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1 Introduction 

We study an oligopoly where firms compete via supply functions. The model of com­

petition via supply functions describes many markets, like the spot electricity markets 

in Spain and in the UK or the markets for government procurement contracts, more 

realistically than the Cournot or the Bertrand models. Moreover, modelling competi­

tion via supply functions implicitly introduces firms' reactions (to exogenous shocks 

or to changes in the competitors' choices) while maintaining a static framework. 

A shortcoming of this model is that there is a great multiplicity of equilibria; that 

is, the set of market outcomes that can be sustained by supply function equilibria 

is very large-see, e.g., Grossman (1981), Hart (1985), Klemperer and Meyer (1989).1 

Interestingly, we find that this multiplicity disappears when the firms in the industry 

take into account the gains they can attain by coordinating their actions. 

In order to account for the coordination opportunities present in an industry we 

identify the equilibria that are self-enforcing in the strong sense that no coalition 

of firms has a (self-enforcing) improving deviation. We refer to these equilibria as 

coalition-proof supply function equilibria-an adaptation to our framework of the no­

tion of coalition-proof Nash equilibrium introduced by Bernheim, Peleg and Whinston 

(1987). We identify conditions on the curvature of the demand and cost functions 

that guarantee that if the number of firms is above a threshold, then the Cournot 

equilibrium is the unique market outcome that can be sustained by a coalition-proof 

supply function equilibrium; e.g., if the market demand is a linear function, this result 

arises when there are three or more firms in the industry. 

We study an industry in which firms have access to a technology that exhibits non­

increasing returns to scale, and in which the market demand, known with certainty, is 

a decreasing and concave function. Firms in the industry compete by simultaneously 

choosing a (non-decreasing) supply function. Firms' strategy choices together with 

the market demand determine the market price and firms' profits. 

A supply function equilibrium (SFE henceforth) of an industry is just a Nash 

equilibrium of the game where firms strategies are supply functions and payoffs are 

1 Klemperer and Meyer (1989) have shown, however, that with unbounded uncertainty equilibrium 

is unique. 
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profits. We show that every price between the competitive equilibrium price and 

the Cournot equilibrium price can be sustained by a supply function equilibrium. 

We then study which market outcomes can be sustained by coalition-proof supply 

function equilibria (CPSFE henceforth). 

A CPSFE of an industry is a coalition-proof Nash equilibrium of the game de­

scribed; i.e., a CPSFE is a profile of supply functions which is immune to improving 

and self-enforcing deviations by any coalition of firms. A deviation is self-enforcing 

if there is no further self-enforcing and improving deviation available to a proper 

sub coalition of the deviating coalition. 

Since there are no general results on the existence of coalition-proof Nash equi­

librium, we begin by studying whether a CPSFE exists in our framework. 2 In an 

industry with only two firms, a CPSFE is just a SFE which is not Pareto dominated 

by any other SFE; hence a CPSFE exists. Further, for an industry with an arbitrary 

number of firms, we find that firms' joint profits are maximized, within the set of 

market outcomes that can be sustained by SFE, at the Cournot equilibrium. Hence 

in an industry with only two firms the Cournot equilibrium can be sustained by a 

CPSFE. Using induction we show that in industries with more than two firms the 

Cournot equilibrium can be sustained by a CPSFE, and hence a CPSFE exists. 

Next we establish conditions under which the Cournot equilibrium is the unique 

outcome that can be sustained by a CPSFE. In the search of these conditions, the class 

of SFE in which all but perhaps one firm supply inelastic ally the same fixed amount 

plays an important role. It turns out that for every SFE there is an equilibrium in 

this class for which the profits of the firms using an inelastic supply are greater than 

or equal to those of the firm with the greatest profits in the original equilibrium. 

Moreover, if the number of firms in the industry is above a threshold we identify, 

the Cournot equilibrium Pareto dominates every other market outcome that can be 

sustained by SFE in this class.3 Thus, if the number of firms is above this threshold, 

2There are games for which a coalition-proof Nash equilibrium does not exist; see Bernheim, 

Peleg and Whinston (1987). Moreno and Wooders (1996) provide conditions on the set of itera­

tively undominated strategies that guarantee existence of a coalition-proof Nash equilibrium; these 

conditions are difficult to check in our context. 
3This threshold is always greater than two. In fact, if there are only two firms in the industry 
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the Cournot equilibrium Pareto dominates every other market outcome that can be 

sustained by a SFE, and is therefore the unique market outcome that can be sustained 

by a CPSFE. 

An interesting interpretation of the present result, parallel to Kreps and Scheinkman 

(1983),4 is that the Cournot model provides a "reduced form" of a structural model 

where firms choose their supply functions (and therefore their reactions to the com­

petitors' choices) taking into account the coordination possibilities present in the 

industry. As we show, the Cournot model yields predictions (regarding market out­

comes) identical to those obtained using the more cumbersome model of competition 

via supply functions. Thus, introducing firms' reactions into the model may add 

descriptive realism to the analysis, but it may be otherwise inconsequential. 

2 Supply Function Equilibria 

Consider an oligopolistic industry where n firms (n 2:: 2) compete in the production of 

a homogeneous good. Demand is known to all firms with certainty;5 throughout it is 

assumed that the demand function D : lR+ ~ JR.+ is twice continuously differentiable, 

strictly decreasing, and concave on (0, p) , where p > 0 satisfies D (p) > 0 for p < p, 

and D (p) = 0 for p 2:: p. All firms have access to the same technology, and therefore 

have identical cost function, C : JR. ~ JR.; we assume that C is twice continuously 

differentiable, non-decreasing, and convex on JR.+, and satisfies C'(O) < p, and C(q) = 

C(O) for q < O. (Extending the domain of the cost function to include negative 

quantities is inconsequential and simplifies our analysis.) An industry is therefore 

described by triple (D, C, n), indicating the market demand, the firms' cost function, 

and the number of firms. In what follows, let us be given an industry (D, C, n). 

the Stackelberg equilibria can be sustained as CPSFE. 
4See also Klemperer and Meyer (1986) on this debate. 
5In many markets the demand can be anticipated with a great accuracy, and therefore uncertainty 

plays a small role. This is the case, for example, in the spot electricity markets in Spain or in the 

UK. However, whereas in Spain each firm submits a bid for each of the (24 one-hour) periods in 

which the market is divided, in the UK firms submit a single bid for all (the 48 half-hour) periods. 

Green and Newbery's (1992) study of the UK market introduces demand uncertainty as a modeling 

strategy in order to account for the variability of demand along the different periods. 
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Firms compete by simultaneously choosing a supply function; that is, a real-valued 

function on [0, p]. Firms' supply functions are restricted to be twice continuously 

differentiable on (0, p) and non-decreasing.6 For a profile of supply functions 8 

(81, ... , 8n ), a market clearing price is a solution to the equation 
n 

L 8i (p) = D (p) . (MC) 
i=1 

Our assumptions on the market demand and the firms' supply functions guarantee 

that if a market clearing price exists, then it is unique. For each profile of supply 

functions 8, let p( 8) be the market clearing price if it exists, and let p( 8) be zero if 

a market clearing price does not exist. Firm i's profits (payoff) is given by 7ri (8) = 

p(S)8i(P(S)) - C(Si(P(S))). (This construction implicitly assumes that firms' revenues 

are zero when a market clearing price does not exist.) 

A 8upply function equilibrium (SFE henceforth) is a (pure strategy) Nash equilib­

rium of the game described. Denote by N the set {I, ... ,n}, and write SF E(D, C, n) 

for the set of supply function equilibria. In a SFE each firm maximizes profits on its 

"residual demand"; that is, if sE SFE(D,C,n), thenp(s) = p solves 

p~~l P (D(P) - ~S;(P)) - C (D(P) - ~S;(P)) , 
for each i E N. If pE (0, p), then s satisfies 

D(jJ) - ~ s;(jJ) + (D' (p) - ~ S;(jJ)) (p - C' (D(P) - it. SAP)) ) = 0, 

for each i E N. Writing qi = Si (p) and using the market clearing condition (MC), 

this condition can be written as 

qi + (D' (p) - LSj(P)) (p - C'(qi)) = 0, 
#i 

for each i E N. If in addition each Si is a convex function, then satisfying Ei for 

each i E N is a sufficient condition for a strategy profile S to be a SFE. For 8 E 

SF E( D, C, n), we denote by (p( 8), ql (8), ... qn (8)) the associated market outcome. 

60ther works, e.g., Kemplerer and Meyer (1989), do not restrict the strategy sets to include only 

non-decreasing supply functions. It may be questionable, however, whether in general firms can 

commit to decreasing supply functions. Moreover, in many markets, such as the spot electricity 

markets in Spain or in the UK, decreasing supply functions are explicitly ruled out. 
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In determining the market prices that can be sustained by SFE two prices play 

an important role: the competitive equilibrium price, characterized by marginal cost 

pricing, and the price associated to the Cournot equilibrium. In our framework each 

of these prices is a solution to a system of equations. 

A Coumot equilibrium (p, iil, ... ,qn) is characterized by the system of equations 

(Cl) 

for i EN, and 
n 

(C2) 
i=l 

Equation Cl ensures that each firm maximizes profits, whereas C2 ensures that the 

market clears. Our assumptions on demand and cost functions imply the existence 

of a unique Cournot equilibrium, which is symmetric (i.e., satisfies q1 = ... = qn). 

Given an industry (D, C, n), we denote by p(D, C, n) and q(D, C, n) the price and 

each firm's output, respectively, at the Cournot equilibrium, and we refer to the 

Cournot equilibrium price of the industry as the Coumot price. 

A competitive equilibrium (e, 9.
1

, ... ,9.J satisfies the system of equations 

(Cl) 

for i E N, and 
n 

(C2) 
i=l 

Our assumptions on demand and cost functions imply the existence of a unique 

competitive equilibrium price, which we denote by r.(D, C, n). Clearly 

o ~ r.(D, C, n) < j5(D, C, n) < p. 

Proposition 2.1 shows that if s is a SFE that leads to the Cournot price, then the 

market outcome associated with s is the Cournot equilibrium. Moreover, in every SFE 

that sustains the Cournot equilibrium the derivative of each firm's supply function 

vanishes at the Cournot price. 

Proposition 2.1. Let (D, C, n) be an industry, and let s E SF E(D, C, n). If p(s) = 

p(D, C, n), then Si(P) = q(D, C, n), and s~(p) = 0 for i E N. 
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Proof: Let sE SFE(D, C, n) be such that p(s) = p(D, C, n) = p. Note that since 

pE (O,p), s satisfies Condition Ei for i E N. We show that Si(P) = ij(D,C,n) = ij 

for i E N. Assume by way of contradiction that there is a firm j such that Sj (p) =1= ij. 

Since 2:~1 Si (p) = D(P) = nij, assume without loss of generality that Sj (p) = qj < ij. 

Then 

ij + (p - C'(ij)) D'(p) > qj + (p - C'(qj)) D' (p) 

> qj + !j5 - C'(qj)) (D'!j5) -~ S;!j5)) . 

The left hand side of this expression equals zero by Cl. Thus, Condition Ej is not 

satisfied, which is a contradiction. 

We show that sHp) = 0 for i E N. Let i E N arbitrary, and let j E N\i. From Ej 

and Cl we have 

0= ij + D' (p) (p - C'(ij)) = ij + (D' (p) - L s~ (P)) (p - C'(ij)). 
kh 

Therefore 2:kh s~ (p) = 0, and since s~(p) 2 0 for i = 1, ... ,n, we have s~(p) = 0 for 

k =1= j. Hence s~(p) = o. 0 

We now study the set of market outcomes that can be sustained by SFE. Klem­

perer and Meyer (1989) have shown that when supply functions are not restricted 

to be non-decreasing, then any market outcome (p, ql, ... ,qn) E 1R~ such that p = 

D(l:.7=1 qi) and C'(qi) < p for each i E N can be sustained by SFE. Our assumption 

that firms supply functions are non-decreasing reduces somewhat this set, although 

it remains large. Theorem 2.2 establishes that the set of prices that can be sus­

tained by SFE, denoted by SFEp(D,C,n) (i.e., pE SFEp(D,C,n) if p = p(s) for 

some S E SF E (D , C, n) ), is the half open interval containing the prices between the 

Cournot price and the competitive equilibrium price. 

Theorem 2.2. SFEp(D,C,n) = Ce(D,C,n),p(D,C,n)]. 

Proof: Write p'(D, C, n) = p. and p(D, C, n) = p. Let p E (p',p]; we show that 

there is s E SFE(D,C,n) such that p(s) = p. Write q = Df!), and for i E N let 

Si (p) = a + &'p, where a and &. satisfy 

(2.1) 
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and 

q + (p - C' (q)) (D' (p) - (n - 1) &) = O. (2.2) 

Note that s~ (p) = & for i E N. We show that & 2: 0, and therefore that each Si is 

non-decreasing. Since p ~ j5 we have 

q + (p - C' (q)) D' (p) 2: q + (p - C' (q)) D' (p) = 0, 

and therefore 

S~ (p) = & = n ~ 1 (D' (p) + p _ b, (q)) 2: o. 

Equation 2.1 and the definition of q guarantees that p is the market clearing price for 

8 = (81, ... , 8n ). Equation 2.2 ensures that 8 satisfies Ei for i E N. Since each 8i is 

convex, we have 8 E SFE(D,C,n). 

Let S be such that p(8) = P ::; p. < p. We show that 8 t/:- SF E(D, C, n). Since 

D is decreasing, we have D(p) 2: D(p') > D(p) = 0; hence there is one firm i E N 

producing 8i(P) = qi 2: D~) > 0, which implies by Cl that C'(qi) 2: C,(D~E)) = P. 2: p. 

Since sj (p) 2: 0 for j E N, we have 

Thus, Condition Ei is not satisfied. Moreover, if p = 0 then we have 7fi(8) = -C(qi) < 

-C(O). Hence 8 t/:- SFE(D, C, n). 

Finally, let 8 be such that p > p > O. As before we show that 8 t/:- SF E (D , C, n). 

Since D is strictly decreasing, we have D(P) < D (p). Consequently, at least one firm 

i E N is producing Si(P) = qi < q = q(D, C, n). Thus, since s~(p) 2: 0, for i E N, and 

D' (p) ::; D' (p) (recall that D is concave), Cl implies 

0= q + D' (p)(p - C'(q)) > ,j;+ (D' (p) - i; S;(P)) (p - C' (<li)) . 

Hence Condition Ei is not satisfied, and therefore S t/:- SFE(D,C,n). 0 

Remark 2.3. Note that in the above construction & = 0 for p = p, whereas & 

becomes arbitrarily large as p approaches p. (because p - C' (q) approaches zero). 

Also note that for each sE SFE(D, C, n), we have p(s) E (0, p); hence in every SFE, 

Ei is satisfied for each i EN. 
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The construction in the proof of Theorem 2.2 establishes that every price between 

the competitive equilibrium price and the Cournot price can be sustained by a sym­

metric SFE, which associated market outcome is therefore symmetric (i.e., all firms 

produce the same quantity). Nevertheless, there are asymmetric market outcomes 

that can be sustained by SFE (see Example 3.6.). 

We finish this section by showing in Proposition 2.4 that the profits of an industry 

(D, C, n) are maximized, on the set of market outcomes that can be sustained by SFE, 

at the Cournot equilibrium. This result plays an important role in establishing in 

Section 3 that the Cournot equilibrium can be sustained by a CPSFE. 

Proposition 2.4. Let (D, C, n) be an industry, and let s, s E SF E(D, C, n) be such 

that p(s) = p(D,C,n) > p(s). Then 2:7=17l"i(S) > 2:7=17l"i(S). 

Proof: For p E (0, p), define 

IT(p) = pD(p) - nC (D:)) . 

Then 

IT'(p) = D(p) + D'(p) (p - C' ( D:)) ) , 

and 

IT"(p) = D'(p) + D"(p) (p - C' (D:)) ) + D'(p) (1 _ D~p) CIf (D:)) ) . 

Write p(D, C, n) = p and E(D, C, n) = E. Note that IT"(p) < 0 for p ~ E. Also note 

that Cl and C2 imply 

IT' (p) - D(p) + D' (P) (p - C' ( D;;)) ) 

_ D(p) _ D(p) = (n - 1) D(j5) > O. 
n n 

Hence IT'(p) > IT'(p) > 0, and therefore IT(p) > II(p), for pE (E,P). 

Let s, s E SF E(D, C, n) be such that p(s) = p > p = p(s). For i E N denote 

qi(S) = if and qi(S) = qi. Note that if = D:;l by Proposition 2.2, and therefore 

n 

L 7l"i(S) = II(p). 
i=l 
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Since C is convex we have 

n n 

L 7ri(S) = L (pqi - C(qi)) ::; I1(p). 
i=l i=l 

Hence 
n n 

L 7ri(S) = I1(p) > I1(p) ~ L 7ri(S), 
i=l i=l 

which establishes Proposition 2.4. 0 

3 Coalition-Proof Supply Function Equilibria 

Consider an industry where firms are free to discuss their strategies, although they 

cannot make binding agreements. In this setting, one would expect that firms will 

agree to coordinate their actions on a strategy profile that realizes the highest possible 

profits. Since the agreements the firms may reach are non-binding, they must be self­

enforcing, i.e., immune to profitable deviations. In particular, a firm will implement 

an agreement only if it is in its own interest to do so; hence agreements must be SFE. 

Not all SFE are self-enforcing, however, as they may be vulnerable to deviations 

by coalitions of firms. We introduce the notion of coalition-proof supply function 

equilibrium (CPSFE), which identifies the agreements that are self-enforcing in the 

strong sense that neither individual firms nor coalitions of firms have (self-enforcing) 

improving deviations. As we shall see, the possibility of coalitional deviations reduces 

drastically the set of equilibria. 

The notion of CPSFE is an adaptation to our setting of the concept of coalition­

proof Nash equilibrium-see Bernheim, Peleg and Whinston (1987). A CPSFE is a 

strategy profile which is not subject to credible (i.e., self-enforcing) improving devi­

ations by any coalition of players. Self-enforcing deviations are those that are not 

subject to further self-enforcing and improving deviations by a proper sub coalition 

of the deviating coalition. A formal definition of the concept of CPSFE follows. 

Let (D, C, n) be an industry. We denote by 2N the set of all possible coalitions. 

For a strategy profile s and a coalition M E 2N , write s M for the profile of supply 

functions of the members of M, and write m for the cardinality of the set M. Let s 

be a strategy profile and let M E 2N , 2 ::; m < n, be a coalition of firms (recall that 
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n ~ 2). Holding fixed the strategies of the members of the complementary coalition, 

s N\M, the situation the group of firms in M faces can be modeled as that of an 

"industry" (Ds,M' C, m), where Ds,M is given for p E 1R+ by 

Ds M(P) = { D(p) - LiEN\M Si(P) if D(p) - LiEN\M Si(P) 2:: 0, 

'0 otherwise. 

This recursive structure allows us to formalize the notion of CPSFE. 

Coalition-Proof Supply Function Equilibrium: Let (D, C, n) be an industry. 

( 1) If n = 2, a coalition-proof supply function equilibrium is a strategy profile 

s E SFE(D,C,n) such that there is no 8 E SFE(D,C,n) satisfying 1Ti(8) > 1Ti(S) 

for every i E N. 

(2) Assume that CPSFE(D, C, k) has been defined for 2 ~ k ~ n - 1, and let 

(D, C, n) be an industry. 

(i) A strategy profile s is self-enforcing if s E SFE(D,C,n), and if for all 

ME 2N, 2 ~ m < n, SM E CPSFE(Ds,M,C,m). 

(ii) A strategy profile s is a coalition-proof supply function equilibrium if it 

is self-enforcing and if there is no self-enforcing strategy profile 8 such that 1Ti (8) > 

1Ti (s) for every i E N. 

The definition of CPSFE applies to industries with no fewer than two firms. Note 

that a CPSFE is a SFE, and therefore it is invulnerable to deviations by an individual 

firm. 

Theorem 3.1 establishes that every industry has a CPSFE. In fact, it is shown 

that the Cournot equilibrium always can be sustained by a CPSFE. 

Theorem 3.1. Every industry (D, C, n) has a coalition-proof supply function equi­

librium. Moreover, there is s E CPSF E(D, C, n) such that p(s) = p(D, C, n). 

Proof: Let (D, C, n) be an industry. For i E N, let Si be given for p E [0, p] by 

Si(P) = q(D, C, n) = q. Clearly p (s) = p(D, C, n) = p. Moreover, S E SF E(D, C, n) 

as Condition Ei is satisfied for each i E N, and each Si is a convex function. We prove 

that SEC P S F E (D, C, n) by induction on the number of firms. 
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If n = 2, then sEC P S F E( D, C, n) follows from Proposition 2.4. Assume that it 

has been shown that s E CPSFE(D,C,n) whenever 2::; n::; k -1. We show that 

sE CPSFE(D, C, k). 

We show that s is self-enforcing. Since s E SFE(D, C, k) we must show that 

SM E CPSF E(Ds,M, C, m) for M E 2N such that 2 ::; m < k. Let !VI E 2N be a 

coalition such that 2 ::; m < k, and consider the industry (Ds M' C, m). Note that , 

Ds,M(P) = D(p) - (k - m)q, and Ps,M = p. Therefore the unique Cournot equilibrium 

of the industry (Ds M' C, m) is characterized by the equations , 

(3.1) 

and 

mq- MA = D- MA (p- MA ). 
S, s, s, (3.2) 

Since D~,M(P) = D'(p), the system of equations (3.1) - (3.2) is equivalent to (Cl) -

(C2). Hence its unique solution is (Ps,M' qs,M) = (p, q). Thus, the induction hypothesis 

implies that sM E CPSFE(Ds,M' C, m). 

In order to show that s E CPSFE(D, C, n), we must prove that no other se1£­

enforcing strategy s yields higher profits than s to all the firms. Assume by way 

of contradiction that there is a self-enforcing strategy s such that 7r i (s) > 7r i (s) for 

i E N. Then 

L 7ri(S) > L 7ri(S). 
iEN iEN 

Note, however, that s E SF E(D, C, n) since it is self-enforcing, which contradicts 

Proposition 2.4. 0 

We now study conditions under which the Cournot equilibrium is the unique 

outcome that can be sustained by a CPSFE. Lemma 3.2 below plays an important 

role in the search for these conditions. It establishes that for every SFE one can find 

another SFE in which all but (perhaps) one firm supply inelastically the output of 

the firm with the greatest profits (and output) at the original equilibrium. Moreover, 

this new SFE leads to a price that is greater than or equal to the price associated 

to the original equilibrium. Consequently the profits of the firms using an inelastic 
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supply are greater or equal to those of the firm with the greatest profits at the original 

equilibrium. 

Let (D, C, n) be an industry. Consider the market outcomes that can be sustained 

by s E SF E( D, C, n) for which there are j E N and v E 1R+, such that for each 

i E N\{j}, Si(P) = v for all pE [O,p]. Writing p(s) = u, Sj(u) = w, and sj(u) = a, 

this set is characterized by the vectors (u, v, w, a) in 1R~ satisfying the system of 

equations 

w = -D'(u) (u - C'(w)) , 

v = (a - D'(u)) (u - C'(v)) , 

(n - l)v + w = D(u). 

(E.1) 

(E.2) 

(E.3) 

In Lemma 3.2 below it is shown that fixing v (to be any real number corresponding to 

the production of a firm with the greatest production in an arbitrary SFE) the system 

(E.1)-(E.3) has a unique solution, (u(v), w(v), a(v)). Moreover, a' > 0, and therefore 

that the function a is invertible. Hence the system (E.1)-(E.3) implicitly defines a 

function (u(a), v(a), w(a)) on [0, (0). This function is continuously differentiable on 

(0,00). 

For a ~ ° denote by SF Ea (D , C, n) the set of SFE of the form described above. 

Note that the market outcomes sustained by sE SFEa(D, C, n) are given by p(s) = 

u(a), qi(S) = v(a) for i E N\{j}, and qj(s) = w(a). Also note that for a = ° the sys­

tem (E.1)-(E.3) reduces to equations Cl and C2, and therefore S E SF Eo(D, C, n) if 

and only if the associated market outcome is the Cournot equilibrium; i.e., (p( s), q1 (s), ... , qn (s)) = 

(j5(D, C, n), q(D, C, n), ... , q(D, C, n)). 

Lemma 3.2. Let (D, C, n) be an industry such that CIII(q) ~ ° for q > 0, and let 

sE SFE(D,C,n) and i* EN be such that 7l'i*(S) ~ 7l'i(S) for all i E N. Then there 

is 0: ~ ° and sE SFEa(D, C, n) such that p(s) ~ p(s), and 7l'i-(S) 2: 7l'i-(S). 

Proof: Let s E SF E(D, C, n) and i* E N be such that 7l'i- (s) ~ 7l'i(S) = 7ri for all 

i E N. Without loss of generality assume that i* = 1. Write p( s) = p, and for i E N, 

write qi(S) = qi, ai = s~(p), and Ai = 2:jEN\{i} aj. Since C'(qi) < p and 7r1 ~ 7ri for 

i E N, then q1 2: qi for i EN. 
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First we show that D(fJ) - (n - 1)(h > O. Since s E SF E(D, C, n), for i E N we 

have 

qi = (A - D'(fJ)) (fJ - C'(qi)) ' 

by condition Ei . Hence for i E N we have 

qi - q1 - (AI - D'(fJ)) (fJ - C'(q1)) + (it - D'(fJ)) (fJ - C'(qi)) 

- q1 + (&1 - &i) (fJ - C'(q1)) + (Ai - D'(fJ)) (C'(q1) - C'(qi)) . 

Thus, since fJ is a maximizes the profits of Firm 1 on the residual demand, we have 

fJ ~ c' (q1), and therefore 

D(fJ) - (n - 1)q1 - (q1 + L qi) - (n - 1)q1 
t>l 

- q1 + L ((&1 - &i) (fJ - C'(Q1)) + (Ai - D'(fJ)) (C'(Q1) - C'(Qi))) 
i>l 

- (AI - D'(fJ) + (n -1)&1 - AI) (fJ - C'(Q1)) 

+ L (Ai - D'(fJ)) (C'(Q1) - C'(fli)) 
i>l 

- ((n - 1)&1 - D'(fJ)) (fJ - C'(Q1)) 

+ L (Ai - D'(fJ)) (C'(q1) - C'(qi)) > O. 
i>l 

Let j5 be such that D(p) - (n - 1)q1 = 0, and for u E [fi, j5] define 

<jJ(u) = D(u) - (n - 1)q1 + D'(u) (u - C' (D(u) - (n - 1)Q1))' 

We establish below that the equation 

cp(u) = 0 

has a unique solution on [fi,j5], iL. Hence (iL, w, a), where 

w = D(iL) - (n - 1)Q1' 

and 

- D'(-) q1 a = u + - C,(A) 
U - q1 
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is the unique solution to the system (E.1)-(E.3) for v* = q1' Moreover, U :::: p (because 

</J(p) :::: 0 and </J' < 0). Further iD > 0, and a :::: O. To see this note that u :::: p and 

q1 :::: qi for i > 1 imply 

n-1 
qn D(p) - q1 - L qi 

i=2 

> D(u) - (n - 1)q1 = W. 

And since C is increasing, we have u - C'(iD) :::: p - C'(qn) > 0, and therefore 

iD = -D'(u)(u - C'(iD)) > O. 

Now, because C' is increasing, q1 :::: qn :::: iD implies 

- D'(-) q1 ex = u + - C,(A) 
iD > q1 - W > 0 

u - C' ( iD) - u - C' ( w) - . U - q1 

Let s be a profile of supply functions satisfying for i E N\ { n }, Si (p) = ij1 for p E 

[0, p], and sn(u) = iD, s~(u) = a. The above construction implies S E SF Ea(D, C, n). 

Moreover, p(s) = u = u(a) :::: p = p(s), and 

which establishes Lemma 3.2. 

It remains to show that </J( u) = 0 has a unique solution on [ft, jj]. Since jj > p, 

o < p - C'(q1) < jj - C'(O), and therefore 

</J(jj) - D(jj) - (n - 1)ij1 + D'(jj) (jj - C' (D(P) - (n - 1)ij1)) 

D'(P) (jj - C' (0)) < O. 

We show that </J(p) :::: O. Denote q = D(p) - (n - 1)ij1. Then we have 

</J(p) D(p) - (n - 1)q1 + D'(p) (p - C'(q)) 

(n - 1)&1 (p - C'(ij1)) + L Ai (C'(ij1) - C'(iji)) 
i>l 

-D'(p) (C'(ij) - C'(ijd + (n - l)C'(ijd - L C'(qi)) . 
i>l 
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As noted above p ;:::: C'((h); moreover, because C is a convex function and q1 ~ qi, 

we have C' (q1) 2:: c' (qi) for i > 1. Hence the first term in the above expression is 

non-negative; i.e., 

(n -1)&1 (p - C'(q1)) + LA (C'(q1) - C'(qi)) 2:: o. 
i>l 

We show that the second term is also non-negative. Since q1 ;:::: qi for i > 1, we have 

qi = D(p) - L:#i qj 2:: D(p) - (n - 1)q1 = q for i > 1. Thus, for i > 1 there is 

Ai E [0,1] such that qi = A/iI + (1 - Ai)q. Hence 

ii + (n - 1)ii1 = D(p) = q1 + 2:iii = q1 + 2: (Aiq1 + (1- Ai)q). 
i>l i>l 

Thus, 

q1 - q = (q1 - q) 2:(1- Ai), 
i>l 

and therefore either L:i>l (1 - Ai) = 1 or q1 = q. This equation together with our 

assumption that C"' (q) ~ 0 for q > 0, yields the inequality 

(n - l)C'(qd - 2: C'(qi) 
i>l i>l 

i>l i>l 

i>l 

Hence 

-D'(fJ) (c,(q) - C'(q1) + (n - 1)C'(q1) - L C'(qi)) ;:::: o. 
~>1 

Therefore </J(p) ;:::: o. 

The Intermediate Value Theorem implies that the equation </J( u) = 0 has a solution 

on lp, Plo Moreover, the solution is unique since </J' < O. 0 

Given an industry (D, C, n), define the function 7f on [0,00) by 

7f(a) = u(a)v(a) - C(v(a)). 
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For a ~ 0 and s E SF Ea. (D, C, n), the function 71"( a) provides the profits of the firms 

using an inelastic supply. Clearly the function 71" is well defined, and is continuously 

differentiable on (0, (0). 

Lemma 3.3 establishes that if the function 71" of an industry (D, C, n) reaches a 

maximum at a = 0, then the Cournot equilibrium is the unique outcome that can 

be sustained by a CPSFE. This fact is a straightforward implication of Theorem 3.1 

and Lemma 3.2. 

Lemma 3.3. Let (D, C, n) be an industry such that C I1I (q) ~ 0 for q > o. If 71"(0) > 

71"(a) for all a E (0, (0), then 

(p(s), q1(S), ... , qn(s)) = (p(D, C, n), ij(D, C, n), ... , ij(D, C, n)) 

for all s E CPSF E(D, C, n). 

Proof: Let 8 E SFE(D,C,n) be such that p(8) =1= p(D,C,n) = p. We show 

that 8 tJ- CPSF E(D, C, n). Assume, without loss of generality, that 71"1 (8) ~ 71"i(8) 

for i E N. By Lemma 3.2 there is 0: ~ 0 and 8 E SF Ea(D, C, n) such that 71"1 (8) ~ 

71"1(8). Moreover, p(8) =1= j5 implies 0: > o. Let s E CPSFE(D, C, n) be such that 

(P(S),q1(S), ... ,qn(s)) = (p,ij, ... ,ij). (The strategy profile s exists by Theorem 3.1.) 

Since sE SF Eo(D, C, n), for i E N we have 

Hence all firms benefit by jointly deviating to the strategy profile s. Since s E 

CPSF E(D, C, n), then s is a self-enforcing and improving deviation, and therefore 

8 tJ- CPSFE(D,C,n). 0 

In what follows we study conditions under which the assumption on the function 

71" of Lemma 3.3 holds. Interestingly, in some cases it is possible to directly calculate 

the function 71" and to check whether this assumption holds. Following this approach 

we are able to establish in Proposition 3.4 that in a linear industry, the assumptions 

of Lemma 3.3 hold whenever there are three or more firms in the industry. A linear 

industry is described by a linear demand function, (i.e., D(p) = a - bp, for pE [0, ~J, 

where a, bE lR+), and a linear cost function (i.e., C(q) = cq, for q ~ 0, where c E lR+). 
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Our assumption that C'(O) < p implies c < ~. Thus, a linear industry is described 

by the parameters a, b, c, and n. 

Proposition 3.4. Let (D, C, n) be a linear industry. If n 2: 3, then 

(p(s), ql(S), ... , qn(s)) = (P(D, C, n), q(D, C, n), ... , q(D, C, n)) 

for all sE CPSFE(D,C,n). 

Proof: The solution to the system (E.l)-(E.3) yields 

(a + b) (a - bC)2 
7T"(a) = ((n _ 1)0: + (n + 1)b)2· 

It is easy to see that whenever n 2: 3 we have 7T"'(a) < 0 on (0,00). Hence 7T"(0) > 7T"(a) 

for 0: E (0,00), whenever n 2: 3, and therefore Proposition 3.4 follows from Lemma 

3.3.0 

The conclusion of Proposition 3.4 does not hold when there are only two firms in 

the industry; in this case the Stackelberg equilibria also can be sustained by CPSFE. 

In turns out that in a linear industry, the presence of three firms reduces the set of 

market outcomes that can be sustained by CPSFE to just the Cournot Equilibrium. 

This conclusion extends to every industry (D, C, n) with a quadratic cost function 

and linear demand (see Proposition 3.7 below). Nevertheless, as Example 3.6 shows, 

there are industries with three firms for which market outcomes other than Cournot 

can be sustained by CPSFE. Moreover, under appropriate conditions on the functions 

D and C, the number 

n* = 2 D'(p) + DI/(P) (p - C'(q)) 
+ D'(P) (1 - D'(p)CI/(q)) 

provides a threshold on the number of firms that guarantees that if n 2: n *, then the 

Cournot equilibrium is the unique outcome that can be sustained by a CPSFE. 

Remark 3.5. Note that n* > 2. Moreover, if the industry's demand is linear, then 

n* ~ 3, and since n is an integer n 2: n* if and only if n 2: 3. 

Example 3.6: Consider the industry (D, C, 3) where C (q) = 0 for q E JR., and 

D (p) = 1 - p2 for p E [0,1]. From the solution to system (E.1)-(E.3) one can 
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compute the function 7r to obtain 

7r ( 0:) = 4
1
9 ( vi (0:2 + 7) - 0:) (2 + 3; ( vi (0:2 + 7) - 0:) ) 

This function has a maximum at 0:* = ~. Let s E SF El (D, C, 3). In this SFE, two of 
3 

the firms produce i and the remaining firm produces~. We show sE CPSFE(D, C, 3). 

Since 7r(i) 2: 7r(0:) for 0: 2: 0, by Lemma 3.2 s is not Pareto dominated by any other 

market equilibrium. Hence the coalition of all three firms does not have an improving 

deviation. In addition, the two firms producing ~ are in fact producing the Cournot 

equilibrium quantity ofthe (two-firm) "residual industry," and therefore by Theorem 

3.1 this coalition does not have an improving deviation either. Nor does have an 

improving deviation a coalition formed by a firm producing ~ and the firm producing 

~, since these productions correspond to a Stackelberg equilibrium of their residual 

industry. Hence s is a CPSFE. Note that for this industry 

n* = 2 + 2p + 2p = 4. 
2p 

Indeed if n 2: 4 then the Cournot equilibrium becomes the unique outcome that can 

be sustained by a CPSFE. 

Proposition 3.7 establishes conditions more general than those of Proposition 3.4 

under which the Cournot equilibrium is the unique coalition-proof supply function 

equilibrium of an industry. 

Proposition 3.7. Let (D, C, n) be an industry such that n 2: n*. If 

{3. 7.1} CI/(q) = ° for q> ° and D"'(p) :S ° for pE (O,p), or 

{3.7.2} C"'(q) = ° for q > ° and DI/(p) = ° for p E (0, p), 

then 

(p(s), ql (s), ... , qn(s)) = (p(D, C, n), q(D, C, n), ... , q(D, C, n)) 

for all s E CPSFE(D,C,n). 

Proof: It is shown that under the assumptions of the proposition we have ~). 2: 0. 

Hence the condition (A.l) of Lemma A (see the Appendix) is satisfied and therefore 

7r'(0:) < ° for et E (0, (0). This in turns implies that 7r(0) > 7r(0:) for 0: E (0, (0). The 

conclusion of Proposition 3.7 then follows from Lemma 3.3. 
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Suppose that (3.7.1) holds. Implicit differentiation of E.l yields 

ow 
ou = -D'(u) - D"(u) (u - C'(w)) , 

and therefore 

~~ = -2D"(u) - D"'(u) (u - C'(w)) 2: o. 

Suppose that (3.7.2) holds. Then again differentiation of E.l we have 

ow -D'(u) 
- ---~"---

ou 1 - C"( w)D'(u) ' 

and therefore 

Lemma A of the Appendix provides alternative conditions implying that the func­

tion 7r is decreasing (0, (0). Checking these conditions directly allows us to establish 

the conclusion of Proposition 3.7 for a quadratic industry (Example 3.8), and for an 

industry where the cost function is quadratic and the demand is a polynomial of third 

order (Example 3.9). These examples are outside the scope of Proposition 3.7. 

Example 3.8. Let (D, C, 3) be an industry where C(q) = ~q2 for q 2: 0, and 

D(p) = 1 - p2 for pE [0,1]. For this industry, the Cournot equilibrium is the unique 

outcome that can be sustained by a CPSFE. We show that (A. 1) of Lemma A holds; 

hence that 7r'(a) < 0 for a > 0, and therefore this result follows from Lemma 3.3. 

Let a > O. From E.l we have 

Hence 

u 2 

W = 2u(u- w) = 2--
1 +2u 

02W 4 
- 3 > o. 

(1 + 2u) 

Example 3.9. Let (D, C, 3) be an industry where C(q) = ~q2 for q 2: 0, and D(p) = 

~(27 - p3), for p E [0,3]. The Cournot equilibrium for this industry is f5 = 2.1977, 

if. = 1. 8206. Implicit differentiation of E.l yields (see the Appendix) 

02w _ 2f5(3 - f52) 
ou2 (p) = (1 + f52)3 < 0; 
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hence (A.I) of Lemma A does not hold. Nonetheless, it is easy to prove that (A.2) 

holds. Write 

,(ex) = -- (n - 1) ex - (n - 2) D'(u) - - = - 2ex - D'(u) - - . -1 ( Ow) -1 ( Ow) 
n-l & 2 & 

We show ,(ex) :s; O. One can compute, (0) (see the Appendix) to obtain 

,(0) = D'(p)(n - n*). 

As 
* p2 + 2p (p - q) 

n = 3 > n = 2 + -2 ( n2) = 2.2304, 
p 1 +p 

we have, (0) < o. Hence it suffices to show that ,'(ex) < O. We have 

1 ( 02W) ,'(ex) = - (1 - D"(u)u'(ex)) + -- -D"(u) + ~ u'(ex), 
n -1 uU 

and since u'(ex) < 0, then -D"(u) + ~:':} > 0 implies ,'(ex) < o. Here we have 

02W ( 3 - u
2 

) -D"(u)+~=2u 1+ 3 >0. 
uU (1 + u 2) 

4 Appendix 

The following lemma provides alternative conditions that ensure that the function 7f 

has a unique maximum on ex = O. 

Lemma A. Let (D, C, n) be an industry. Assume that for each ex E (0,00) either 

(A.i) n ~ n* and ~:':} ~ 0, or 

(A.2) (n - 1) ex - (n - 2) D' ( u) - ~~ > o. 
Then 7f'(ex) < 0 for each ex E (0,00). 

Proof: Let ex > o. From the definition of 7f we have 

7f' ( ex) = u' (ex) v ( ex) + (u (ex) - C' (v)) (~~ u' ( ex) + ;~) . 

From E.l we have 

OW = -D'(u) - D"(u)(u - C'(w)) > O. 
OU 1 - C"(w)D'(u) 
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From E.2 we get 

and 

From E.3 we have 

_8v = (u - G'(v)) > 0 
80'. 1 + GI/(v) (a - D'(u)) , 

8v = 0'.- D'(u) - DI/(u) (u - G'(v)) > 0 

8u 1 + GI/(v) (a - D'(u)) . 

(n 1) 8v 
u'(a) - - Bc; < 0 

- D' (u) - (n - 1) g~ - ~~ . 
Substituting in the expression of 7[' ( a) we have 

7[' (a) - u' (a) (v (a) + (u (a) - G'(v(a)) n ~ 1 (D'(u(a)) - ~:) ) 

- u' (a) (u(a) - G'(v(a))) (a - D'(u(a)) + n ~ 1 (D'(u(a)) - ~:)) 
- (3(0'.)')'(0'.), 

where 

(3 (a) = -u' (a) (u (a) - G'(v(a))) > 0, (3.(3) 

and 

')' (a) - - (a - D'(u(a)) + n ~ 1 (D'(u(a)) - ~:)) (3.')') 

-1 ( aw) - n _ 1 (n - 1) a - (n - 2) D' ( u( a)) - 8u . 

This establishes the conclusion of Lemma A under (A.2). 

Note that 

We establish Lemma A under (A.1) by showing that ')"(0'.) < 0 for a E (0, (0). We 

have 

')"(0'.) - n ~ 1 (-(n -1) + (n - 2)DI/(u)u'(a) + ~:~ u'(a)) 

_ - (1- DI/(u)u'(a)) + _1_ (-DI/(u) + 8a2~) u'(a). 
n-1 u 
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Since ~:~ ~ 0 and u'(a) < 0, we have (recall that D is a concave function) 

( -D"(u) + ~:~) u'(a) ~ O. 

Hence in order to prove that '"'(' (a) < 0 it suffices to show that 1 - D" (u )u' (a) > O. 
As u'(a) < 0, E.3 implies 

(
8v ) 8w 0< D'(u)u'(a) = (n - 1) 8u u'(a) + v'(a) + 8u u'(a). 

Since 

8w '( ) 8u u a < 0, 

the above inequality implies 

Since 

we have 

8v 
8u u'(a) + v'(a) 

8v 
8u u'(a) + v'(a) > O. 

, (u - C'(v)) 
v (a) = 1 + C"(v) (a _ D'(u)) > 0, 

_ (a -D'(u) - D"(u) (u - C'(v))) u'(a) + v'(a) 
1 + C"(v) (a - D'(u)) 

(1 + C'~ 0 ~~)D'(U))) u'(a) + (1 - D"(u)u'(a)) v'(a) > O. 

The first term in the right hand side of the above expression is negative. Hence the 
second term must be positive. Since v' (a) > 0, we must have 1 - D"(u)u'(a) > O. 
Therefore '"'('(a) < 0, and since '"'((0) ~ 0, we have '"'((a) < 0 for a > O. 0 
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