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1 Introduction 

Auction participants are not unlike all other economic agents: they do not all come at the 
same size, and they do not all share the same aspirations. They do not necessarily intend 
to (or are not able to) use the object that is auctioned off in the same way, or they do not 
have the same financial backing to ensure that funding considerations do not affect them 
differently. These considerations come immediately into one's mind when, for example, the 
object being auctioned off is a failed firm or a state-owned firm about to be privatized. 

Auction theory, for reasons of technical convenience, has mainly focused on symmetric 
environments. Nonetheless, attempts to extend the analysis to asymmetric environments 
have shown that most major insights derived in the symmetric case do not continue to hold. 
Perhaps, the most celebrated, violent reversal of fortune has been delivered in the analysis of 
single-object, second-price, common-value auctions. Bikhchandani (1988) has demonstrated 
that if in such an auction it is common knowledge that one of the bidders has a disadvantage 
compared to her opponent, even a minor one, this bidder (almost surely) never wins the 
auction. As a result, second-price, common-value auctions may be considerably less desirable 
in asymmetric environments compared to symmetric ones; e.g., in terms of expected revenues 
to the seller.} 

This paper is an attempt to further our understanding on the properties of asymmetric 
second-price, common-value auctions. It departs from the existing literature by introducing 
two-sided uncertainty, i.e., it analyzes the case in which both bidders' types are private infor-
mation. This departure affects considerably the outcomes derived in Bikhchandani (1988). 
Even when one bidder is with a large probability (always bounded away from 1) disadvan-
taged while the other one is with an equally large probability advantaged, in equilibrium, 
the disadvantaged bidder has to win the auction with strictly positive probability. This 
is true even in the states of nature that her opponent is actually advantaged while she is 
disadvantaged. 

This result restores the "common sense" intuition that a small advantage should not 
have an enormous impact on outcomes. It is actually shown in two examples (onE~ with two 
types and another with a continuum of types) that the expected revenues generated in these 

1Milgrom and Weber {1982} have shown that in symmetric common-value environments second-price 
auctions, by reducing the winner's curse, generate larger expected revenues than first-price auctions do. 
Bikhchandani (1988) and Bulow and Klemperer (1997) argue that this result does not carry over when 
asymmetries are introduced. 
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asymmetric environments are not much smaller than the ones generated in "comparable" 
symmetric environments. Hence, one should put into a more rigorous examination the widely 
held belief that first-price auctions should be preferred in the presence of asymmetries (e.g., 
Klemperer (1997)). 

Examples in which the informational structure of asymmetries among bidders fits into our 
description abound. Rival firms competing for the acquisition of a target firm in a takeover 
contest, of a failed firm under liquidation, or of a state-owned firm about to be privatized 
are obvious examples. In all those cases, the market value of the assets of the target firm is 
common to all bidders, but at the same time, each of them may have an additional private 
source of gains due to synergies between them and the target. It is highly unlikely that all 
these additional interests the contestants have are public information. Asymmetries among 
bidders can also be generated by the presence of liquidity constraints.2 Firms that operate 
within imperfect capital markets face different costs of raising the amount of cash needed for 
their bids. Differences in retained earnings, in values of assets appropriate for collateral, or, 
more generally, in access to external finance may easily cause asymmetries among bidders. 
This last one is the source of asymmetries we will concentrate on. 

The paper is organized as follows. The next section sets up the model. Section 3 delivers 
the general results in the two-type case. Moreover, it explicitly solves for a type-asymmetric 
equilibrium (the only class of admissible candidate equilibria) in an example. Section 4 
discusses the continuum-of-types case and shows the existence of pure type-symmetric equi-
libria. Finally, Section 5 concludes. 

The Model 

An auctioneer, A, organizes an auction to sell an object, say a failed firm. There are 2 
risk-neutral bidders, i E {I, I I}, competing to acquire it. 

We assume that the value of the object is common to both bidders, and equals to v E 

{U, v] c lR+ This value is unknown. Each bidder though receives a private signal Xi) such 
that Xl +XII = v.3 The signals are assumed to be independently and identically distributed 
(LLd.) conditional on v according to a cumulative distribution function F. The associated 

2See, for instance, Che and Gale (1998). 
3The normalization that the value of the object is the sum of the signals is only made for convenience, 

both notational and computational. No results rely on it. 
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density function, f, is assumed to be absolutely continuous and strictly positive over its 
closed and bounded support [0, x] =X C 1R+4 

Moreover, each bidder receives another private signal (}i E [()A, ()D] = e c 1R++, i.i.d. 
across bidders, distributed according to G, with absolutely continuous and strictly positive 
over its support density function, g. This signal contains private information regarding bidder 
i's marginal utility of income. Finally, there is no correlation between the two signals. 

Bidders' utility is Ui = V - (}iPi. Nonetheless, instead of understanding the auction as 
one of pure common-values in which bidders differ in their marginal utility of income, it 
is convenient to analyze it as one in which the bidders have identical marginal utilities of 
income, but they value the object differently. In this case, bidders' utility can be rewritten 
as 

From now on, we will refer to (}i as the type of bidder i and to Xi as the signal she has 
received (i.e., a bidder who has observed the pair (x, ()) will be referred to hereafter as a 
(}-bidder with signal x). 

The equilibrium notion we employ is stronger than that of the standard Bayesian-Nash 
equilibrium. In addition, we eliminate weakly dominated strategies. This restriction implies 
that we impose on bidders to bid at least their individually rational bid, Le., be(x) 2: ~.5 

Disadvantaged Bidders Are Not Doomed 

In this section, we consider that () is distributed according to a two-point distribution e = 
{ () A, ()D }. Bidder i receives signal ()A with probability JLi and ()D with the complementary 
probability. There exists a 8 > 0, such that JLi > 8, V ij i.e., there is always uncertainty 
about both bidders' (). It is important to notice that our framework encompasses the case in 
which one bidder receives signal ()A with probability close to 1, while the other one receives 
signal (}D with a similarly large probability (always bounded away from 1 by 8). 

4The lower bound of the support is chosen to be zero to relieve notational burden. The extent to which 
this normalization affects the results will be explained as we proceed. 

5Bikhchandani (1988) employs the same restriction to rule out unreasonable equilibria. 
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3.1 General Results 

The most striking result in the literature on asymmetric, second-price, common-value auc-
tions is that a bidder who has a disadvantage compared to her opponent, even a minor one, 
(almost surely) never wins the auction (e.g., Bikhchandani (1988) and Bulow and Klemperer 
(1997)). Bikhchandani actually shows that this result holds even if the probability that one 
bidder is more advantaged than the other is vanishingly small. In this section, we show that 
this result is not robust to the introduction of two sided-uncertainty about the type of the 
two bidders. Specifically, we show that even if the probabilities that one of the bidders is 
advantaged and the other disadvantaged are arbitrarily large (always bounded away from 
1), it is possible that the disadvantaged bidder wins the auction. It should be noted that 
she wins the auction with strictly positive probability even in the state of nature in which 
her opponent is advantaged. The following proposition states formally the result.6 

Proposition 1 In every equilibrium in non-decreasing, pure strategies of this auction a D­

bidder must win over an A -bidder with strictly positive probability. 

Proof: Assume not. In such case, in equilibrium, a D-bidder wins with zero probability 
over an A-bidder, and therefore an A-bidder should assign zero probability to the event that 
she ties with a D-bidder. Concentrate first on type-symmetric strategies. In such case, an 
A-bidder must bid in equilibrium bA{x) = ;:; i.e., the strategies derived in Milgrom (1981). 
This is due to the fact that an A-bidder assigns probability equal to 1 to the event that her 
opponent is an A-bidder conditional on tying. But then, in such equilibrium, for aD-bidder 
to never win, she must bid bD{x) = O. Consider a D-bidder with signal x. The bid coming 
out of her individually rational strategy is o~' By bidding it, she wins whenever < 
Take y = ~ > O. By bidding her individually rational bid, this D-bidder wins against 
all A-bidders with signals x E [0, V), while making positive profits conditional on winning. 
(The true value to her is zo-;,x, whereas she pays no more than o~') Since this deviation is 
profitable it contradicts equilibrium strategies. 

6The normalization that the lower bound in the support of x is zero allows us to make the proposition 
statement unconditionally. Otherwise, it would have been necessary to assume that ale:ii. > *. That is, 
that the individually rational bid of the least advantaged bidder when receiving the highest possible signal is 
larger than the individually rational signal of the most advantaged bidder when receiving the lowest possible 
signal. This is nothing more than the weakest condition needed in an auction to ensure the presence of real 
competition among bidders. This condition is trivially satisfied when f!Z = O. 
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Consider now type-asymmetric strategies. The proof is split into two cases: (a) We first 
show that there exists no equilibrium strategy in which one of the A-bidders, say A-I-bidder, 
always wins. For an equilibrium to have this property, there must be an equilibrium strategy 
for the A-I1-bidder such that (i) A-I-bidder always wins against A-I1, and (ii) D-I-bidder 
never wins against A-I I. If strategies are strictly increasing, then because of (i) we have that 
bA - II (x) S; 0:' Vx. Otherwise, an A-I-bidder with signal 0 would regret winning. Because 
of (ii), bA- II (x) 2:: o~, Vx. Otherwise, a D-I-bidder with signal x would deviate upwards 
and win profitably. Since equilibrium strategies are assumed to be strictly increasing, (i) 
and (ii) contradict each other. Hence, A-II-bidder equilibrium strategy needs to have a flat 
intervaL Now, assume that A-I1-bidder's strategy has a flat interval, and hence takes the 
following form: bA - II (x) = :D +T, Vx E [m, MJ, where m and M are two scalars and T 2:: O. 
Clearly, T > 0, otherwise a D-I-bidder with signal x would deviate and win profitably. A 
necessary condition for an A-I-bidder with signal 0 to want to outbid all A-I1-bidders who 
bid according to this flat strategy is that the expected value when winning is larger than the 
payment; i.e., ";~: 2:: 0: + T. Nonetheless, the individually rational bid of an A-I1-bidder 
with signal M is bA- II (M) 2:: :!. Hence, a necessary condition for the flat equilibrium 
strategy to be individually rational is +T 2:: :!. Combining the two necessary conditions 
we get ";~: 2:: :!; a contradiction. Therefore, equilibrium strategies for an A-I1-bidder 
cannot have a flat interval either. 

(b) We now show that there does not exist an equilibrium in which A-I- and A-II-bidders 
tie among themselves while D-bidders always lose. Assume it does. If an A-I-bidder with 
signal E ties with some A-I1-bidder with signal M while D-bidders always lose, Bertrand 
competition among them implies that bA-1(E) = €~: 2:: o~. As E -t 0, :! 2:: 0: which 
implies that M 2:: tr;X > O. Therefore, M -f O. Take an A-II-bidder with signal m < M 

who ties with an A-I-bidder with signal r. In a tie, ~r 2:: 0:' As m -t 0, r 2:: ~x > Ej 

which contradicts increasing strategies. So if an equilibrium exists, the bidding strategies 
must have flat intervals. Employing similar arguments as in the previous case one can show 
that this is not possible. Q.E.D. 

The intuition behind the result is the following: An advantaged bidder cannot bid very 
aggressively because she knows that with positive probability she may be playing against 
an equally advantaged bidder. If both are aggressive, they end up regretting when winning. 
Their reluctance, on the other hand, makes the disadvantaged bidders less cautious, and as a 
result the extreme situation analyzed by Bikhchandani (1988) is not obtained. Disadvantaged 
bidders need to win with strictly positive probability in any equilibria of the auction. 
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The next proposition further characterizes the set of admissible equilibria in this auction. 
Namely, it shows that there are no type-symmetric equilibria. 

Proposition 2 There exist no type-symmetric equilibria in increasing pure strategies. 

Proof: We first show that if type-symmetric equilibria exist, they must be in continuous 
increasing pure strategies. Suppose not. Remember that by Proposition 1, a D-bidder cannot 
always lose. Assume w.Lo.g. that an A-bidder's equilibrium strategy has a gap at M. Then, 
this would imply that an A-bidder with signal M - E would be willing to lose over a positive 
mass of D-bidders whom the A-bidder with signal M is willing to beat. (It is obvious that 
such discontinuity could not have occurred at the range of signals in which the A-bidders 
win with probability 1.) But the expected values of the object conditional of winning for 
the two A-bidders converge to each other as E -+ Dj a contradiction. 

In any equilibrium, an A-bidder with signal x must win with probability 1. Since by 
Proposition 1, a D-bidder cannot always lose, and since strategies are assumed to be increas-
ing, there exists a signal M < x such that bA(M) = bD(x). Now, the unique equilibrium 
strategy for an A-bidder with signal greater than M is bA(x) = ~~, \Ix> M. Since strategies 
are assumed to be increasing and pure, and we have shown that they must be continuous, it 

must be that bA(M) = bD(x) = ~~. 

Consider an A-bidder with signal M -E. Given that strategies are increasing, by following 
the equilibrium strategy she is losing against an A-bidder with signal M and a D-bidder with 

signal X. By deviating and bidding ~~, she pays at most her bid, while the true value is 
8~ {(M - E) + (J-tiX + (1 J-ti)M)}. Since J-ti is bounded by 6 > °and M < x, as E -+ 0, such 
deviation is profitable. Q.E.D. 

Nonetheless, there exist type-asymmetric equilibria in such auction. In the next subsec-
tion, we provide an example in which we fully characterize a pure-strategy, type-asymmetric 
equilibrium, and we discuss its properties. 

3.2 An Example 

Consider the following example: xi's are uniformly drawn from [0,1], (JA = 1,(JD = 2, and 
J-ti = 1/2. The following bidding strategies constitute an equilibrium in which aD-bidder 
has a strictly positive probability of winning over an A-bidder. 

x E [0,3/4) x E [0,1/2)J) bA-1(X) = { x + 1/2 bD-1(X) = { x 
2x x E [3/4,1] x+ 1/2 x E [1/2,1] 
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x E [0,1/2) 
x E [0,1/2)

I I) bA-II(X) = { ~~~ x E [1/2,3/4) bD-II(X) {X
1/2 x E [1/2,1]

2x x E [3/4,1] 

Before showing that these strategies constitute an equilibrium, it is worth noting some inter-
esting properties of the equilibrium. First, a D-bidder has a strictly positive probability of 
winning the auction over an A-bidder. Just notice that a D-I-bidder with signal x E [1/2,1] 
beats an A-II-bidder with signal x E [0,1/2). 

When a bidder ties with her opponent, and according to the equilibrium she assigns zero 
probability to the event that she tied with an opposite type, her strategy is part of what 
would have been a symmetric equilibrium in an auction where (a) it is common knowledge 
that both bidders are of her type, and (b) the signal space is truncated to contain only the 
signals in which by following the above specified strategies they would have never tied with 
a bidder of the opposite type (Le., when x E [3/4,1] for the A-bidders, and when x E [0,1/2) 
for the D-bidders).7 

We now sketch the arguments used to solve for the equilibrium. As it is already noted, 
the bidders play their "symmetric equilibrium strategies" when they assign zero probability 
to the event that they have tied with an opposite type bidder. Although it is quite obvious 
that there exist values of x for which such situation arises for the A-bidders, this is not 
the case for the D-bidders. For this to be true, it is necessary that both A-bidders bid 

. aggressively enough so that a D-bidder would never tie with them. But if both of them bid 
aggressively, they may end up regretting winning. If an A-II-bidder bids aggressively, as 
in the above specified strategies, to win over the D-I-bidder with signal less than one-half, 
an A-I-bidder with signal 0 may regret winning. This is not the case because although she 
regrets winning over all A-II-bidders with signals less than one-half she is compensated for 
these losses by the gains she makes by winning over all D-II-bidders with signals greater 
than one-half. Given that both A-II- and D-II-bidders submit the same bid (1/2), an A-
I-bidder cannot find an alternative bid that only beats the D-II-bidders. The same is true 
for a D-I-bidder with signal one-half. She just breaks even by beating the same set of A-II-
and D-II-bidders. Finally, all A-II-bidders with signals between one-half and three-fourths 

7In this sense, this equilibrium can be understood as the type-asymmetric equilibrium that is the "closest 
possible" to a type-symmetric one. 
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bid very aggressively and make sure that a D-I-bidder with signal 1 does not want to outbid 
them. 

The seller's expected revenue can be readily computed, and is found to be equal to 0.4661. 
It is interesting to make revenue comparisons between this situation and the ones arising 
were the bidders symmetric, or were there complete information about their type (Le., as 
in Klemperer (1997)). To be able to make meaningful comparisons, we first need to define 
the appropriate alternative situations. We accomplish this by ensuring that under all three 
situations the expected value of the object being auctioned off is the same. The expected 
value of the object in the example is ~. An "expected value-equivalent" symmetric auction 
can be constructed by considering an auction in which both bidders have the "fictitious 
type" 0 = ~~. The expected price of such auction is 0.56.8 The expected price of the 
auction in which it is common knowledge that there is an A-bidder and a D-bidder (as in 
Klemperer (1997)) is 0.25.9 By comparing the expected revenues, we see that the difference 
in the performance of second-price auctions in asymmetric and in symmetric environments 
is not too large. The negative reputation second-price auctions have acquired in asymmetric 
environments is due to the fact that the literature has focused on the certainty or the one-
sided uncertainty cases in which second-price auctions seriously underperform compared to 
our framework. 

4 Continuum-of-types case 

4.1 Existence and Characterization of the Equilibrium 

We now characterize the equilibrium of the auction when the O/s are continuously distributed 
in the interval [0A, OD]' We show that in the continuous case there exists a type-symmetric 
equilibrium in pure, continuous, and strictly increasing strategies. 

8This is the expected price arising from the symmetric equilibrium of this auction. Milgrom (1981) has 
shown that the expected prices of all other asymmetric equilibria of this auction are lower. 

9There is actually a continuum of expected prices ranging from 0 to 0.5. Nonetheless, the lower bound 
can be reached only if the D-bidder bids less than her individual rational bid. On the other hand, the upper 
bound can be reached only if a D-bidder with signal less than one-half bids "unnaturally" aggressively. More 
aggressively than in the symmetric equilibrium had her opponent been of her own type. 
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._.......__._-------------------------------------- 

Proposition 3 The type-symmetric equilibrium bidding strategies are the following: 

where 

and where m(xi} ={minx;::: 0: 30' E [OA,OD] such that b_i(m,O') = bi(Xi,Oi)}, M(Xi) = 
{maxx::; x: 30" E [OA,On] such that b_i(M,O") = bi{Xi,Oi)L and F(z) is the truncation 

of F such that z E [m(Xi) , M(Xi)]' . 

Proof: It is clear that the purported equilibrium strategies have to be decreasing in O. 
Notice that for any price bidder-(x, 0) is willing to pay for the object, bidder-(x, 0 €) makes 
strictly more profits when outbidding the same set of opponents. Let us assume that they are 
increasing in x. If this were the case, then m(xi) is such that bi(Xi, Oi) = bj(m, 0 A), and M(Xi) 

is such that bi(Xi,Oi) = bj(M,OD) if bi < U, where U bj(X,OD)' Thus if bidder-(x,OD) 
follows these strategies then straightforward calculations yield: 

x + zdF(z) m(x) + 
U* - b*(X,OD) = OD = b*(m(x),OA) = ------:-->--!---

l b*(- 0) 2xMoreover, x, A = 8A' 

We claim that for all bE [U*, ;~] there exists 8E lOA, On] such that b*(x, 8) = b. We prove 
this claim by contradiction. Assume that there exists b*(x, 0) = b' and b*(x, 0 - c) = b" such 
that lime-+o b* (x, 0 - c) =1= b'. Let y be the signal of the 0 - c-bidder who bids b'. Now, due to 
the assumed gap, a O-c-bidder with signal slightly greater than y should bid less than b (for' 
this bidder the expected signal of her opponent is smaller than it is for the 0 - c-bidder with 
signal y). This contradicts increasing bidding strategies. Consequently, for all (Xi,Oi) such 
that Xi;::: m(x) it is deduced that M(Xi) = x, and m(xi) is such that b(Xi,Oi) = b(m(xi),OA)' 

Hence, since the expectation xE(bi(Xi,Oi)) is a continuous and increasing function, b*(Xi,Oi) 

is also increasing and continuous in Xi, for all Xi ;::: U*. As for the case in which Xi < U*, 

since xE(bi(Xil Oi)) does not depend on Xi, it is also the case that b*(Xil Oi) is increasing and 
continuous in Xi. IO 

laThe normalization that the lower bound in the support of x is zero ensures that the bid strategies of all 
types start at the same point, i.e., from O. Had we not used this normalization, it would have been necessary 
to define in a similar manner u* == bj(~,eA)' Then for the range ofthe bids bE [j!,u*} the analysis would 
have been along the same lines as when bE [U·. *}. 
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Since bids are such that the bidders maximize the probability of winning conditional on 
not regretting winning, then by standard arguments employed in the analysis of second-price 
auctions we conclude that these strategies constitute an equilibrium. Q.E.D. 

In the next subsection we analyze an example with uniform distributions. It allows us to 
compute the expected revenues to the seller. 

4.2 An Example with Uniform Distributions 

The distributions of both () and x are assumed to be uniform. Moreover) we make the 
following normalizations: [(}A) (}vj - [1,2]' and [0, x] =[0,1]. 

It is now straightforward to calculate the equilibrium bid functions: 

4OO'f [0 49-3)49-3 1 x E , -5- , 

b*(x, (}) = 
{ 300+1 if x E [49-3 1]

39-1 5 ' • 

It is worth noting that the bid functions are piecewise linear in x. They have a steeper slope 
in the first segment, and moreover this slope is decreasing in (). The fact that the slope is 
decreasing in () shows that the more efficient a bidder is (the smaller her () is), the more 
aggressively she bids. 

[Insert Figure] 

Since the bid functions are piecewise linear, to compute the expected revenue to the seller 
we have to distinguish between.two cases: bids between 0 and 4/5 and bids between 4/5 and 
2. 

a) Consider a bidder choosing a bid b :::; 4/5. This bidder faces an opponent with an 
expected () equal to 1.5. Since b(x, (}E) = b(x, 1.5) = , the expected payment when choosing 
b will be 

b) Consider now that the bidder chooses b > 4/5. If her opponent ties with her, then'the 
expected () of the opponent will be (}E = 2i;b. Notice that when b = 2, (}E = 1, and when 
b = 4/5, (}E = 1.5. Since b(x,(}E) = (3x +1)2!b' the expected payment as a function of b is: 

1 1~"-l5 4zd 11¥ (3 1) b d 256 - 352b - 140b2 + 450b3 + 225b4 
- Z + z + -- z = ---------:------

o 3 l~b - is 2 +b 
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Adding up we get that the expected payment is: 

R = 

Integrating the above expression we get R = 0.211. Hence, the expected revenues to the 
seller equals to 0.422. 

For comparison purposes, consider a symmetric common-value, second-price auction, 
where it is common knowledge that both bidders have the same efficiency parameter 8. Let 
B*(x, 8) denote the symmetric equilibrium bid function. It is well known that B*(x, 8) 2:. 
Notice that B*(x,8) < b*(x,8) for all x E [0, 46;-3) when 8 < 1.5. Moreover, B*(x,1.5) = 

b*(x,1.5) for all x E [0,0.6) whereas B*(x, 1.5) > b*(x, 1.5) for all x E (0.6,1]. Thus, a 1.5-
bidder bids less aggressively when there is uncertainty about the 8 of her opponent (while 
her expectation of her opponent's 8 is equal to 1.5) than when she knows for sure that 
her opponent is like her. Nonetheless, we should note that the difference in the expected 
revenues to the seller is rather small. The expected price when B*(x, 1.5) is the symmetric 
equilibrium strategy is 0.444, while as we have shown above, the expected price when there 
is uncertainty about () is 0.422. 

Conclusions 

The literature has demonstrated that second-price, common-value auctions are sensitive to 
the presence of asymmetries among bidders. For example, Bikhchandani (1988) has shown 
that if it is common knowledge that a bidder has a disadvantage compared to her opponent, 
this bidder (almost surely) never wins the auction. This paper is the first to show that this 
result does not carry through when one allows for two-sided uncertainty. We show that even 
if the probabilities that one of the bidders is advantaged while the other one is disadvantaged 
are arbitrarily large, in every equilibrium, the disadvantaged bidder needs to win the auction 
with strictly positive probability. We then solve for the equilibria in two cases (one with two 
types and another with a continuum of types) and we characterize their expected revenues 
properties. We find that although they underperform relative to "comparable" symmetric 
auctions, they perform much better than what is usually "assumed" in the literature. 

11 



Bibliography 

Bikhchandani, S., (1988) "Reputation in Repeated Second-Price Auctions", Journal of 

Economic Theory 46: 97-119. 

Bulow, J. and P. Klemperer, (1997) "The Winner's Curse and the Failure of the Law of 
Demand", Mimeo Oxford University. 

Che, Y.-K. and 1. Gale, (1998) "Standard Auctions with Financially Constrained Bidders", 
Review of Economic Studies 65: 1-25. 

Klemperer, P., (1997) "Auctions with Almost Common Values: The "Wallet Game" and 
its Applications", Mimeo Oxford University. 

Milgrom, P., (1981) "Rational Expectations, Information Acquisition, and Competitive 
Bidding", Econometrica 49: 921-943. 

Milgrom, P. and R. Weber, (1982) "A Theory of Auctions and Competitive Bidding") 
Econometrica 50: 1089-1122. 

12  



N  




