
Empirical Evaluation of Optimized Stacking Configurations

Agapito Ledezma, Ricardo Aler, Araceli Sanchis and Daniel Borrajo
Universidad Carlos III de Madrid

Avda. de la Universidad, 30, 28911, Leganés (Madrid). Spain
{ledezma,aler,masm}@inf.uc3m.es, dborrajo@ia.uc3m.es

Abstract

Stacking is one of the most used techniques for combin-
ing classifiers and improve prediction accuracy. Early re-
search in stacking showed that selecting the right classi-
fiers, their parameters and the metaclassifiers was the main
bottleneck for its use. Most of the research on this topic se-
lects by hand the right combination of classifiers and their
parameters. Instead of starting from these initial strong as-
sumptions, our approach uses genetic algorithms to search
for good stacking configurations. Since this can lead to
overfitting, one of the goals of this paper is to evaluate em-
pirically the overall efficiency of the approach. A second
goal is to compare our approach with current best stack-
ing building techniques. The results show that our approach
finds stacking configurations that, in the worst case, per-
form as well as the best techniques, with the advantage of
not having to set up manually the structure of the stacking
system.

1. Introduction

One of the currently favored lines of research in Machine
Learning is the combination of classifiers to improve clas-
sification accuracy [9]. This approach is known as ensem-
bles of classifiers in the supervised learning area. The main
idea behind ensembles, is that they are often much more ac-
curate than the individual classifiers that make them up.

Research in this area focused, generally, in generating
the ensemble’s members applying a single learning algo-
rithm [10]. In order to generate different classifiers, there
are several methods that can be grouped in: sub-sampling
the training examples (e.g. bagging [3] and boosting [15]);
manipulating the input features [5]; manipulating the out-
put target (e.g. ECOC [11]); and injecting randomness in
the learning algorithm [21]. Once the classifiers have been
generated, they are combined, in most cases by voting or
weighted voting.

Other research in the area use different learning algo-
rithms over a dataset to generate the members of the ensem-
ble. One example of this approach is stacking [31]. Stacking
uses an algorithm to learn how to combine the outputs of a
set of classifiers that have been obtained by different learn-
ing algorithms. Our research focuses on this approach.

One of the problems of stacking is how to obtain the right
combination of base-level classifiers and the meta-classifier
specially in relation to each specific dataset. If the number
of classifiers and algorithms to use is small, this problem
can be solved by a simple method in a reasonable time: ex-
haustive search. But, when the search space is big, it is dif-
ficult to find the best stacking configuration. In a previous
work [22], we presented an approach based on genetic algo-
rithms (GA) [17]. A somewhat related approach uses GAs
for ensembles of neural networks, but only to determine the
right number of ensemble members and in the context of ho-
mogeneous ensembles, not heterogeneous classifiers gener-
ation algorithms like Stacking [32].

There are also many variants of the basic stacking algo-
rithm. The methods that have reported the best results are
stacking with multi-response model trees (SMRMT) [12]
and stacking with multi-response linear regression and a re-
duced set of attributes (StC) [26]. In this paper, we continue
our line of thought, based on not imposing strong assump-
tions on the final stacking configuration, and letting the
GA find a good one freely. In particular, we have extended
our GA-stacking approach by enlarging the search space
of stacking configurations, taking into account not only the
learning algorithms but also their parameters. This is easy to
achieve in a genetic approach, by coding the parameters in
the GA individual. We then compare results with two recent
stacking state-of-the-art approaches. We show that our ap-
proach is able to find a stacking configuration that performs
comparable and in some case better than those state-of-art
stacking systems.

This paper is organized as follows. Section 2 gives some
background on stacking and recent stacking variants. Sec-
tion 3 introduces the stacking configuration approach, GA-
stacking. Sections 4 and 5 describe the experimental setup

Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004)

1082 3409/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: Univ Carlos III. Downloaded on September 15, 2009 at 05:10 from IEEE Xplore. Restrictions apply.

Cita bibliográfica
Published in: 16th IEEE International Conference on Tools with Artificial Intelligence, 2004, p. 49-55

and the results, respectively. Finally Section 6 draws some
conclusions.

2. Stacking Approaches

In this Section, we first describe the stacking framework
and then we give a brief description of some recent work on
stacking.

2.1. Stacked Generalization

Stacking is the abbreviation to refer to Stacked General-
ization [31]. The main idea of stacking is to combine classi-
fiers from different learners such as decision trees, instance-
based learners, etc. Since each one uses different knowledge
representation and different learning biases, the hypothe-
sis space will be explored differently, and different classi-
fiers will be obtained. Thus, it is expected that their errors
will not be correlated, and that the combination of classi-
fiers will perform better than the base classifiers.

Once the classifiers have been generated, they must be
combined. Stacking uses the concept of the meta learner.
The meta learner (or level-1 model), tries to acquire, using
a learning algorithm, how the decisions of the base classi-
fiers (or level-0 models) should be combined to obtain the
final classification. This is achieved by a cross-validation-
like process, as described in [31].

2.2. Recent Advances

Recent work on stacking addresses the stacking configu-
ration problem: what algorithm and features are to be used
in the meta-level. We give a brief review of these recent
work here.

One necessary condition to create a good ensemble of
classifiers is that base-level classifiers error predictions are
uncorrelated [16]. In [24] a variant of stacking is proposed
that uses correspondence analysis in order to detect correla-
tions between the base-level classifiers. Once dependencies
have been removed from original meta-level space, a near-
est neighbor method (meta-level algorithm) is then applied
over the result features space.

In [28], they use probability distributions outputs from
level-0 models instead of a simple class prediction as meta-
level attributes. By using probability distributions as meta-
level data, the authors argue that both, prediction and confi-
dence of the base-level classifiers are used. In order to use
this type of meta-level data, the authors proposed to use the
multi-response linear regression technique (MLR) as the
meta-level algorithm.

Another variant of stacking [27] creates a meta-level
classifier for each level-0 classifier. The learning task for

each level-1 classifier is to predict whether the level-0 clas-
sifier prediction will be correct. The meta-level data is com-
posed of base-level attributes and the class values are cor-
rect or incorrect. The predictions of those classifiers that
are combined by summing up the predicted probability dis-
tribution.

In [29] a new variant of stacking is described that uses
a new learning method in the meta-level. This method, de-
noted meta decision trees (MDTs), replaces class-value pre-
dictions in its leaf nodes by the base level-classifiers. The
meta-level data is composed of properties of the probabil-
ity distributions that reflect the confidence of the base-level
classifiers, like entropy and maximum probability, rather
than the distributions themselves. Based on these proper-
ties, small MDT’s are generated.

Based on stacking with MLR (SMLR), [26] proposed to
reduce the number of meta-level attributes independently of
the number of classes, in order to overcome a weakness of
SMLR in domains with more than two classes. This method
is called StackingC (StC).

Dzeroski and Zenko [13] proposed two new variants of
stacking. First, based on stacking with MLR, they propose
to extend the set of meta-level features augmented with the
probability distribution multiplied by the maximum proba-
bility and the entropies of the probability distributions. On
the other hand, they propose another extension of SMLR
in which they use model tree induction instead of linear re-
gression as the meta-level algorithm. This method is called
stacking with multi-response model trees (SMRMT).

Comparing stacking approaches overall, SCANN,
MDTs, SMLR and SelectBest (selecting the best clas-
sifier with cross-validation) seem to perform at about
the same level [13]. Moreover, in their work, they con-
cluded that stacking with multi-response model trees
performs better than existing stacking approaches, includ-
ing StC, and selecting the best classifier from the ensemble
by cross-validation.

One of the main conclusions of all this previous work is
that there are many contradictory results and there is no con-
sensus on which combination of classifiers is the best one.

The main differences of previous work with respect to
our approach are that we do not select “a priori”:

• which meta-classifier to use

• the parameters of the meta-classifier

• the number of base classifiers

• which of the available base classifiers to use

• the parameters of these base classifiers

The main advantage of our approach is its flexibility and
its no “a-priori” commitments. The system is very extensi-
ble. It can benefit from new classifiers, since they can be

Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004)

1082 3409/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: Univ Carlos III. Downloaded on September 15, 2009 at 05:10 from IEEE Xplore. Restrictions apply.

easily incorporated into the pool of available classifiers to-
gether with their parameters, and coded in the GA-stacking
chromosome. Another advantage of our approach is that it
is dataset dependent, so we also adapt to dataset biases and
features, while the rest of approaches use the same configu-
ration for all datasets.

In order to evaluate our approach, we compare our re-
sults with the state-of-the-art, most recent, stacking ap-
proaches. In other words, StC and SMRMT.

3. GA-Stacking Approach

In this section we describe the approach taken by GA-
stacking to build stacking systems. Given that stacked gen-
eralization is composed of a set of classifiers from a differ-
ent set of learning algorithms, the question is: what algo-
rithm should be used to generate the level-0 and the level-1
models?. As we detail in Section 2.2, most work on stack-
ing focuses in the selection of the meta-level data and al-
gorithm. In the GA-stacking approach, a genetic algorithm
is used to generate the whole stacking system configura-
tion (level-0 and level-1 classifiers) to perform reasonably
well in a specific domain. In other words, each individual
in a population in GA, represents a different stacking sys-
tem configuration.

We have chosen GA’s to search for good stacking con-
figurations because they have proven useful in the past for
similar tasks as the one currently at hand: large and com-
plex (multimodal) search spaces, not requiring strong as-
sumptions on the function to be optimized. Also, any struc-
ture can be evolved in principle, as far as it can be coded as
a fixed-length bit-string (at least, in canonical GA’s).

In the previous GA-stacking version [22], the search car-
ried out by the genetic algorithm was limited to find a stack-
ing configuration with four base-level classifiers and the
meta-level algorithm from a set of six available algorithms.
In this paper, we extend the search space enlarging the num-
ber of possible base-level classifiers to ten and including the
parameters of the algorithms in the search, which generates
a very different and much richer search space. Moreover,
in this work, we use fifteen possible algorithms to gener-
ate the base-level and meta-level classifiers.

The application of genetic algorithms to optimization
problems requires that the following are defined:

1. the representation of the individuals (candidate solu-
tions)

2. the fitness function that is used to evaluate the individ-
uals

3. the selection-scheme (e.g., selection proportional to
fitness)

4. the genetic operators that will be used to evolve the in-
dividuals

5. the parameters of the GA (e.g., population size, gener-
ations, probability of crossover, etc.)

In relation to the individual representation, each individ-
ual is a chromosome with 66 genes. They contain the codes
of the ten algorithms to build the level-0 classifiers (first 60
genes) and the meta-classifier (last 6 genes). Each classi-
fier is coded in six genes in which the first gene represents
the classifier’s name and the remaining genes represent the
classifiers’s parameters (see Figure 1). The gene size de-
pends on the coded parameter. For example the gene that
represent the classifiers’s name has a size of four bits.

name
︷ ︸︸ ︷

0 0 1 1 0 1 0 0 0 1 0 1 1
︸ ︷︷ ︸

parameters

...

Figure 1. Classifier codification.

In order to evaluate each individual, we used the clas-
sification accuracy of the stacking system over a two fold
cross-validation as the fitness function. Cross-validation is
used to prevent over-fitting. The selection scheme and GA
parameters are detailed in section 4.4.

4. Experimental Setup

In this work we have used the algorithms implemented in
the Waikato Enviroment for Knowledge Analysis - WEKA
- [30]. This includes all the base classifiers and stacking ap-
proaches.

4.1. Data Sets

For the experimental test of the stacking system con-
figurations we have used 18 data sets from the well know
repository of machine learning databases at UCI [2]. These
datasets have been used widely in other stacking compara-
tive work. In order to evaluate the GA-stacking approach in
a different set of instances than the GA training set, we di-
vided each data set into two parts: part A used to evaluate
and compare stacking approaches and part B used to find
the optimal stacking configuration. Table 1 shows the data
sets characteristics.

4.2. Learning Algorithms

In order to obtain the optimal stacking configuration, 15
learning algorithms have been used to generate the level-0
classifiers and the meta-classifier:

Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004)

1082 3409/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: Univ Carlos III. Downloaded on September 15, 2009 at 05:10 from IEEE Xplore. Restrictions apply.

Dataset Attributes Instances Part A Part B Classes
australian 14 690 345 345 2
balance 4 625 312 313 3
breast-w 9 699 349 350 2
car 6 1728 1382 346 4
chess 36 3196 2876 320 2
diabetes 8 768 384 384 2
echo 6 132 66 66 2
german 20 1000 500 500 2
glass 9 214 107 107 6
heart 13 270 135 135 2
hepatitis 19 155 77 78 2
hypo 25 3163 2846 317 2
image 19 2310 1848 462 7
ionosphere 34 351 175 176 2
iris 4 150 75 75 3
soya 35 683 341 342 19
vote 16 435 217 218 2
wine 13 178 89 89 3

Table 1. Datasets descriptions

• C4.5 [25]. It generates decision trees

• A probabilistic Naive Bayes classifier [19]

• IBk. This is Aha’s instance based learning algorithm
[1]

• PART [14]. It forms a decision list from pruned partial
decision trees generated using the C4.5 heuristic

• Decision Stump [18]. A one level decision tree.

• Decision Table [20]. A simple decision table majority
classifier

• Random Forest [4]. It constructs a Random Forest that
is formed by combining a large number of un-pruned
trees.

• Random Tree. It construct a tree that considers K ran-
dom features at each node

• MLR or MRMT [12]. The multi-response linear re-
gression or multi-response model tree. The selection
of a linear regression or a model tree is a parameter
of the classification via the regression method imple-
mented in Weka.

• K* [6]. An instance-based learning algorithm which
uses an entropy based distance measure.

• VFI [8]. It is a voting feature interval classifier.

• Conjunctive Rule. It is a single conjunctive rule learner
that can predict with numeric and nominal class labels.

• JRip [7]. A propositional rule learner.

• Nnge [23]. Nearest neighbor like algorithm using non-
nested generalized exemplars.

• Hyper Pipes [30]. It is classifier that builds a Hyper-
Pipe for each category that contains all points of that
category.

As stated in the previous section, the GA chromosome
also contains the parameters of the classifiers. We have used
all the parameters that Weka provides for each one of the
latter learning algorithms. For example, Weka’s C4.5 (j48)
has the following parameters:

• -U: Use unpruned tree

• -C: Confidence. Set confidence threshold for pruning
(Default: 0.25)

• -M: Number. Set minimum number of instances per
leaf (Default: 2)

• -R: Use reduced error pruning. No subtree raising is
performed

• -N: Number. Set number of folds for reduced error
pruning. One fold is used as the pruning set (Default:
3)

• -B: Use binary splits for nominal attributes

• -S: Don’t perform subtree raising

• -L: Do not clean up after the tree has been built

• -A: If set, Laplace smoothing is used for predicted
probabilities

Therefore, we have coded the parameters of each learn-
ing technique into a fixed-length gene (see Figure 2).

gene 1=3
︷ ︸︸ ︷

0 0 1 1 0 1
︸ ︷︷ ︸

gene 2=1

gene 3=0
︷︸︸︷

0 0
︸︷︷︸

gene 4=0

gene 5=5
︷ ︸︸ ︷

0 1 0 1 1
︸︷︷︸

gene 6=1

Gene Value Option
1 3 c4.5
2 1 -R
3 0
4 0
5 5 -C 0.35
6 1 -A

Figure 2. Codification example.

4.3. Stacking Approaches

We have compared the stacking configurations found by
GA-stacking (GA-S) with recent two state-of-art stacking
approaches:

• SMRMT: stacking with multi-response model trees as
we described in Section 2.2. Since a recent study used
a different number of base classifiers [12], we carried
out experiments with two different numbers of base-
level classifiers, three and six. We use the same three

Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004)

1082 3409/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: Univ Carlos III. Downloaded on September 15, 2009 at 05:10 from IEEE Xplore. Restrictions apply.

base-level classifiers that have been used in [12], C4.5,
IBk and Naive Bayes. In the second set of experiments
we add the K*, Decision Table and MLR. In [12] they
used these base-level algorithms plus a simple deci-
sion kernel density that is not implemented in Weka
version 3.4.

• StC: stacking with a reduced set of meta-level at-
tributes as we described in section 2.2. We carried out
experiments with the same three base-level algorithms
used in SMMRT and five base-level algorithms as de-
scribed in [26], excluding the kernel density estimator,
mentioned in the previous item.

4.4. GA Parameters

The parameters used for the GA in the experiments are
shown in Table 2.

PARAMETER VALUE

POPULATION SIZE 100
GENERATIONS 50
ELITE RATE 0.1
CULL RATE 0.4
MUTATION RATE 0.1

Table 2. GA parameters

4.5. Evaluating and Comparing Algorithms

In order to evaluate our approach, we applied GA-
stacking three times in every domain with dataset B. The
best individual obtained was saved. This individual is not
a stacking system, but just a configuration of meta-level
and base-level classifiers, which has to be trained in or-
der to perform classification tasks. This individual was
then compared with the other stacking approaches by re-
peating 10 times a stratified 10-fold cross-validation with
dataset A. Weka’s paired t-test was used to test for signifi-
cance with the other stacking approaches (α = 0.05).

5. Empirical Results

5.1. GA-Stacking approaches comparison

In this subsection we compare our current GA-S ap-
proach (which looks for the classifier parameters) with our
previous GA-S (which only found the classifiers and used
their default parameters set in Weka). In both cases the num-
ber of possible base classifiers to be considered by the GA
is 10. Table 5.1 displays the results of the test in five do-
mains.

Domain GA-S without GA-S with
parameters parameters

australian 87.64 87.38
breast-w 95.71 95.71
car 97.33 97.55
diabetes 74.03 74.36
german 75.96 74.04
ionosphere 88.43 90.62

Table 3. Comparison of GA-Stacking with and
without using parameters.

Both GA-S were run under the same conditions. Al-
though, Table 5.1 shows some differences, they are not sta-
tistically significant (WEKA’s t-test was used for this pur-
pose, α = 0.05).

5.2. Main Results

Table 4 shows the results obtained for GA-stacking, StC
(with 3 and 5 base level classifiers), and SMRMT (with
3 and 6 base level classifiers). In 9 out of 18 domains,
GA-stacking gets the best results, although differences with
the best other systems are not statistically significant. Only
those results marked with * are significantly worse. It is no-
ticeable that GA-stacking is never significantly worse (al-
though this is also true of SMRMT with 6 base classi-
fiers). If we add the differences between GA-stacking and
the other systems, GA-stacking gets a relative improvement
of 20.46% and 11.31% with StC (3 and 5 BLC) and 16.86%
and 6.27% with SMRMT (3 and 6 BLC).

It is also interesting to consider which classifiers the GA-
stacking found for the best configuration meta-level. Other
researchers claim that MLR [28, 26] or MRMT [12] at the
meta-level give good results regardless of the base classi-
fiers. We have found that the meta-level classifier selected
by GA-stacking is NaiveBayes in 5 domains, RandomFor-
est (4 domains), MLR (3), IBK (3), PART (2), and Nnge (1).
MRMT is never used. This does not mean that the conclu-
sions of these researchers are wrong, but that other good al-
ternatives exist for the meta classifier, depending on the do-
main, if the configuration is found by search.

6. Conclusions and Future Work

In this paper, we have presented a extended version of
GA-stacking, an approach to find good stacking configu-
rations by means of genetic search. GA-stacking not only
determines which meta-level, and which (and how many)
base classifiers must be present, but also their learning pa-
rameters. The main advantage of GA-stacking is its flexi-

Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004)

1082 3409/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: Univ Carlos III. Downloaded on September 15, 2009 at 05:10 from IEEE Xplore. Restrictions apply.

Dataset GA-S StC SMRMT
3-BLC 5-BLC 3-BLC 6-BLC

australian 87.11 88.40 88.02 88.16 87.24
balance-scale 95.45 90.30* 90.43* 94.26 94.97
breast 95.27 94.65 95.30 94.27 95.53
car 96.98 92.06* 94.35* 95.59* 97.20
chess 99.40 99.18 99.18 99.19 99.22
diabetes 74.83 73.79 74.83 73.73 74.05
echo 89.05 90.22 86.02 89.88 89.05
german 72.52 75.00 76.42 74.34 75.68
glass 74.99 67.97 71.38 66.13* 71.87
heart 80.38 80.40 81.29 81.90 80.79
hepatitis 79.75 79.55 79.57 79.07 77.63
hypho 99.06 99.30 99.29 99.29 99.29
images 98.05 96.73* 97.61 96.63* 97.74
ionosphere 90.91 88.80 89.32 88.63 87.85
iris 94.21 94.07 95.29 94.63 94.70
soybean 93.87 91.58 91.79 90.67 91.26
vote 95.72 95.76 95.94 95.21 95.44
wine 95.61 94.94 95.29 94.72 96.85

Table 4. Accuracy of StC and SMRMT with dif-
ferent number of base-level classifiers (BLC)
and GA-stacking

bility and extensibility. It can use new learning algorithms
as soon as they are invented and it is not restricted by “a
priori” assumptions. Empirical results in domains currently
used in this field show that GA-stacking is comparable to
the best results reported so far, and it is never significantly
worse than the other systems tested (with the advantage that
paremeters such as the number of base classifiers, or the al-
gorithms available to be used as base, need not be specified
in advance). With respect to accuracy, if we add the rela-
tive improvements over the other systems across all the do-
mains, positive differences are always obtained, quite large
in some cases. Therefore, if accuracy is very important for a
given task, we believe GA-stacking should be used. On the
other hand, GA-stacking requires a longer execution time
than the other approaches, because several generations of
individuals must be evaluated in order to obtain a good in-
dividual. For most domains this is not crucial, given that
most classification tasks do not require to work in a short
real time.

On the other hand, our research has shown that giving
more freedom to the search for a stacking configuration
does not always pay off in terms of accuracy. For instance,
letting GA-stacking to search for the parameters of the base
classifiers (as well as the classifiers themselves) do not im-
prove accuracy significantly (but results are not worse ei-
ther).

But accuracy is not always the only aspect used to eval-
uate stacking configurations, although it is usually the only
aspect considered in stacking research. Configuration size,
on-line classification speed, etc, can also be the relevant
qualities in some domains. In the future, we plan to investi-
gate the flexibility of GA-stacking so that these qualities are
considered. For instance, we intend to add selective pres-

sure towards accurate, but also simple (few base classifiers)
stacking configurations. Also, we would like to add infor-
mation to the chromosome about the meta-level data to be
used, so that the stacking configuration can use the most ap-
propriate representation for each domain.

References

[1] David W. Aha, Dennis Kibler, and Marc K. Albert. Instance-
based learning algorithms. Machine Learning, 6(1):37–66,
jan 1991.

[2] C. Blake and C. Merz. Uci repository
of machine learning databases. databases
http://www.ics.uci.edu/ mlearn/MLRepository.html, 1998.

[3] L. Breiman. Bagging predictors. Machine Learning,
24(2):123–140, 1996.

[4] Leo Breiman. Random forests. Machine Learning, 45(1):5–
32, 2001.

[5] K. Cherkauer. Human expert-level performance on a scien-
tific image analysis task by a system using combined artifi-
cial neural networks. In Working Notes of the AAAI Work-
shop on Integrating Multiple Learned Models, pages 15–21,
1996.

[6] John G. Cleary and Leonard E. Trigg. K*: an instance-based
learner using an entropic distance measure. In Proceedings
of the 12th International Conference on Machine Learning,
pages 108–114, 1995.

[7] William W. Cohen. Fast effective rule induction. In Machine
Learning: Proceedings of the Twelfth International Confer-
ence, 1995.

[8] Gulsen Demiroz and H. Altay Guvenir. Classification by vot-
ing feature intervals. In Proceedings of the 9th European
Conference on Machine Learning, pages 85–92, 1997.

[9] Thomas G. Dietterich. Machine-learning research:four cur-
rent directions. AI Magazine, 18(4):97–136, 1997.

[10] Thomas G. Dietterich. Ensemble methods in machine learn-
ing. In Josef Kittler and Fabio Roli, editors, Multiple Clas-
sifiers Systems: first international workshop; proceedings
/MCS 2000, volume 1857 of Lecture Notes in Computer Sci-
ence, pages 1–15, Cagliari, Italy, June 2000. Springer.

[11] Thomas G. Dietterich and Ghulum Bakiri. Solving multi-
class learning problems via error-correcting output codes.
Journal of Artificial Intelligence Research, 2:263–286, 1995.

[12] Saso Dzeroski and Bernard Zenko. Stacking with multi-
response model trees. In Josef Kittler Fabio Roli, editor, Pro-
ceedings of Multiple Classifier Systems, Third International
Workshop, MCS 2002, Lecture Notes in Computer Science,
Cagliari, Italy, 2002. Springer.

[13] Saso Dzeroski and Bernard Zenko. Is combining classi-
fiers better than selecting the best one? Machine Learning,
(54):255–273, 2004.

[14] E. Frank and I. Witten. Generating accurate rule sets without
global optimization. In Proceedings of the Fifteenth Inter-
national Conference on Machine Learning, pages 144–151.
Morgan Kaufmann, 1998.

Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004)

1082 3409/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: Univ Carlos III. Downloaded on September 15, 2009 at 05:10 from IEEE Xplore. Restrictions apply.

[15] Y. Freund and R. Schapire. A decision-theoretic general-
ization of on-line learning and an application to boosting.
In Springer-Verlag, editor, Proceedings of the Second Euro-
pean Conference on Computational Learning Theory, pages
23–37, 1995.

[16] L. Hansen and P. Salamon. Neural network emsembles.
IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 12(10):993–1001, 1990.

[17] John H. Holland. Adaptation in Natural and Artificial Sys-
tems. The University of Michigan Press, 1975.

[18] W. Iba and P. Langley. Induction of one-level decision trees.
In Proceedings of the Ninth International Conference on Ma-
chine Learning, pages 233–240. Morgan Kaufmann, 1992.

[19] G. John and P. Langley. Estimating continuous distribution
in bayesian classifiers. In Morgan Kaufmann, editor, Pro-
ceedings of the Eleventh Conference on Uncertainty in Arti-
ficial Intelligence, pages 338–345, 1995.

[20] R. Kohavi. The power of decision tables. In Proceedings
of the Eighth European Conference on Machine Learning,
1995.

[21] John F. Kolen and Jordan B. Pollack. Back propagation is
sensitive to initial conditions. In Advances in Neural Infor-
mation Processing Systems, pages 860–867, 1991.

[22] Agapito Ledezma, Ricardo Aler, and Daniel Borrajo. Data
Mining: a Heuristic Approach, chapter Heuristic Search
Based Stacking of Classifiers. Idea Group Publishing, 2001.

[23] Brent Martin. Instance-based learning : Nearest neighbor
with generalization. Master’s thesis, University of Waikato,
1995.

[24] Christopher J. Merz. Using correspondence analysis to com-
bine classifiers. Machine Learning, 36(1-2):33–58, 1999.

[25] J. Quinlan. C4.5: Programs for Machine Learning. Morgan
Kaufmann, San Mateo, CA, 1993.

[26] Alexander K. Seewald. How to make stacking better and
faster while also taking care of an unknown weakness. In
Achim G. Hoffmann Claude Sammut, editor, Proceedings of
the Nineteenth International Conference on Machine Learn-
ing (ICML 2002), Sidney, Australia, July 2002. Morgan
Kaufmann.

[27] Alexander K. Seewald and Johannes Fürnkranz. An eval-
uation of grading classifiers. In Frank Hoffmann, David J.
Hand, Niall M. Adams, Douglas H. Fisher, and Gabriela
Guimarães, editors, Advances in Intelligent Data Analysis,
4th International Conference, IDA 2001, Proceedings, Lec-
ture Notes in Computer Science, pages 115–124, 2001.

[28] Kai Ming Ting and Ian H. Witten. Issues in stacked general-
ization. Journal of Artificial Intelligence Research, 10:271–
289, 1999.

[29] Ljupco Todorovski and Saso Dzeroski. Combining multi-
ple models with meta decision trees. In Proceedings of the
4th European Conference on Principles of Data Mining and
Knowledge Discovery, pages 54–64, 2000.

[30] I. Witten and E. Frank. Data mining: practical machine
learning tools and techniques with Java implementations.
Morgan Kaufmann, 2000.

[31] D. Wolpert. Stacked generalization. Neural Networks,
5:241–259, 1992.

[32] J. Wu Z.-H. Zhou and W. Tang. Ensembling neural networks:
Many could be better than al. Artificial Intelligence, 137(1-
2), 2002.

Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004)

1082 3409/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: Univ Carlos III. Downloaded on September 15, 2009 at 05:10 from IEEE Xplore. Restrictions apply.

