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1 INTRODUCTION 

There has been a renewed interest in the literature in models where firms price subject 

to predetermined capacity constraints also known as Bertrand-Edgeworth models. l The 

appeal of the Bertrand-Edgeworth specification is that firms actually set prices, and that 

it assumes a very simple technology that captures differences in firm size. Osborne and 

Pitchick (1986) and Allen and Hellwig (1986b) argue that these models are a natural 

starting point for a theory of firm behavior in oligopoly. 

A common feature of Bertrand-Edgeworth models is the non-existence, in general, of 

a pure strategy equilibrium. The mixed strategy solution concept provides one way of 

avoiding this non-existence problem2 but mixed strategies are not considered by some 

as a satisfactory explanation of pricing behavior by oligopoly firms. Shubik and Levitan 

(1980) consider mixed strategies as an "interesting extension of the equilibrium that is 

somewhat hard to justify." Dixon (1987) finds them "implausible" while Friedman (1988) 

finds it "doubtful that the decision makers in firms shoot dice as an aid to selecting output 

or price." 

V/hen the number of firms in the industry is large the mixed strategy outcome is 

not particularly troublesome. Allen and Hellwig (1986a) and Vives (1986) show under 

different assumptions on the rationing function that as the number of firms in a Bertrand­

Edgeworth model grows the mixed strategy equilibrium converges in distribution to the 

competitive equilibrium. In this sense Allen and Hellwig (1986b) while considering the 

non-existence of a pure strategy equilibrium a "drawback of the Bertrand-Edgeworth 

specification" argue that in the large numbers case randomization in prices is "in some 

sense unimportant" as firms will set prices close to the competitive price with very high 

probability. The competitive result is robust to a change in the equilibrium concept. 

Dixon (1987) and Borgers (1987) obtain convergence to the competitive equilibrium us­

ing the E-equilibrium and iterated elimination of dominated strategies solution concepts, 
respectively. 

\\Then the number of firms in the industry is small, in particular in the paradigmatic 

case of duopoly, the previous approximation result does not apply. In this case the 

1 Deneckere and Kovenock(1992) use such a model to explain price leadership, in trade literature 

I3jorsten(1994) uses it to analize the efects of Voluntary Export Restraints; Iwand and Rosenbaum (1991) 
and Staiger and Wolak(1992) the Bertrand-Edgeworth especifiacation to study the relationship between 

prices and demand fluctuations in a dinamic model. Sorgard(1996) uses it to model a game of entry into 
an industry with a dominant firm. 

2l\laskin(1986) proves existence of a mixed strategy equilibrium for very general specifications of the 
Bertrand-Edgeworth model. 
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alternatives to the mixed strategy solution have involved models that assume sequential 

timing of firm moves. This is the approach that is followed in Shubik and Levitan (1980), 

Deneckere and Kovenock (1992), and Canoy (1996). 

Our paper provides an alternative to the sequential timing hypothesis by analyzing 

a natural extension of a Bertrand-Edgeworth model for which pure strategy equilibrium 

always exists. We consider a Bertrand-Edgeworth duopoly model where prices are deter­

mined in two stages. In the first stage both firms announce list prices simultaneously and 

in the second stage firms may discount these prices. Under quite general assumptions 

about the rationing mechanism we show that there exists a subgame perfect equilibrium 

in which both firms play pure strategies and that this equilibrium payoff dominates any 

other subgame perfect equilibrium, i.e. the equilibrium is focal. The motivation behind 

this two stage pricing structure is taken from list pricing3, a widely extended trading insti­

tution where prices are posted for a period of time and can be later discounted. Our model 

does not provide an alternative solution concept to the mixed strategy Nash equilibrium 

but it yields the prediction that randomization by firms is not equilibrium behavior and 

it does so with a straightforward extension of the classical model. 

The intuition behind our result is simple. In a Bertrand-Edgeworth equilibrium a 

firm may set a price such that its rival obtains higher profits from selling to the residual 

demand than from setting some undercutting price. This price gives the rival a monopoly 

on the residual demand. By committing to a low list price a firm signals to its rival that 

it can act as a monopolist on the residual demand in the subsequent discounting stage. 

In this sense the list pricing institution acts as a facilitating collusion device between 

the firms4. There are several examples that suggest the empirical relevance of this type 

of pricing behavior specially in concentrated industries with one dominant firm, see for 

instance Sorgard(1995). 

The paper is structured as follows: In Section 2 we present the basic model of a price 

setting duopoly with capacity constraints and specify a general residual demand function. 

In Section 3 we define the concept of Edgeworth price which is useful for characterizing 

the pure and mixed strategy equilibria that arise in the game. In Section 4 we analyze 

the pricing equilibria of our list-pricing game and compare it to the equilibrium of the 

single stage pricing game. In Section 5 we explore the relationship between list pricing 

and price leadership. Section 6 concludes. 
, 

3Posting a maximum list price and later offering discounts is common practice in most retail markets. 

4In a different context Holt and Scheffman (1988) analyze list pricing as a facilitating practice device. 
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2 RESIDUAL DEMAND IN A BERTRAND-EDGEWORTH DUOPOLY 

The classical Bertrand-Edgeworth game involves two stages, in the first stage firms si­

multaneously set capacities (production stage) and in a second stage they simultaneously 

decide upon the prices. Once prices are announced market demand is distributed between 

the firms according to some specified rationing rule which represents underlying consumer 

behavior and is assumed to be either efficient, or proportiona1.5 

Consider a market with 2 firms that produce a homogenous good. The firms in the 

market face capacity restrictions 0 < ki ~ D(O) and have zero costs. Suppose that 

the aggregate market demand is given by D(p), is continuous and results in a strictly 

concave revenue curve, pD(p). Suppose that D(p) is positive downward sloping and twice 

differentiable on (0, pO) and zero for p ~ pO > 0, and denote the inverse demand function 

by P(q). Associated with the demand function and firm capacity we can define the firm's 

monopoly price pfl = argmaxpmin(D(p),ki ). 

Given a vector of prices p E lR~ set by the firms we now discuss what firm i sells in 

the market. 

Pi < Pj 

Pi = Pj = P 

Pi> Pj 

Where, R(Pi,pj, kj ) represents a general residual or contingent demand function, and is 

defined only for Pi ~ Pj. The residual demand function is determined by how the rationing 

of excess demand is modeled. 

The literature dealing with Bertrand-Edgeworth model has used one of two specifi­

cations of residual demand: proportional or efficient. To understand how they work we 

will suppose that consumers have a unitary demand, that firm j is undercutting firm i, 

Pi > pj,and that firm j cannot meet all it's demand, D(pj) > kj . The proportional, or 

Beckman, residual demand specification results from the hypothesis that each potential 

consumer of firm j has an equal probability of being served. The residual demand facing 

the high priced firm is then given by, 

5Efficient rationing also refered to as "surplus maximizing" and is used in Levitan and Shubik (1972), 
Kreps and Scheinkman (1983), Vives (1986), and Denekre and Kovenock (1992). Proportional rationing 

is used in Beckman(1965), Alien and Hellwig (1986a-b), Dasgupta and Maskin (1986) and Davidon and 
Deneckre (1986) (this last paper also has some results for a general class of rationing functions). 
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The efficient, or surplus maximizing, residual demand specification assumes that low priced goods are allocated to consumers with the highest valuation for the good.6 Under this assumption the high priced firm has residual demand, 

Proportional and efficient rationing are but two of the many reasonable specifications of residual demand. For instance one may assume that a proportion>. < 1 of the low priced firm's capacity goes to high valuation consumers and the remaining capacity is allocated randomly among the potential buyers, this would result in residual demand for the high priced firm of, 

This function belongs to a class of residual demand functions for which our results hold. This class can be characterized by imposing the following restrictions on function R(Pi,pj, kj ) : A - ~+ where, A = {(p,p', k') E ~3 : P ~ P' ~ 0, k' ~ O} 
1. R(Pi,pj, kj ) is continuous. 

2. If R(Pi,pj, kj ) > 0, it is strictly decreasing in Pi. 

3. R(Pi,pj, kj)Pi is strictly concave in Pi. 

5. If R(Pi,pj, kj ) > 0 it is strictly decreasing in Pj. 

Properties (1),(2) and (3) are self explanatory and simply guarantee that the residual demand function inherits certain regularity properties of the demand function. In order to understand property (4) consider what happens as Pj gets arbitrarily close to Pi, in this case the number of consumers of the low priced firm with a reservation price below Pi becomes arbitrarily small and thus in this case the residual demand function is D(Pi) - kj . \Vith respect to the left hand side simply note that the low priced firm may never sell more that kj units of the good. 7 

6It should be noted that although efficient rationing maximizes the surplus of the consumers of a particular capacity constrained firm it does not maximize total consumer surplus. Given capacities and prices, if the high priced firm can meet all it's residual demand proportional rationing leads to a greater total consumer surplus and total surplus than efficient rationing. 7Properties (1), (2) and (4) are proposed by Davidson and Deneckre (1986) for a "reasonable rationing function" . 
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Property (5) refers to the fact that if firm j (the firm fixing the low price) lowers it's 

price, Pj, more consumers enter the market and this reduces the amount of firm j's output 

that is allocated to high valuation consumers. This in turn increases residual demand for 

the high price firm i. Thus firm i's profits will rise as firm j lowers it's price, this fact will 

play an important role in our results. 

It must be noted that the efficient residual demand is not included in the class of 

rationing functions we consider since it violates property (5). On the other hand our 

results do hold for functions that approximate efficient residual demand as close as we 

want to as R)'(Pi,pj, kj ) verifies properties 1-5 for any 0 ~ A < 1. 

3 THE LOWER BOUND OF THE EDGEWORTH CYCLE 

In a Bertrand-Edgeworth equilibrium a firm may set a price such that its rival obtains 

higher profits from selling to the residual demand than from setting some undercutting 

price. We refer to the highest of such prices as the Edgeworth price (it is the lower 

bound of the Edgeworth cycle). This price will be very useful in order to characterize the 

equilibria that arise in the pricing subgames that we study. If firm i sets a price greater 

than firm j's monopoly price it will surely be undercut thus, pf ~ pr. 

Let us denote the price firm i sets to serve the residual demand by pR(pj, kj ) given 

that firm j chooses Pj. Then, 

If firm i sets a price, Pi, such that P(k1 + k2 ) ~ Pi < pr then the maximum profits 

t.hat firm j obtains by setting a price P' less than Pi are bounded above and arbitrarily 

close to min(kj, D(p')p'. On the other hand the maximum profits that firm j obtain from 

acting on the residual demand are given by R(pR(Pi' ki ), Pi, ki)pR(Pi' ki). This leads to our 

next result. 

Theorem 1 pf can be characterized by the unique price P that verifies, 

Proof: We first prove that there is a unique P that verifies the equation. For P E 

[P(k 1 +k2 ), pr] the left hand side of the equation is strictly increasing and continuous 

and that the right hand side is decreasing (property 5) and continuous (property 1 

and the Maximum Theorem). We have then that if the two functions cross they cross 
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only once. We now prove that the two functions actually cross on [P(k1 + k2),p~11. 
First note that if firm i sets a price, P(ki ), (it has capacity enough to serve demand) 

then firm j will have incentives to undercut this price, 

This is true since the left hand is positive and the right hand side is zero by the 

property (4) of residual demand. On the other hand if firm i sets the competitive 

price firm j will have no incentives to undercut it, 

This is true since the left hand side evaluated at P = P(k1 + k2) is equal to the right 

hand side (by property (4) of residual demand). 

Let us now denote the unique price that verifies the equality by p. If firm i 

sets a price, Pi, such that pr > Pi > P firm j will have incentives to undercut this 

price. On the other hand if firm i sets a price of p the profits firm j may gain from 

undercutting firm i (setting a price below p) are strictly less than min(kj,D(p))p, 
and acting on the residual demand as a monopolist will give it profits of exactly 

min(kj, D(p))p. 

For the sake of convenience we will index two firms such that firm 1 has a higher Edge­

worth price than firm 2, pf ~ pf. Note that further assumptions on the residual demand 

function would be needed to determine which firm will have the highest Edgeworth price 

although it is straightforward to see that if the residual demand function is of the type 

RA then there is a direct relation between the Edgeworth price and firm capacity where 

ki ~ k j implies pf :::; pf· That is, the low capacity firm has a higher Edgeworth price 

than the high capacity firm. 

4 THE LIST PRICING GAME 

In the classical Bertrand-Edgeworth duopoly model firms are assumed to set prices simul­

t,aneously. In our extension of the classical model the price setting process is modeled in 

t.wo stages, in the first stage each firm i E {I, 2} sets a list price pf, and in the second stage 

firms are allowed to offer a discount on the list price resulting in a possibly discounted 

price Pt :::; pf, consumers then make their purchasing decisions according to qi (pt, Pj). 
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Vve will refer to this extended model as the list pricing game. This game reflects the list 

pricing institution, also referred to as posted offer, that is prevalent in many industries. 

In this section we prove that there exists a subgame perfect equilibrium to the list 

pricing game that involves no mixed strategies on the equilibrium path and we characterize 

this equilibrium. Furthermore we prove that if there exists a sub game perfect equilibrium 

that yields an outcome that is different from the proposed equilibrium the former is payoff 

dominated by the latter. If any preplay communication exists between the players then 

it could be argued that this dominating equilibrium would be chosen, in this sense the 

equilibrium that we propose is a focal point of the list pricing game. 

4.1 THE DISCOUNTING SUBGAME 

'ATe first verify the existence of an equilibrium to each discounting subgame given any 

pair of price ceilings pr 2:: o. The proof is a straightforward application of Theorem 5 in 

Dasgupta and Maskin (1986a). 

Theorem 2 The discounting subgame has a (mixed) Nash equilibrium for any (pf,pt). 

Proof: Note that Each firm's action space [O,prl is a closed interval and the profit 

(payoff) function of each firm, 

is continuous except on a subset of 

By proving that i) 7l"1(Pl,P2)+7l"2(P2,Pl) is continuous and ii) that 7l"i(PI,P2) is weakly 

lower semi-continuous we may apply Dasgupta and Maskin (1986a) to obtain the 

desired existence result. 

i) The only possible discontinuity of 7l"1(PI, P2) + 7l"2(P2, PI) occurs in when PI = 

P2 2:: P( kl + k2). Consider a series of prices (Pit, Pjt) -+ (p~p*) we then have 

where Pt E m~ Pit and 'Et E milli Pit .Now let €(t) = Pt -'Et we may then write 

D('Et + €(t))('Et - €(t)) < qi(Pij,Pjt) + Qj(Pjt,Pit) 

< D('Et - €( t) ) ('Et + €( t)) 
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finally by taking limits we obtain 

D(p*)p* :::; 71"1 (p* ,p*) + 71"2(P* ,p*) :::; D(P*)p* 

which proves the desired continuity result. 

ii) In order to prove weak lower semi-continuity for p > P(k1 + k2 ) note that for 

any p* 

lim inf 71"i(P,P*) = min(ki' D(p*))p* 
p-+p. 

~ 71"i(P*,P*) = min(ki' k k
i 
k D(P*))p* 

1 + 2 

We first consider the possibility of reaching a discounting subgame where the list prices 

induce a pure strategy equilibrium. A well known result of the Bertrand-Edgeworth 

lit.erature is that the only candidate for a pure strategy equilibrium is the competitive 

price (see Arrow (1951) in Canoy). This does not hold in general in the list pricing model 

since a pure strategy equilibrium can always be induced in the discounting stage if firm i 

set.s it's list price equal to the competitive price and firm j sets a list price that is high 

enough. In fact any pair of list prices pf > pr such that firm i will act on the residual 

demand if firm j sets a list price of pr, 

min(D(py) , ki)py:::; max R(p,py, kj)p 
PE[Pf ,PiLl 

induce a pure strategy equilibrium in the discounting stage, (ftf,Pj), where firm j does 

not discount it's list price and firm i acts on the residual demand setting a discounted 

price of 

Pt = arg max R(p, Py, kj)p 
PE[Pf,Pi L] 

Our next result shows that if we exclude these type of "induced" equilibria then the 

only candidate for a pure strategy equilibrium in the discounting stage involves both firms 

setting the competitive price (Le. as in Arrow). 

Theorem 3 Let pf ~ pr, if 

the only candidate for a pure strategy equilibrium involves both firms setting the 

competitive price. 

9 



Proof: Suppose a pure strategy equilibrium to the discounting game, (pt, p~), exists. If 

pf < p1, this implies that pf = pf or else firm i would want to raise it's price, which 

contradicts pf 2 pr· Suppose on the other hand p1 < pt, this implies p1 = pr and 

in order for firm i not to have incentives to undercut firm j it must be the case 

o 

which leads to contradiction. We have then that both firms set the discounted price. 

It must be the case that the equilibrium is competitive or else at least one firm will 

have an incentive to undercut it's rival. 

We now consider the possibility of reaching a subgame where list prices induce a 

non-degenerate mixed strategy equilibrium. Given the list prices set in the first stage 

(pf ,p~) a firm's strategy in the discounting subgame is defined by a (possibly degenerate) 

probability measure 14 on [O,pO]. Let the minimum and the maximum of the support 

of ,.4 be denoted by E.i and Pi respectively. Given any two strategies (J.tf, 111) a firm's 

expected profits in discounting stage will be denoted by 7ri (111,111). 
The next result characterizes some of the properties of a non-degenerate mixed strategy 

equilibrium in the discounting stage. Property i) shows that the lower bound of the price 

support is the same for both firms and that it is above the market clearing price. Property 

ii) shows that firms have no atoms at this lower bound, one of the implications of this 

fact is that both firms have non degenerate mixed strategies in equilibrium. Property iii) 

implies that there is a firm h that when setting the highest price in its support will be 

1lndercut with certainty. It should be noted that a discounting subgame where the list 

prices are set at pO is equivalent to the classical one stage pricing game. This theorem 

thus generalizes some of the results of the Bertrand-Edgeworth literature which where 

known to hold for the efficient and proportional residual demand case. 

Theorem 4 Given (pf > O,p~ > 0) if a nondegenerate mixed strategy equilibrium, 

(111, 11~), to the discounting subgame exists: 

iii) for one of the two firms hE {1,2}: 
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7rh(J.i~, J.i~h) = J;-h R(~,p, k-h)p~dJ.i~h(P) 
Proof; See Appendix 

o 

As a corollary to Theorem 1 we will prove that the lower bound of the support of 

the mixed strategy equilibrium is below the Edgeworth price of firm 1. This result is 

important since it implies that firm 1 would be better of if it could commit to a price 

of pf and have firm 2 act on the residual demand than in any discounting game that 

has a non-degenerate mixed strategy equilibrium. The proof is based on the fact that by 

Theorem 2 in a mixed strategy equilibrium there is a firm h which sets a price of ~ and 

is undercut by it's rival with certainty. Firm h'S payoffs when setting this price are not 

certain, they are greatest when it's rival sets a price of 'l, thus expected profits of firm 

h are strictly less than R(P~'I/' k-h)P~. Thus if firm -h where to set a price sufficiently 

close to ,/ with certainty, firm h would best respond acting on the residual demand. This 

in turn implies the Edgeworth price of firm h must be greater than 'l. 

Corollary 1 Given (pf > O,p~ > 0) if a non-degenerate mixed strategy equilibrium to 

the discounting game exists then l!..d < pf 

Proof: By Theorem 2 there is a firm h for which 

given the continuity of the residual demand function by the Mean Value Theorem 

we have that 
-d 

l
p 

-h =Cl =Cl -d =Cl 
~ R(Ph'P, k-h)PhdJ.1-h(P) = R(Ph' Z, k_h)Ph 

for some l!..d < z < P~h. By Property (5) of residual demand we have 

which leads to the desired result. 

o 
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4.2 THE FULL GAME 

We now characterize the subgame perfect equilibrium of the list pricing game. Our first 

result is that if the Edgeworth price of both firms coincides with competitive price then 

any subgame perfect equilibrium of the list pricing game involves both firms setting the 

competitive price. 

Theorem 5 If pf = P(k1 +k2), any subgame perfect equilibrium of the list pricing game 

involves both firms setting a discounted price of P(k1 + k2). 

Proof: Note that a firm i can always guarantee itself profits of P( kl + k2) ki by setting the 

competitive price in the list pricing stage and in the discounting stage, this implies 

that any list price bellow the competitive price is strictly dominated. For this reason 

in a subgame perfect equilibrium no firm will set a price below P(k1 + k2). 

o 

We now prove that if a firm j sets a price of P(k1 + k2) in the discounting stage 

the best response of firm i is to set a price of P(k1 + k2). Given that pf = P(k1 + k2) 
we have that 

Furthermore by property (4) of the residual demand 

This along property (3) yields 

for any p > P(k1 + k2), which proves the desired result. 

This proves that setting the competitive price is an equilibrium to prove unique­

ness note that if pr = P( kl + k2) for some firm i, then firm i will set the competitive 

price in the discounting stage and by the previous argument firm j will best respond 

by setting the competitive price. If on the other hand pr > P(k1 + k2 ) for both firms 

by Corollary 1 no nondegenerate mixed strategy equilibrium will exist. 

The intuition behind the result is that if both firms set the competitive price no firm 

has an incentive to raise its price since the characterization of the Edgeworth price implies 
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P(k1 + k2)ki = maxp'E[Pi,pOj R(p', P(k1 + k2), kj)p. To see that this is the only possible 

equilibrium note that by Corollary 1 when pf = P(k1 + k2) and pf 2:: P(k1 + k2 ) for some 

i, a mixed strategy equilibrium to the discounting game doesn't exist. 

Since the Bertrand-Edgeworth pricing game can be seen as a discounting game where 

the list prices are set arbitrarily high it is clear that by Theorem 5 if pf = P(k1 + k2 ) 

the Bertrand-Edgeworth model has a pure strategy equilibrium. On the other hand 

by Theorem 4 we have that the only candidate for a pure strategy equilibrium in a 

Bertrand-Edgeworth model is the competitive price, but if pf > P(k1 + k2 ) firm 2 will 

have an incentive to deviate from this equilibrium. This leads to our next result which 

characterizes when the one stage pricing game has a pure strategy equilibrium. 

Corrolary 2 The Bertrand-Edgeworth model has a pure strategy equilibrium iff pf = 
P(k1 + k2) 

Theorem 5 and Corollary 2 imply that when the Bertrand-Edgeworth model has a pure 

strategy equilibrium the addition of a list pricing stage is innocuous in the sense that it 

leads to the same prices in equilibrium. We will now deal with the case of characterizing 

the equilibria of the list pricing game when a pure strategy equilibrium of the Bertrand­

Edgeworth game does not exist. 

In the following theorem we prove the existence of a subgame perfect equilibrium of the 

list pricing game in which firms play pure strategies. In this subgame perfect equilibrium, 

which we denote by e*, firm 1 sets its list price equal to pf and doesn't discount, while 

firm 2 sets its list price arbitrarily high and acts as a monopolist on the residual demand 

in the discounting stage. 

Theorem 6 (pf = Pt = pf, Pt 2:: pM (pf , k1) = pg) is a subgame perfect equilibrium of 

the list pricing game. 

Proof: We will first prove that (Pt = Pt = pf, Pt 2:: pM (pf , k1) = p~) is a subgame 

perfect equilibrium of the list pricing game. If pf = P(k1 + k2 ) this implies that 

pf = P(k1 + k2) and we obtain the desired result by applying Theorem 2. Suppose 

on the other hand that pf > P( kl + k2)' In this case the proposed equilibrium yields 

the following profits: 

rri = min(k2' D(pf»pf 
71"2 = R(pR(pf, k1),pf, kl)pR(pf, kr) = min(k2' D(pf»pf 

Let us suppose firm i has a profitable deviation. It must involve setting a list 

price greater than pf. By Theorem 2 this implies that the discounting subgame 
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will have a nondegenerate mixed strategy equilibrium (Jli' Jlj). Let us denote the 

expected profits in this equilibrium by (7ri,7rj). From Theorem 4 we have that for 

some firm h E {1,2} 

Applying the mean value theorem and given the fact that the equilibrium is 

nondegenerate we obtain that for some p' E (ll, p~) , 

Thus by property (5) of residual demand 

R(-d d k )-d 
7rh < Ph'l!., -h Ph 

this in turn implies that pd < p~ and therefore pMIN < p~ < pf. This along with 

the fact that 7ri = min(D(pMIN) , ki)pMIN proves that 7r; > 7ri. 

We now prove that any subgame perfect equilibrium that does not lead to the same 

price outcome as e* leads to lower expected payoffs for both firms. This property makes 

it a clear focal point of the list pricing game e*, furthermore if there is any pre-play 

communication firms would coordinate to this equilibrium. 

Theorem 7 Any subgame perfect equilibrium of the list pricing game that does not 

result in prices of pf and pM (pf, k1 ) leads to lower expected profits for both firms. 

Proof: If pf = P(k1 +k2) then from Theorem 5 we have that e* is the unique equilibrium. 

Suppose on the other hand that pf > P( kl + k2) and that there exists an equilibrium 

e that leads to an expected payoff of 7ri, where 7ri > 7rt for at least one i E {1,2}. 

We will denote the lower bound of the list price support of a firm i in e by p!'. We 
-l 

first note that if this equilibrium is not to be dominated for both firms it must be 

the case that l!.; 2: pf for some firm i. Without loss of generality we assume that 

pL 2: pL. We will characterize the expected payoff of e by the expected payoff of a 
-l -) 

discounting game where the list prices are given by (pf,p~), for any pf ~ p~ . It 
-) -) 

cannot be the case that 
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since strategy pL is dominated by p~ + € for any € > 0 for which 
-J -J 

I t must then be the case that 

For any pair (pf, pL) for which 
-J 

the discounting subgame will either have a nondegenerate mixed strategy equilib­

rium and by Corollary 1 1ri > n; or a pure strategy equilibrium and by Theorem 5 

will result in competitive prices, thus 1ri > n;. It must be the case that for all but 

a subset of measure zero of the list price pairs played (pf, p~), 
-J 

Note that for this inequality to hold it must be the case that pL ~ pf. If pL < pf 
-J -J 

then 1ri > n;. Thus it must be the case that Id == pf and thus pf ;::: pAl (pf, kj ) 

which implies that all but a measure zero of the price outcomes in e are given by 

Pt =pf andp~ =pM(pf,kl)' 

A similar equilibrium outcome as in e* is obtained in Gelman and Salop(1983). They 

analyze a game of entry in a market by a capacity constrained firm, where the entrant 

must commit to a price to which the incumbent best responds. These authors referred 

to the entrants low price small size strategy as "judo economics". In our model the low 

pricing strategy is followed by the firm with the highest Edgeworth price, without any 

additional assumptions on the residual demand function it is not straightforward to prove 

a direct relation between the low price strategy and size. If we assu~e that residual 

demand is given by R>. (Pi,pj, kj ) for any). < 1 then it is straightforward to prove that 

ki < k j implies pf > pf, that is the small firm will follow the low pricing ~trategy. There 

are several examples of the empirical validity of this type of 'Judo economics" pricing 

behavior which are given in Gelman and Salop, and Sorgard (1995). 
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5 LIST PRICING AND PRICE LEADERSHIP 

Price leadership has been studied in the literature with endogenous determination of the 

timing of the moves, i.e., whether a firm prefers to act as a leader, or as a follower. In 

these models, once a firm sets its price it cannot be changed regardless of how the rival 

responds. Even though ex-post it would be in the leader's interest to change its price none 

of the papers explain the strong nature of this commitment. In this section we argue that 

list pricing may provide such a credible commitment mechanism in which price outcomes 

emerge that are similar to price leadership. 

Hamilton and Slutsky (1990) propose a two stage framework to endogenize+ the timing 

of a duopoly game where each firm chooses a strategy (which could be price or quantity). 

Firms may choose their strategy in period 1 or wait till period 2. If a firm chooses 

a strategy in the first period and the other firm waits it is informed of the strategy 

chosen by its rival. In another paper van Damme and Hurkens (1996) show that playing 

simultaneously is subgame perfect in the Hamilton-Slutsky timing game only if none of 

the players has an incentive to move first. 

We will now show that the focal sub-game perfect equilibria of our list pricing game 

is a focal sub-game perfect equilibria in the endogenous timing framework proposed by 

Hamilton and Slutsky. In order to obtain our equivalence result it suffices to prove that 

in the Bertrand-Edgeworth game that we analyze the mixed strategy equilibria is indeed 

dominated by a sequential game where firm 2 moves first. 

Theorem 8 When no pure strategy equilibrium of the Bertrand-Edgeworth game exists 

firm 2 has an incentive to move first. 

Proof: By Theorem 4 and Corollary 1 in any mixed strategy equilibrium of the discount­

ing game (including the case where list prices are set arbitrarily high) the expected 

payoff of firm 2 is given by Edmin(D(Ed), k2) for some r/ < pf 

o 

On the other hand if firm 2 moves first and sets a price of p~ then firm 1 will set 

pM (p~, k2) and firm 2 will obtain profits of p~ min(D(pf), ki ). 

We then have that the subgame perfect equilibria involves one firm moving first. We 

will now prove that in Hamilton and Slut sky timing game if firm i moves first it will set 

it's Edgeworth price. 

Theorem 8 When no pure strategy equilibrium of the Bertrand-Edgeworth game exists 

if firm i moves first it will set a price of pf. 
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Proof: Suppose firm i is moving first. If it sets a price above pf it will undercut by firm 

j in the second stage and it's profits will be bounded by 7ri = (D(p) - kj)p where 

o 

p = argmax(D(p) - kj)p 
p 

By Theorem 4 if firm i deviates to simultaneous play in the second stage it will 

obtain expected profits of 7r! = Emin(D(E), ki ). We will now prove that 7ri < 7r;' 
Suppose on the other hand 7ri > 7ri, it must be the case that p > E. Suppose 

that firm i deviates from it's mixed strategy and sets a price of p. Given that the 

equilibrium is nondegenerate jlj(lE,p)) > o. The payoffs of firm i from this deviation 

will be bounded bellow by R(p,p', kj)p where p' E ~,p).By properties 4 and 5 of 

the residual demand function 

thus 7ri < 7rt. From this we may conclude that if firm i moves first it will 

choose price less than or equal to pf. Given that form firm i any price bellow pfis 

dominated by pf we obtain the desired result. 

Finally, it is straightforward to see that given pf > pf if there exists a subgame 

perfect equilibrium where firm 1 leads it is dominated for both firms by the equilibrium 

where firm 2 leads.8 We have then proved that in our model the sequential-timing and 

list-pricing solutions to the nonexistence of a pure strategy equilibria are equivalent. The 

difference is that while in the sequential-timing models firms are not allowed to change 

t.heir price (once it is chosen), in our list pricing approach firms can discount. Our result 

is obtained under a weaker assumption that reflects a pricing institution that is prevalent 

in many markets. 

6 CONCLUSION 

The mixed strategy equilibrium result in Bertrand-Edgeworth models has been criticized 

as an unsatisfactory explanation of firm pricing behavior in oligopolistic markets. Sev­

eral authors have addressed the non-existence issue. When the number of firms in the 

industry is arbitrarily large Allen and Hellwig (1986a), Vives (1986), Borgers (1986) and 

BIt should be noted that when residual demand takes on the form of RA our results imply that the 
smallest firm will adopt a "leadership" role. 
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Dixon (1986) show that the mixed strategy equilibrium outcome approximates the pure 

strategy competitive equilibrium. Hence, as pointed out by Allen and Hellwig (1986b) 

the nonexistence issue is "in some sense unimportant" . 

For the duopoly case Shubik and Levitan (1980), Deneckre and Kovenock, and Canoy 

avoid the non-existence problem by imposing a sequential timing structure in firm pricing 

moves. Thus one of the two firms must commit to a price which cannot be changed when 

it's rival best responds. Given that the price leader will ex-ante have an incentive to 

change it's price commitment has to be credible. In our paper adding list pricing into the 

standard Bertrand-Edgeworth model makes commitment credible and we obtain a pure 

st.rategy outcome. 

In our equilibrium one of the firms commits to a low price signalling to its rival that it 

can act as a monopolist on the residual demand. Our result suggests that the traditional 

one-stage pricing Bertrand-Edgeworth models may overstate the competitiveness of an 

oligopolistic industry (Deneckere and Kovenock make a similar point). Credible commit­

ment to price by a firm can enforce a pure strategy outcome. Further, an interesting 

result arising from our paper is that in many cases it is in the interest of the small firm to 

commit credibly and choose its price first. In this sense, unlike the general interpretation, 

the "leadership" role (i.e. first mover) is assumed by the smaller firm. 
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7 ApPENDIX 

The following two Lemmas will prove useful in order to prove Theorem 4 

Lemma 1 In a mixed strategy equilibrium to the discounting subgame if J.Li ([P, p + €)) > 0 

for any € > 0 and 71'i(P) is right continuous at p = p then the expected profit of the 

equilibrium is given by 71'i(P). 

Proof: i)I£ J.Li(P) > 0 the proof is trivial, consider the case of J.Li(P) = 0 and suppose 

71'i(P) - 71'; = C where C < 0 and 71'; is the expected payoff of the mixed strategy 

equilibrium. Since J.Li((p,p+€)) > 0 for any € > 0 it must be the case that 71'i(p) = 71'; 
for some pE (p,p + €) . 

o 

On the other hand by right continuity of 71'i (p) at p = p we have then that for 

any 8 > 0, there exists an € > 0 s.t. 0 < p - p < € implies 171'i(fJ) - 1l"i(P) I < 8. Take 

8 = ~ and we reach a contradiction with 171'i(p) - 71'il = C. 

Lemma 2 In a mixed strategy equilibrium to the discounting subgame if firm i has positive 

measure at a price p, P(k1 + k2 ) < p:::; pf then J.Lj([p,P + €]) = 0 for small enough € > o. 

Proof: For any p < p we may write the expected profits expression as 

71'j(p) = (J.Li((P,P)) + J.Li([P,pRJ)) min(kj, D(p))p+ 

h ~ ~ R(p, Z, ki)dJ.Li(z) + J.Li(p)D(p)p k ~ k 
[O,PJ-[P,PJ 1 2 

Taking limits from the left 

Consider now the expected profit function when p > fi 

Taking limits from the right 
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o 

On the other hand we have that 

We have then 

Note that since fi > P(k1 + k2 ) then D(fi) kl~k2 < min(kj, D(fi))· Thus 7rj(fi) -

limp-=.,p 7r j (p) < 0 which implies there exists a p < fi that gives firm j higher expected 

profits than fi thus J.Lj(fi) = O. 

On the other hand we have 

Note that since p > P(k1 + k2 ) and by property (4) of the residual demand function 

D(fi) kl~k2 - R(fi,fi, ki) > O. Thus 7rj(fi) - limp->+p7rj(fi) > 0 which implies that 

there exists an E > 0 such that 7r-i(P) < 7r-i(fi) for p E (fi,jj + E]. This implies 

J.Lj ((fi, fi + El) = O. 

Proof: [Proof of Theorem 4-i] Suppose firms have different lower bounds for their 

support, thus p~ < pd. 
-~ -J 

i) Consider the case p.f ~ ptt (note that this implies ptt > 0 since p.1 ~ 0), 

we have then that pure strategy Apd + (1 - A)p~ for any 0 < A < 0 dominates any 
-~ -J 

strategy in [pd, Apd + (1 - A)p~). On the other hand by definition of support we have 
-~ -~ -J 

that J.Li([p.1,p.1 + E)) > 0 for any E > O. This implies that p'd = pf and J.Li(pf) = 1. It 

must then be the case that 

and thus firm jmaximizes its profits by playing argmaxp'ElPr,pyl R(p',pf, kdp' this 
contradicts the assumption that firms are playing nondegenerate mixed strategies 

in equilibrium. 

ii) Suppose p~ > ptt then ptt dominates any other price for firm i. Thus the best 
-J 

response by firm i involves playing a pure strategy Pt = min(ptt, pf)· If Pt = pf by 
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o 

the previous argument firm j must be playing the pure strategy argmaxp'Efpf,PJJ R(p',pr ,ki)p'. 
If on the other hand Pt = pr firm j faces a residual demand of zero and the best 

response of firm j must involve undercutting Pt which contradicts p~ < pd. 
-t -J 

Proof: [Proof of Theorem 4-ii] By definition of support it must be the case that 

o 

P,i(~d'Ed + c)) > 0 for any € > O. We will now prove right continuity of the firms 

expected profit function at Ed and apply Lemma 1 to obtain the desired result. 

Let us consider the expected profits for a particular firm i for a particular strategy 

p > Ed 

'lri(P) = p'j((P, pO)) min(ki' D(p))p +;; R(p, z, kj)pdp,j(z)+ 
{ED} U(ED ,p) 

ki 
p,j(p)D(p)p kl + k2 

Taking the limit from the right 

l!mD 'lri(P) = p'j((Ed, pO)) min(ki' D(Ed))Ed + (D R(Ed, z, kj)Eddp,j(z) = 
P-E lE 

p,j( ~d ,pO)) min(ki' D(Ed))Ed + P,j(Ed)R(Ed,Ed, k_i)Ed 

Suppose now that Ed = P(k1 + k2), then R(Ed,Ed, kj)Ed = kiP(k1 + k2), and 

limp-=,p(k1+k2) 'lri(P) = kiP(k1 + k2). Note that 'lri(P(k1 + k2)) = kiP(k1 + k2). We 
have then proven right continuity of the expected profit function of firm i when 

Ed = P(k1 + k2). 

Suppose on the other hand Ed > P(k1 + k2). We will first note that P,i(Ed) = 0 

for i E {I, 2}, if this were not the case for some i, then by Lemma 2 we would have 

P,j(~d,'l + c)) = 0 for some € > 0, which contradicts the fact that Ed is in the 

snpport of firm j. We have then 

Proof: [Proof or Theorem 4-iii] Let us define P = max(Pl,P2). Suppose P,i(P) > 0 for 

some i, by Lemma 2 p,j(P) = 0 and thus h = i. Suppose P,i(P) = 0 for both i. It 

must be the case that P = Pi for some i, we then have h = i. 

o 
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