STACKING APPROACH
In this section, the approach we have taken to build stacking systems will be

explained. Given that stacked generalization is composed by a set of classifiers from
a different set of learning algorithms, the question is: what algorithm should be used
to generate the level-0 and the level-1 models? In principle, any algorithm can be
used to generate them. For instance, Ting and Witten (1997) showed that a linear
model is useful to generate the level-1 model using probabilistic outputs from level-
0 models. Also, our classifiers at level-0 are heterogeneous, and any algorithm can
be used to build the metaclassifier. In the present study, to determine the optimum
distribution of learning algorithms for the level-0 and level-1 models, we have used
a GA.

GA-Stacking
Two sets of experiments were carried out to determine whether stacked

generalization combinations of classifiers can be successfully found by genetic
algorithms. We also wanted to know whether GA stacking can obtain improvements
over the most popular ensemble techniques (bagging and boosting) as well as any
of the standalone learning algorithms.

As indicated previously, the application of genetic algorithms to optimization
problems requires to define:

• the representation of the individuals (candidate solutions)
• the fitness function that is used to evaluate the individuals
• the selection-scheme (e.g., selection proportional to fitness)
• the genetic operators that will be used to evolve the individuals
• the parameters (e.g., size of population, generations, probability of crossover,

etc.)
The representations of the possible solutions (individuals) used in the two sets

of performed experiments, are chromosomes with five genes (see Figure 4). Each
gene represents the presence of a learning algorithm. Since we want to use seven
possible learning algorithms, each gene has three binary digits to represent them.
The firsts four genes of the chromosome represent the four learning algorithms to
build the level-0 classifiers and the last gene represents the algorithm to build the
metaclassifier.

010111000110001
level-0 models

level-1 model

010111000110001
level-0 models

level-1 model

Figure 4. Individual description.

To evaluate every individual, we used the classification accuracy of the
stacking system as the fitness function.

EXPERIMENTAL RESULTS
In this section, we present the empirical results for our GA-Stacking system.

GA-Stacking has been evaluated in several domains of the UCI database (Blake &
Merz, 1998). We have performed two sets of experiments. In the first one, we show
some preliminary results, which are quite good but suffer some overfitting. In the
second set of experiments, steps were taken to avoid the said overfitting. Both sets
of experiments differ only in the way GA individuals are tested (i.e. the fitness
function). In this work, we have used the algorithms implemented in Weka (Witten
& Frank, 2000). This includes all the learning algorithms used and a implementation
of bagging, boosting and stacking.

Basically, the implementation of GA-Stacking combines two parts: a part
coming from Weka that includes all the base learning algorithms and another part,
which was integrated into Weka, that implements a GA. The parameters used for the
GA in the experiments are shown in Table 1. The elite rate is the proportion of the
population carried forward unchanged from each generation. Cull rate refers to the
proportion of the population that is deemed unfit for reproduction. Finally, the
mutation rate is the proportion of the population that can suffer change in the
configuration at random.

For the experimental test of our
approach we have used seven data sets
from the repository of machine learn-
ing databases at UCI. Table 2 shows
the data sets characteristics.

The candidate learning algorithms
for GA stacking we used were:

• C4.5 (Quinlan, 1993). It gener-
ates decision trees - (C4.5)

• PART (Frank & Witten, 1998).

Table 2. Datasets description.

Dataset Attributes Attributes Type Instances Classes
Heart disease 13 Numeric-nominal 303 2
Sonar classification 60 Numeric 208 2
Musk 166 Numeric 476 2
Ionosphere 34 Numeric 351 2
Dermatology 34 Numeric-nominal 366 6
DNA splice 60 Nominal 3190 3
Satellite images 36 Numeric 6435 6

Table 1. Genetic algorithms parameters.

Parameters Values
Population size 10
Generations 10
Elite rate 0.1
Cull rate 0.4
Mutation rate 0.067

It forms a decision list from pruned partial decision trees generated using the
C4.5 heuristic - (PART)

• A probabilistic Naive Bayesian classifier (John & Langley, 1995) - (NB)
• IB1. This is Aha’s instance based learning algorithm (Aha & Kibler, 1991) -

(IB1)
• Decision Table. It is a simple decision table majority classifier (Kohavi, 1995)

- (DT)
• Decision Stump. It generates single-level decision trees - (DS)

Preliminary Experiments
Experiments in this subsection are a first evaluation of GA-Stacking. They use

the GA-Stacking scheme described in previous sections. Here, we will describe in
more detail how individuals are tested (the fitness function), and how the whole
system is tested. Each data set was split randomly in two sets. One of them was used
as the training set for the GA fitness function. It contained about 85% of all the
instances. Individual fitness was measured as the accuracy of the stacking system
codified in it. The rest was used as a testing set to validate the stacked hypothesis
obtained. In these experiments we used only two of the data sets shown in Table 2
(dermatology and ionosphere).

Table 3 shows the results for this preliminary approach. Training and test
accuracy columns display how many instances in the training and testing sets were
correctly predicted for each of the systems. The first part of the table contains the
standalone algorithms. The second part shows results corresponding to traditional
bagging and boosting approaches (with C4.5 as the base classifier). Finally, results
for GA-Stacking are shown. The best GA-Stacking individual in the last generation

Table 3. Preliminary Results.

Algorithm Ionosphere Dermatology
Training Test Training Test
Accuracy Accuracy Accuracy Accuracy

C4.5 98.42 82.86 96.67 92.42
Naive Bayes 85.13 82.86 98.67 96.97
PART 98.73 88.57 96.67 93.94
IBk (one neighbor) 100.00 82.86 100.00 92.42
IB1 100.00 82.86 100.00 92.42
Decision Stump 84.18 80.00 51.33 45.45
Decision Table 94.94 88.57 96.67 87.88
Ensembles
Bagging with C4.5 97.78 85.71 97.00 93.94
Boosting with C4.5 100.00 91.43 100.00 96.97
GA-Stacking(last
generation solutions) 100.00 85.71 100.00 95.45
GA-Stacking (solutions
of previous generations) 97.78 94.29 98.67 98.48

has a 100% in the training set in both domains, but drops to 85.71% and 95.45% in
testing. On the other hand, some individuals from previous generations manage to
get a 94.29% and 98.48% testing accuracies. This means that GA-Stacking overfits
the data as generations pass on. Despite this overfitting, GA-Stacking found
individuals which are better than most of the base classifiers. Only in the Ionosphere
domain, the Decision Table is better in testing than the overfitted individual (88.57
vs. 85.71). Also, performance of GA-Stacking is very close to bagging and boosting
(both using C4.5 to generated base classifiers). Non-overfitted individuals (those
obtained in previous generations) show an accuracy better than any of the other
ensemble systems. In addition, stacking systems only use four level-0 classifiers
whereas bagging and boosting use at least 10 base classifiers. This shows that the
approach is solid. The following section shows how we overcame the problem of
overfitting.

Main Experiments (Overfitting avoidance)
In the preliminary experiments, individuals overfit because they were evalu-

ated with the same training instances that were used to build the stacking associated
with the individual. Obviously, the individual will do very well with the instances
it has been trained with. Therefore, in order to avoid the overfitting, the fitness value
was calculated with a separate validation set (different from the testing set used to
evaluate GA-Stacking itself). To do so, the set of training instances was partitioned
randomly into two parts. 80% of training instances were used to build the stacking
system associated with each individual, and the remaining 20% –the validation set-
was used to give a non-biased estimation of the individual accuracy. The latter was
used as the fitness of the individual. It is important to highlight that now fewer
instances are used to build the stacking systems, as some of them are used to prevent
overfitting.

For testing all the systems we used the testing data set, just as we did in the
preliminary experiments. However, now a five-fold cross-validation was used.
Therefore, results shown are the average of the five cross-validation iterations. In
the satellite images domain no cross-validation was carried out because the sets for
training and testing are available separately and the data set donor indicated that it
is better not to use cross-validation.

Results are divided in two tables. Table 4 shows the testing accuracy of all the
base algorithms over the data sets.

Table 5 displays testing results for the three ensemble methods, including GA-
Stacking. The best results for each domain are highlighted. Only in the heart domain,
one of the base classifiers obtained greater accuracy than any ensemble method. The
configuration of the stacked generalization found by the genetic algorithms ob-
tained a greater accuracy in four of the seven domains used in the experiment in
contrast to the other ensemble methods. In the domains where stacking has lesser
accuracy than bagging or boosting the difference is very small excepting in the musk
domain where the difference is +5% in favor of boosting.

CONCLUSIONS
In this chapter, we have presented a new way of building hetereogeneous

stacking systems. To do so, a search on the space of stacking systems is carried out
by means of a genetic algorithm. Empirical results show that GA-Stacking is
competitive with more sophisticated ensemble systems such as Bagging and
Boosting. Also, our approach is able to obtain high accuracy classifiers which are
very small (they contain only 5 classifiers) in comparison with other ensemble
approaches.

Even though the GA-Stacking approach has already produced very good
results, we believe that future research will show its worth even more clearly:

• Currently, GA-Stacking searches the space of stacked configurations. How-
ever, the behavior of some learning algorithms is controlled by parameters. For
instance, the rules produced by C4.5 can be very different depending on the
degree of pruning carried out. Our GA-Stacking approach would only have to
include a binary coding of the desired parameters in the chromosome.

• Search depends on the representation of candidate hypothesis. Therefore, it
would be interesting to use other representations for our chromosomes. For
instance, the chromosome could be divided into two parts, one for the level 0
learners and another for the level 1 metaclassifier. A bit in the first part would

Table 4. Average accuracy rate of independent classifiers in the second experiment.
*without cross-validation.

Dataset C4.5 PART NB IB1 DT DS
Heart 74.00 82.00 83.00 78.00 76.33 70.67
Sonar 72.38 73.81 67.62 79.52 71.90 73.93
Musk 83.33 85.21 74.38 86.46 82.08 71.46
Ionosphere 90.14 89.30 82.82 87.61 89.30 82.82
Dermatology 94.33 94.59 97.03 94.59 87.83 50.40
DNA splice 94.12 92.11 95.63 75.62 92.49 62.42
Satellite images* 85.20 84.10 79.60 89.00 80.70 41.75

Table 5. Average accuracy rate of ensemble methods in the second experiment.

Dataset Bagging Boosting GA-Stacking
Heart 76.33 79.67 80.67
Sonar 80.00 79.05 80.47
Musk 87.29 88.96 83.96
Ionosphere 92.11 91.83 90.42
Dermatology 94.59 97.03 98.11
DNA splice 94.56 94.43 95.72
Satellite images 88.80 89.10 88.60

indicate whether a particular classifier is included in level 0 or not. The
metaclassifier would be coded in the same way we have done in this paper (i.e.
if there are 8 possible metaclassifiers, 3 bits would be used).

• Different classifiers could be better suited for certain regions of the instance
space. Therefore, instead of having a metaclassifer that determines what
output is appropriate according to the level 0 outputs (as currently), it would
be interesting to have a metaclassifier that knows what level 0 classifier to trust
according to some features of the instance to be classified. In that case, the
inputs to the metaclassifier would be the attributes of the instance and the
output the right level 0 classifier to use.

REFERENCES
Aha, D., & Kibler, D. (1991). Instance-based learning algorithms. Machine Learning, 6, 37-

66.
Bauer, E., & Kohavi, R.(1999). An empirical comparison of voting classification algo-

rithms: Bagging, boosting, and variants. Machine Learning, 36 (1/2), 105-139.
Blake, C.L., & Merz, C.J. (1998). UCI Repository of machine learning databases. Retrieved

November 1, 2000, from http://www.ics.uci.edu/~mlearn/MLRepository.html
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140.
Chan, P., & Stolfo, S. (1995). A comparative evaluation of voting and meta-learning on

partitioned data. In Proceedings of Twelfth International Conference on Machine
Learning (90-98). Morgan Kaufmann.

Dietterich, T. (1997). Machine learning research: four current directions. AI Magazine
18(4), 97-136.

Dietterich, T. (2000). Ensemble methods in machine learning. In Proceedings of First
International Workshop on Multiple Classifier Systems (pp. 1-15). Springer-Verlag.

Fan, D., Chan, P., & Stolfo, S. (1996). A comparative evaluation of combiner and stacked
generalization. In Proceedings of AAAI-96 workshop on Integrating Multiple Learning
Models , 40-46.

Frank, E., & Witten, I. (1998). Generating accurate rule sets without global optimization.
In Proceedings of the Fifteenth International Conference on Machine Learning (144-
151). Morgan Kaufmann.

Freund, Y., & Schapire, R. E. (1995). A decision-theoretic generalization of on-line learning
and an application to boosting. In Proceedings of the Second European Conference on
Computational Learning Theory, Springer-Verlag, 23-37.

Freund, Y., & Schapire, R. E. (1996). Experiment with a new boosting algorithm. In L.
Saitta, de., Proceedings Thirteenth International Conference on Machine Learning,
Morgan Kaufmann, 148-156.

Goldberg, D.E. (1989). Genetic algorithms in search, optimization, and machine learning.
Addison-Wesley.

Holland, J.H. (1975). Adaptation in natural and artificial systems. The University of
Michigan Press.

John, G.H., & Langley, P. (1995). Estimating continuous distributions in bayesian classi-
fiers. In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelli-
gence, Morgan Kaufmann, 338-345.

Kohavi R. (1995). The power of decision tables . In Proceedings of the Eighth European

Conference on Machine Learning.
LeBlanc, M., & Tibshirani, R. (1993). Combining estimates in regression and classification.

Technical Report 9318. Department of Statistic, University of Toronto.
Quinlan, J. R. (1996). Bagging, boosting, and C4.5. In Proceedings of Thirteenth National

Conference on Artificial Intelligence, AAAI Press and the MIT Press, 725-730.
Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5(2), 197-227.
Ting, K., & Witten, I. (1997). Stacked generalization: when does it work. In Proceedings

International Joint Conference on Artificial Intelligence.
Whitley, L.D.(1991). Fundamental principles of deception in genetic search. In Gregor y J.E

(Ed.) Foundations of genetic algorithms, San Mateo, CA: Morgan Kaufmann, 221-241.
Witten, I., & Frank, E. (2000). Data mining: practical machine learning tools and

techniques with Java implementation. San Francisco, CA: Morgan Kaufmann.
Wolpert, D. (1992). Stacked generalization. Neural Networks 5, 241-259.

