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Abstract 

We study the asymptotic nucleolus of large differentiable monopolistic games. We show that if v 

is a monopolistic game which is a composition of a non-decreasing concave and differentiable 

function with a vector of measures, then v has an asymptotic nucleolus. We also provide an 

explicit formula for the asymptotic nucleolus of v and show that it coincides with the center of 

symmetry of the subset of the core of v in which all the monopolists obtain the same payoff. We 

apply this result to large monopolistic market games to obtain a relationship between the 

asymptotic nucleolus of the game and the competitive payoff distributions of the market. 
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§ 1 - Introduction 

Monopolistic coalitional games (or more generally, mixed games) describe 

situations in which some of the players are" small," i. e., individually insignificant, 

whereas others are "large," i.e., individually significant. The main purpose of this work 

is to study the asymptotic nucleolus in such games. Since Shitovitz's (1973) seminal 

paper (which analyzed the core of large oligopolistic markets), many works on mixed 

markets have been written (for a comprehensive survey see Gabszewicz and Shitovitz 

(I 992)). Guesnerie (I977) and Gardner (I977) investigated the asymptotic behavior 

of the Shapley value in such markets. Legros (I989) deals with the nucleolus of a 

bilateral market with two complementary commodities. In this work we study the 

asymptotic nucleolus of large differentiable monopolistic coalitional games. 

Mathematically, we shall present the set of players by a measure space in which 

the small players form a non-atomic part and in which the large players are atoms. We 

assume that any atom has a monopolistic power, that is, the worth of a coalition which 

does not contain all the atoms is zero. In the asymptotic approach, a game with an 

infinite set of players is regarded as a limit of games with a finite set of players. 

We first prove (see Section 3) that if v is a monopolistic game of the form 

v = f 0 f..l, where f..l = (f..lj, ... ,f..lm) is a vector of measures and f'J{~ ~ 91+ is a 

non-decreasing concave function which is continuously differentiable in the interior of 

'J{~ , then the game v has an asymptotic nucleolus. We also provide an explicit 

formula for the asymptotic nucleolus. This formula implies that it coincides with the 

center of symmetry of the subset of the core of v in which all the atoms receive the 

same payoff. Actually, we prove a stronger result, namely that every sequence of 

payoff vectors which belongs to the kernels of any admissible sequence of finite 
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partition games which approximate the game v converges to the center of symmetry of 

the above mentioned subset of the core ofv (see Theorem 3.1 and Corollary 3.3). 

We note that any game of the above-mentioned form can be viewed as a large 

production game, where J.1 is the distribution of.the production factors among the 

owners and f is the production function. 

In Section 4 we apply the above-mentioned result to large monopolistic market 

games. We prove that under some mild conditions (on the untility funcitons of the 

traders) the asymptotic nucleolus of the transferable utility monopolstic market game 

which is associated with an economy with a finite number of types exists and coincides 

on the atomless part of the players' space with half of a competitive payoff distribution 

of the economy (see Proposition 4.1 and Theorem 4.3). 

§2 - Preliminaries 

In this section we define the basic notions which are relevant to our work. Let 

(T. I) be a measurable space, i.e., T is a set and I is a Cl -field of subsets of T. We 

refer to the member of T as players and to those of I as coalitions. A coalitional 

game, or simply a game on (T. I), is a function v: I ~ 9t with v(0) = O. If T is 

finite and I = 2 T is the set of all subsets of T. the game v will be called afinite game. 

A game v is superadditive if v( SI U S 2) ;::: v( SI) + v( S 2) whenever SI and S 2 are 

disjoint coalitions. A payoff measure in a game v on (T, I) is a bounded finitely 

additive measure A: I ~ 9t which satisfies A(T) ~ v(T). 

We denote by ba = ba(T,I) the Banach space of all bounded finitely additive 

measures on (T. I) with the variation norm. The subspace of ba which consists of all 

bounded countably additive measures on (T, I) is denoted by ca = ca(T, I). If A is 

a measure in ca then car A) = car T, I, A) denotes the set of all members of ca which 
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are absolutely continuous with respect to A. If A is a subset of an ordered vector 

space we denote by A+ the set of all non-negative members of A. 

Let K be a convex subset of an Euclidean space and let f: K ~ in be a concave 

function. A vector p is a 'iupf!rgradient of f at x E K if f ( y ) - f (x) ::; p . ( y - x) for 

all Y E K. The set of all supergradients of f at x will be denoted by of (x). It is well 

known that if x is an interior point of K then of (x) 7= 0 and f is differentiable at x iff it 

has a unique supergradient at x which, in this case, coincides with the gradient vector. 

For two vectors x,y in in m we write x ~ y to mean Xi ~ Yi for aliI::; i ::; m, 

x> Y to mean x ~ Y and x 7= y, and x» y to mean Xi > Yi for all 1::; i ::; m. A 

functionf defined on a set A c inm is called non-decreasing if for every X,Y E A we 

have x ~ y implies f (x) ~ f (y ). It is called increasing if, in addition, x > Y implies 

f(x) > fry)· 

§3 - The Asymptotic Behavior of the Kernel and the Nucleolus in Mixed Games 

In this section we investigate the asymptotic behavior of the kernel and the 

nucleolus in a class of mixed games. 

Let v be a finite game (that is, Tis finite and I = 2 T). If x E in/TI and SeT 

we define x( S) = L Xi if S 7= 0, and x(0) = O. Denote 
iES 

I(v) = {x E in lT 
11 Xi ~ v({i}) for every i ET and x(T) = VeT)} 

and 

I * (v) = {x E in /TI I x( T) = v (T) } . 

For every i,j ET, i 7= j and x E in lT1 define 
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Sij(x) = max{v(S) - x(S) Is c T, i E S and} ~ S} 

The prekernel of the game v is the set 

PK(v) = {x El * (v) I Sij(x) = Sji(x) Vi,} ET, i ~ }}. 

The kernel of the game v is the set 

K( v) = {x E I ( v) I (s ij (x) - S j i (x)) (x j - v( {)} )) ~ 0 Vi,} E T, i ~ }} . 

It is well known that if v is a finite game which is zero mono tonic (that is, 

v(S u {in 2: v(S) + v({i}) for every Se Tand i E TI S), then PK(v) and K(v) 

coincide (see Theorem 2.7 in Maschler, Peleg and Shapley (1972)). For a further 

discussion of the kernel the reader is referred to Maschler (1992). 

Let v be a finite game. For every x E I (v), let B (x) be a 21T I-tuple whose 

components are the numbers v(S) - x(S), SeT, arranged in non-increasing order, 

i.e., Bi (x) 2: Bj(x) for 1 ~ i ~ } ~ 11. The nucleolus of the game v, denoted by Nv, is 

the payoff vector which is 11 closest" to v in the sense that B( Nv ) is the minimum in the 

lexicographic order of the set {B(x) I x El (v)}. It is well known that the nucleolus 

of a finite game v always exists when l( v) ~ 0 and it consists of a unique point which 

belongs to the kernel of v (e.g., Schmeidler (1969). 

In the rest of the paper we assume that a fixed measure A E ca+ (T, I) is 

given. We interpret A as a population measure, that is, if S is a coalition, then A(S) is 

the proportion of the total population which is contained in S. We also assume that T 

can be represented in the form T = 1'0 u 'Fj, where 1'0 and 'Fj are non-empty disjoint 

coalitions, the restriction of A to (To, ITo) is non-atomic (where, here and in the 



6 

sequel, if S is a coalition IS = {Q E I IQ cS} ) and Tj is a finite set of atoms of A 

such that every subset of Tj is in I . 

Let v be a game on (T, I) and let 7f be a finite subfield of I. The set of all 

atoms of " 'is denoted by A". The set of all subsets of A" is identified naturally with 

1[ , and thus a finite game with a set of players A1[ is identified with a function 

w: 7f --+ 9t with w(0) = O. The restriction of the game v to " is denoted by v". An 

admissible sequence of finite fields is an increasing sequence (7fn ):=1 of finite 

00 

subfields of I such that every subset of Tj is in 7f1 and U tfn generates I. 
n=1 

Let v be a superadditive game on (T, I). It is said that v has an asymptotic 

nucleolus if there exists a game If'V such that, for every admissible sequence of finite 

fields (7f/1)00_1 and every Sin 7f1, lim. NV1[ (S) exists and equals If'v(S). It 
/1- 11-+00 11 

follows that If'V Eba, and it is called the asymptotic nucleolus of the game v. 

The asymptotic approach was introduced in Kannai (1966) in the context of the 

Shapley value of non-atomic games (see also chapter In of Aumann and Shapley 

(1974». 

We are now ready to state and prove the main result of this section. 

Theorem 3.1 

Let Jl = (Jl1,"', Jlm) be a vector of non-trivial measures in ca+ (A) , Assume 

that f: 9t ~ --+ 9t + zs a non-decreasing concave function which is continuously 

differentiable in int 9t~ and satisfies, Vf(Jl(T))» 0 and f(Jl(T\ {a})) = 0 for every 

a E Tj. Then the game v = f 0 Jl has an a::,ymptotic nucleolus, Moreover, if 
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(Jrn ):=1 is an admissible sequence affinite fields and xn E K (v;r.) for every n J 

then for every S E Jr 1 we have 

Let (Jrn ): = 1 be an admissible sequence of finite fields. We first show that if 

S E Jrl n IT and xn E K(v" ) for every 11, then !im xn (S) = ~ V'f(,u(T)). ,u(S) . 
o • n~oo ~ 

Note that sincefis non-decreasing the game v is superadditive. Therefore, for every n, 

the game v;r. is zero-monotonic, and thus K( v;r.) = PK( v;r.) for every n. Let n be a 

fixed natural number and let j E Jrn n ITo. Assume that xn E K( v". ). Then for 

every i E'0 we have 

and 

Since xn E PK( v".) , we have 

Therefore 

Since f is concave and differentiable, 
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Thus, 

Let 8 > O. As f is continuously differentiable on in! 9t ~ , there exists <5 > 0 

such that for every x E 91 ~ we have 

where e = (J,l, ... ,l). Since PI,"" Pm are absolutely continuous with respect to A and 

the restriction of A to (To, I To) is non-atomic, there exists a natural number no such 

that 11.u(J)11 < <5 for every j Elrna n ITa' Therefore by (3.1) and (3.2), for every 

17 ?: 170 and j E lrn n IT we have 
o 

Let S E lr I nIT . Then S is the union of members of lr n for every n. 
a 

Therefore for every n ?: no 

Since 8 is arbitrary, we have 

We now show that limxn(S)?: f Vf(.u(T)) . .u(S). Sincefis continuously 

differentiable on int 91~ and Vf(.u(T))» 0 ,-there exists g > 0 such that for every 

X E 91 111 we have + 
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Let 11 J be a natural number such that 1I,u(J )11 < 8 for every j E Jr n 1 n ITo . 

Then 

Therefore by (3. 1), for every 11 ~ 11 1 and j E Jr n n IT we have 
a 

Hence, 

Now there exists a natural number 112 ~ 11 J such that for every 11 ~ 112 and 

j E Jr/1 n IT we have 
a 

(3.4) 

(note that sincefis concave, f(; ,u(T)) ~ ~ f( ,u(T)) > 0). 

Let 11 ~ 112 be fixed and let i E Tj and j E Jrn n ITa' Choose Qn C Jrn such 

Let Sn = u I. We show that Sn:::> TJ . Assume not. Then v(Sn) = 0 , and 
IEQn 

thus x /1 (J) = X n (Sn ) ~ X n ({ i}). Since all the players in Tj are interchangeable in the 

game vtr (two players in a finite game are interchangeable if they have the same . 
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marginal contribution to every coalition which does not contain them), they get the 

same payoff in every member of K( v"n ). Hence, 

Since f is concave and differentiable, 

Therefore SI1 ~ Tj , and thus there exists 511 E I To such that Sn = (T \ j) \ S n' Hence, 

Thus 

By (3.3) 

Since f is concave, 

Therefore, 
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Hence, 

This implies that !im xn (S) ;::: ~ V'f(,u(T)). ,u(S) . 

Assume now that S E trj is any coalition. Then for every natural number n we have 

Let tn be the payoff which is assigned by Xn to a player in Tj . Then 

Therefore, 

Let v be a game on (T,..r). The core of v, denoted by Core(v), is the set of all payoff 

measures ,u E ba such that ,u(S) ;::: v(S) for every S E I . 

We want to determine the location in the core of the asymptotic nucleolus of a game 

which satisfies the conditions of Theorem 3.1. We first state and prove a representation 

theorem for the core of such games. 

Theorem 3.2 

Let ,u = (,ui , ... ,,um) be a vector of non-trivial measures in ca+(A). Assume that 

f: 9\~ ~ 9\+ is a concave function which is differentiable at Ji (lJ and satisfies 

f(,u( T \ {a} )) = 0 for every a E Tj. Then the core of the game v = f o,u is given by 

Core( v) = {~ E ca+ (A) I ~(T) = f(,u(T)) and 'VS E ITo' ~(S) ~ V'f(,u( T)) . ,u(S)} 



12 

Let 

M(v) = {~ECa+(IL) I ~(T) = f(,u(T)) and VS EITo ' ~(S) ~ Vf(,u(T)) .,u(S)} . 

We will show (lat M( v) = C ore( v). We first show that M( vJ c Core ( v) . Let ~ E M( v) ~nd 

S E I. Now if S does not include T] then v(S) = 0 and clearly, ~ (S) ;:: v(S). If S ::::l T] then 

TI SeTa. As ~ E M(v), 

~(T \ S) ~ Vf(,u(T))· ,u(TI S) . 

Therefore 

As f is concave, 

v (S) = f(,u(S)) ~ f(,u(T)) - Vf(,u(T)).,u (T \ S) . 

Hence, ~ (S) ;:: v(S) , and thus ~ E Core{v) . 

It remains to show that Core{v) c M{v). Let ~ E Core(v). Then for every S E I we 

have 

(3.4) O~~(S)~~{T)-v(TIS). 

As fis continuous at ,u (T) and ,u] , ... ,,um are in ca+ (IL) , the inequality in (3.4) implies that 

~ E ca + (IL). Since the restriction of IL to (To, ITa) is non-atomic, the restrictions of 

,u],···,,um and~ to (To,ITo) are also non-atomic. Let SEITo. We will show that 

~ (S) ~ V f(,u( T)) . ,u(S) . By Lyapunov's theorem, for every 0 < a < 1 there exists a coalition 

Sa E ITa such that ,u(Sa) = a,u(S) and ~ (Sa) = a~ (S). Asfis differentiable at ,u (T), for 

every 0 < a < 1 we have 
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f(,u(TI Sa)) = f(,u(T)) - aVf(,u(T)).,u (S) + o(a). 

As ~ E Core(v), we have 

~ (Sa) = ~ (T) - ~ (T \ Sa) ~ f(,u( T)) - f (,u( T \ Sa)) . 

Hence, 

~ (s) ~ 'Yf(,u(T)).,u (S) + g(a) , 

where fim g{a) = O. Therefore ~ (S) ~ Vf(,u(T))·,u (S), and the proof is complete. Q.E.D. 
a~o 

Let A be a subset of a linear space. A point Xo E A is called a center of symmetry of A 

if for every x EA, the point 2 Xo - x also belongs to A. Note that if A is bounded, there may 

be at most one center of symmetry. 

The following corollary is a direct consequence of Theorems 3.1 and 3.2. 

Corollary 3.3 

Let ,u = (,u] ,.·.,,urn) be a vector of non-trivial measures in ca+ (A). Assume that 

f: 9t~ ~ 9t+ is a non-decreasing concave function which is differentiable in int 9t~ and 

satisfies, Vf(,u(T))» 0 and f(,u(TI {an) = 0 for every a E 'Fj. Then the asymptotic 

nucleolus of the game v = f o,u coincides with the center of symmetly of the subset of the 

core ofv in which all the members of 'Fj receive the same payoff 

§4 - Market Games 

In this section we apply Theorem 3.1 to games which arise in economic applications. 

We consider a pure exchange economy E in which the commodity space is 9t ~ . The 

traders' space is represented by the measure space (T, £, A). We assume again 

that T = To U 'Fj, where To and 'Fj are non-empty and disjoint coalitions, T] is a finite set of 
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atoms of A such that every subset of TJ is in I , and the restriction of A to (To, IT 0) is 

non-atomic. We will interpret the members of TJ as monopolists. Every trader t ET has a 

utility jUllction Ut,' W~ ~ W+. An assignment in E is an integrable function x,' T ~ 9t~. 

There is a fixed initial assignment 0) (O)(t) represents the initial bundle density of trader t). 

An allocation is an assignment x such that frxdA::; frO)dA. A tramferable utility 

competitive equilibrium (t.u.c.e.) of the economy E is a pair (x,p) , where x is an allocation 

and p E W~ , such that for all t ET, Ut (x) - p' (x - O)(t)) attains its maximum (over W~) at 

x = x(t). The measure rp (S) = fs[ut(x(t)) - p. (x(!) - O)(t))] dA (when the function 

Ut (x(t)) is integrable) is called the competitive payoff distribution; and p is the vector 

competitive prices. We assume the following 

(4.2) For every trader a E TJ there exists a commodity 1::; ka ::; m such that O)k (t) = 0 for 
a 

every lET', {a} (where O)k denotes the ka -component of 0)). 
a 

The meaning of (4.2) is that every atom of A has a corner on one of the commodities 

in the economy. 

We restrict our analysis to two cases: (1) when every trader in E has the same utility 

function and (2) when E has a finite number of types. 

Denote by U the set of all functions u: 9t ~ ~ 9t + which are continuous and concave 

on 9t~ , continuously differentiable and increasing on the interior of 9t~ and vanish on the 

boundary of W~ . Note that any differentiable neoclassical utility function is in U (see 

Definition 1.4.2 in Aliprantis, Brown and Burkinshaw (1989». 
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We first study the case in which all the traders in the economy E has the same utility 

function u: iR~ ~ R+. We assume that U E U and that u is homogeneous of degree one on 

'R~ (note that, for example, any Cobb-Douglas utility function satisfies these assumptions). 

The Aumann-Shapley Shubik market game which is associated with the economy E (see 

Shapley and Shubik (1969) and Section 30 of Aumann and Shapley (1974» in this special case 

is defined by 

(4.3) v(S) = sup{fsu(x (t))dA Ix is an assignment such that fsxdA = fsmdA } 

Proposition 4.1 

AsslIme that the economy E sati~fies (-/.1) and (.:/.2) and that every trader in E has the 

same utility function liEU which is also homogeneolls of degree one. Then the market game 

v which is defined in (-/.3) has an asymptotic nucleolus If/v which is given by 

(4.4) 

Moreover, there exists a competitive payoff distribution cp which corresponds to a t.u.c.e. of 

J 
E slIch that If/ v(S) = ? cp(S) for every S E IT . 

~ 0 

We first note that for every S E I, v(S) = u( f s m dA). Indeed, let S E I. Then by 

the definition of v, we have v(S) ~ ud s m dA). Since u is concave and homogeneous of 

degree one, by Jensen's inequality, for every assignment x such that f SX dA = f s m dA we 

have fsu(x (t))dA::; UdsmdA). Therefore v(S) = UdsmdA). Now, since u vanishes on 

the boundary of iR~, by (4.2), for every a E 1] we have v(TI {an = ud { }mdA) = O. 
TI a 
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Also the assumption that u is increasing in the interior of 9\ ~ implies that VurJ r C!) d2) » 0 . 

Thus the game v satisfies the requirements of Theorem 3.1 and therefore (4.4) is satisfied. Let 

b = SrC!) d2. Since u is homogeneous of degree one, by Euler's theorem VU(b). b = u(b). As 

u is concave, for every x E 9\~ we have 

u(x) ::; u(b) + Vu(b)· (x - b) = Vu(b)· x . 

Therefore max (u(x) - Vu(b)· x) = o. Consequently, for every t ET we have 
xE9\~ 

max (u(x) - Vu(b)· (x - C!) (t))) = VU(b). C!) (t) . 
XE9\~ 

Let q; = V u(b) . S C!) d2. Then q; is a competitive payoff distribution in E and 'l'v(S) = ~ q;(S) 

for every S E.Er . o 
Q.E.D. 

We now analyze the case when there is a finite number of traders' types in the 

economy E. Two traders are of the same type if they have identical initial bundles and 

identical utility functions. We assume that the number of different types of traders in 

To is ll. For every 1::; i ::; n, we denote by Si the set of traders in Ta which are of 

type i. We assume that Si is measurable (i.e., Si E 1') and Il.(Si) > o. The utility 

function of the traders of type i (J::; i ::; n) is denoted by ui, and their initial bundle by 

cv i. We assume that for every 1 si::; n, ui E U and in addition Ui is homogeneous of 

degree one. We also assume that for every a E TJ the utility function ua of the trader a 

is in U (but not necessarily homogeneous of degree one). The Aumann-Shapley-Shubik 

- market game which is associated with the economy E in this case of finite number of 

types is 
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where, X(S) = {xl x is an assignment such that f s xdA = f sO) dA} . 

Define a function f: 9{~ -+ 9{ + by 

(4.6) f(y)=max{ L A ({a})ua(Xa) + IUi(Xi) 
aET] 1=1 

Xa,Xi E9{~, L A ({a})xa + I Xi ::;y} 
a ET] i=1 

Since the utility functions of the traders are continuous and concave, it is easy to see 

that f is well defined and concave on 9{ ~ . 

Lemma 4.2 

Let v be the market game in (4.5), then v(S) = fdsO) dA)for every SE £, 

wherefis given by (4.6). 

Let S E £. Assume first that S does not include Tj. Then by (4.2), fsO) dA 

belongs to the boundary of 9{ ~. Since the utility functions of the traders in T vanish 

on the boundary of 9l ~ , we have v(S) = 0 and f ( f sO) dA) = o. So assume that 

n 

f(fscodA) = LA({a})ua(xa)+ IUi(Xi). 
aE~ i=1 

Define an assignment x by x(t) = xt if t E T1 and for every t E Si (J ::; i ::; n) 
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otherwise 

Then 

Therefore v(s) ~ fsUt(x(t))dIL. Since the Ui are homogeneous of degree one, 

It remains to show that v(S) s: fdscvdIL). Letx be an assignment such that 

fsxd)" = fscvdIL. For every a E TJ let xa =x(a) and for every 1 s:i s: n let 

Xi = fsns, x dIL. Then 

n 

LIL ({an Xa + LXi = fsxdIL = fscv dIL 
aET] i=J 

Therefore by the definition off, we have 

n 

Id cvdIL)~ LIL({a})ua(Xa)+Llli(Xi) 
s aET1 i=J 

Since the lIi are concave and homogeneous of degree one, 

As x was an arbitrary assignment which satisfies fsx dIL = fscv dIL , we obtain that 
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Lemma 4.3 

The/unction/which is defined in (4.6) is continuously differentiable on 

We first show that / is differentiable at every point in the interior of m ~. Let 

y* Eint m~. Then from the definition of/it is clear that /(y *) > o. Since/is 

concave on in ~ , it is sufficient to show that o/(y *) consists of a unique point. Let 

(X;) and (xt)n be such that 
aeT1 1=1 

n 

/(y*)= LA ({a}) ua(x;)+ LUi(Xt) 
aeT} i=1 

Since the utility functions of the traders are non-decreasing, we have 

n 

LA({a})x~ + Lxt =y* 
i=l 

Since /(y *) > 0, the assumption that the utility functions of the traders vanish on the 

boundary of m:1 implies that there exists J E Tj U {1, ... ,11} such that x; E int m':. 

Assume first that 1$J$n. We will show that O/(y*)couAx;). Let P EO/(y*). 

Then for every x E in ~ we have 
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Uj(x) - uAx;) = Uj(X) + LA ({a})ua(x;) + LUi(xt) 
aET] i:t:. j 

-uAx;)- LA ({a})ua(x;)- LUi(Xt)~ 
aET] i:t:. j 

J(x+ LA ({a})x; + Lxt)-J(Y*)~P·(x-x;). 
aET] i:t:.j 

Thus P E O'u Ax;) and O'J(Y *) c O'uAx;). Since Uj is differentiable at x;, we have 

for every x E 9\~1 we define u/x) = A ({J})Uj(x). Then the above argument implies 

that c3 J(Y *) = {VUj (x j)}. Thus, in any case 0' J(Y *) consists of a unique point, and 

thereforeJis differentiable at Y *. The assumption that the utility funcitons of the 

traders are increasing in in! 9\ ': implies that V J ( f T lV dA) > > O. Now since J is 

concave on 9\':, it is continuous on in! 9\~. Moreover, since the utility functions of 

the traders vanish on the boundary of 9\~1 it is easy to see thatJis also continuous on 

the boundary of 9\~1. Now Proposition 39.1 of Aumann and Shapley (1974) asserts 

that any continuous concave function on 9\~1 which is differentiable on int 9\~ is 

continuously differentiable in int 9\':. Therefore J is continuously differentiable on 

int 9\'!!.. Q.E.D. 

We are now ready to state and prove the main result of this section. 
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Theorem 4.4 

Assume that the economy E sati.~fies (ll), (4.2) and also 

(1) There is afinite number n of traders' types in To' 

(2) Theutilityfunctions u], ... ,un of the traders in To are in Uandinadditionthey 

are homogeneous of degree one on 9i ~I • 

(3) The utility functions {ua } a ET] of the traders in TJ are in U. 

Letf be the function which is given by (4.6). Then the market game v which is defined 

ill (-1.5) has an a!:Jymptotic nucleolus 'fI v which is given by 

(-1.7) 

Moreover, there exists a competitive payoff distribution cp which corresponds to a 

. ] 
t.u.c.e. in the economy E such that 'fIv(S) = -2 !peS) for eve,y S ELT . 

() 

(4.7) follows from Theorem 3.1 and Lemmata 4.2 and 4.3. Denote 

b = f OJ dA. Let (x~) and (xt)~ be such that 
T aET] 1=] 

n {x; t E Tj 
f(b) = LA ({a})ua(x;) + ~Ui(Xn. For every t ET, let x*(t) = * 

a eT] 1-] Xi t E Si 

Then by a similar argument to that which was used in the proof of Lemma 4.3, we 

obtain that for every t ET and x E 9i!' 

(4.8) Ut(x)~Ut(x*(t))+\7f(b) .(x-x*(t)). 
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Since/is non-decreasing on 9t~I, V/Cb) ? O. Let 15, i 5, m. Now if Xj* is on 

the boundary of m~l, then Uj{xt) = 0, and thus by (4.8), Ui(X) - V/Cb) . x 5, 0 for 

every x E m~. If xt Eint m~, then V/Cb) = VUi{X;). Since Uj is homogeneous 

of degree one, VUj( xn· xt = Uj (xn. Therefore we again have by (4.8), 

Ui(X) - V/Cb) . x 5, 0 for every x E m~ and thus 

max (uJx) - V/Cb) .x) = 0 
xE9\~l 

This implies that for every t E T 

max (u/x) - V/(b)· (x - m (t))) = V/(b)· m (t). 
XE~~l 

Now by (4.8), for every a E TJ and t ET we have 

max (ua(x)-V/(h).(x-m (t)))=ua(x;)-V/(b).(x; -m (t)). 
XE~'!.l 

For every t ET let 

{

lit (x * (t)) - V/(b). (x * (t) - m (I)) 
get) = 

V/(b)· m (t) 

For every SE.E define rp (S) = fsgd1. Thenrp is a competitive payoff distribution in 

J 
the economy E and for every S E .ETa we have 'IIv(S) = '2 IP(S). Q.E.D. 
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Abstract 

We study the asymptotic nucleolus of large differentiable monopolistic games. We show that if v 
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§ 1 - Introduction 

Monopolistic coalitional games (or more generally, mixed games) describe 

situations in which some of the players are "small," i.e., individually insignificant, 

whereas others are "large," i.e., individually significant. The main purpose of this work 

is to study the asymptotic nucleolus in such games. Since Shitovitz's (1973) seminal 

paper (which analyzed the core of large oligopolistic markets), many works on mixed 

markets have been written (for a comprehensive survey see Gabszewicz and Shitovitz 

(1992». Guesnerie (1977) and Gardner (1977) investigated the asymptotic behavior 

of the Shapley value in such markets. Legros (1989) deals with the nucleolus of a 

bilateral market with two complementary commodities. In this work we study the 

asymptotic nucleolus of large differentiable monopolistic coalitional games. 

Mathematically, we shall present the set of players by a measure space in which 

the small players form a non-atomic part and in which the large players are atoms. We 

assume that any atom has a monopolistic power, that is, the worth of a coalition which 

does not contain all the atoms is zero. In the asymptotic approach, a game with an 

infinite set of players is regarded as a limit of games with a finite set of players. 

We first prove (see Section 3) that if v is a monopolistic game of the form 

v = f 0 f-l, where f-l = ( f-ll,···, f-lm) is a vector of measures and f 9i~ ~ ~H+ is a 

non-decreasing concave function which is continuously differentiable in the interior of 

9i~, then the game v has an asymptotic nucleolus. We also provide an explicit 

formula for the asymptotic nucleolus. This formula implies that it coincides with the 

center of symmetry of the subset of the core of v in which all the atoms receive the 

same payoff. Actually, we prove a stronger result, namely that every sequence of 

payoff vectors which belongs to the kernels of any admissible sequence of finite 
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partition games which approximate the game v converges to the center of symmetry of 

the above mentioned subset of the core ofv (see Theorem 3.1 and Corollary 3.3). 

We note that any game of the above-mentioned form can be viewed as a large 

production game, where f.L is the distribution of the production factors among the 

owners and/is the production function. 

In Section 4 we apply the above-mentioned result to large monopolistic market 

games. We prove that under some mild conditions (on the untility funcitons of the 

traders) the asymptotic nucleolus of the transferable utility monopolstic market game 

which is associated with an economy with a finite number of types exists and coincides 

on the atomless part of the players' space with half of a competitive payoff distribution 

of the economy (see Proposition 4.1 and Theorem 4.3). 

§2 - Preliminaries 

In this section we define the basic notions which are relevant to our work. Let 

(T, J:) be a measurable space, i.e., Tis a set and J: is a (J" -field of subsets of T. We 

refer to the member of T as players and to those of I as coalitions. A coalitional 

game, or simply a game on (T, J: ), is a function v: J: ~ 9t with v( 0) = o. If T is 

finite and J: = 2 T is the set of all subsets of T, the game v will be called afinite game. 

A game v is superadditive if v( S 1 u S 2) ~ v( SI) + v( S 2) whenever SI and S 2 are 

disjoint coalitions. Apayoffmeasure in a game v on (T,J:) is a bounded finitely 

additive measure A:;; ~ 9t which satisfies A(T) ~ v(T). 

We denote by ba = ba(T,;;) the Banach space of all bounded finitely additive 

measures on (T,;;) with the variation norm. The subspace of ba which consists of all 

bounded countably additive measures on (T,;;) is denoted by ca = ca(T,;;). If A is 

a measure in ca then car A) = ca(T,;;,A) denotes the set of all members of ca which 
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are absolutely continuous with respect to A.. If A is a subset of an ordered vector 

space we denote by A+ the set of all non-negative members of A. 

Let K be a convex subset of an Euclidean space and let f: K ~ m be a concave 

function. A vector p is a supergradient of f at x E K if / ( Y ) - f (x) ~ p . ( Y - x) for . 

all Y E K. The set of all supergradients of f at x will be denoted by (} f (x). It is well 

known that if x is an interior point of K then (} f (x) ~ 0 and f is differentiable at x iff it 

has a unique supergradient at x which, in this case, coincides with the gradient vector. 

For two vectors X,Y in mmwe write x ~ y to mean Xi ~ Yi for all I ~ i ~ m, 

x > Y to mean x ~ Y and x ~ y , and x» y to mean Xj > Yj for all I ~ i ~ m. A 

functionf defined on a set A c 9tm is called non-decreasing if for every X,Y E A we 

have x ~ Y implies f (x) ~ f (y ). It is called increasing if, in addition, x > y implies 

f(x) > fry). 

§3 - The Asymptotic Behavior of the Kernel and the Nucleolus in Mixed Games 

In this section we investigate the asymptotic behavior of the kernel and the 

nucleolus in a class of mixed games. 

Let v be a finite game (that is, Tis finite and I = 2 T). If x E 9t IT1 and SeT 

we define x(S) = LXi if S ~ 0, and x(0) = O. Denote 
iES 

and 

I * (v) = {x E 9t I TI I x( T) = v (T) } . 

For every i,j ET, i ~ j and x E 9t IT1 define 
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Sij(X) = max{v(S) - x(S) Is c T, i E S and} ~ S} 

The prekernel of the game v is the set 

PK(v) = {x El * (v) I Sij(X) = Sji(X) '\/i,} ET, i;f. i}. 

The kernel of the game v is the set 

K(v) = {x E I(v) I (Sij(x) - sji(x)) (x j - v({J})) ~ 0 ,\/i,i ET, i;f. i}. 

It is well known that if v is a finite game which is zero monotonic (that is, 

v(5 u {i}) 2:: v(5) + v({i}) for every 5 c T and i E TI 5), then PK(v) and K(v) 

coincide (see Theorem 2.7 in Maschler, Peleg and Shapley (1972». For a further 

discussion of the kernel the reader is referred to Maschler (1992). 

Let v be a finite game. For every x E I (v), let e (x) be a 21T I-tuple whose 

components are the numbers v(S) - x(S), SeT, arranged in non-increasing order, 

i.e., ej (x) 2:: ej(x) for 1 ~ i ~ i ~ 11. The nucleolus of the game v, denoted by Nv, is 

the payoff vector which is "closest" to v in the sense that e( Nv) is the minimum in the 

lexicographic order of the set { e( x) I x E I (v)}. It is well known that the nucleolus 

of a finite game v always exists when I( v) ;f. 0 and it consists of a unique point which 

belongs to the kernel ofv (e.g., Schmeidler (1969». 

In the rest of the paper we assume that a fixed measure A E ca+ (T, 1:') is 

gIven. We interpret A as a population measure, that is, if 5 is a coalition, then ..1,(5) is 

the proportion of the total population which is contained in S. We also assume that T 

can be represented in the form T = To u T], where 1'0 and T] are non-empty disjoint 

coalitions, the restriction of A to (To, 1:'To) is non-atomic (where, here and in the 
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sequel, if S is a coalition Is = {Q E I IQ cS} ) and '0 is a finite set of atoms of A. 

such that every subset of '0 is in I . 

Let v be a game on (T, I) and let lr be a finite subfield of I. The set of all 

atoms of ;r 'is denoted by A;r. The set of all subsets of A;r is identified naturally with 

;r , and thus a finite game with a set of players A;r is identified with a function 

w: lr ~ 9t with w(0) = O. The restriction of the game v to ;r is denoted by v;r. An 

admissible sequence of finite fields is an increasing sequence (lrl1 ):=1 offinite 

et) 

subfields of I such that every subset of '0 is inlrl and U lrl1 generates I. 
11=1 

Let v be a superadditive game on (T, I). It is said that v has an asymptotic 

nucleolus if there exists a game If v such that, for every admissible sequence of finite 

fields (lrl1 )oo_1 and every Sin lrl' Iim. NV;r (5) exists and equals Ifv(5). It 11 - 11 --7 00 11 

follows that If V Eba, and it is called the asymptotic nucleolus of the game v. 

The asymptotic approach was introduced in Kannai (1966) in the context of the 

Shapley value of non-atomic games (see also chapter In of Aumann and Shapley 

(1974». 

We are now ready to state and prove the main result of this section. 

Theorem 3.1 

Let P = (PI,"" Pm) be a vector of non-trivial measures in ca+ (A.) . Assume 

that f: 9t ~ ~ 9t + zs a non-ciecreasing concave function which is continuously 

differentiable in int 9t~ and satisfies, Vf(p(T»)» 0 and f(p(TI {a})) = 0 for every 

a E '0. Then the game v = fop has an a~ymptotic nucleolus, Moreover, if 
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(Jrn)oc, is an admissible sequence of finite field~' and xn E K (v Jr ) for every n. 
n=1 • 

then for every S E Jr I we have 

Let (JrI1 ):=1 be an admissible sequence of finite fields. We first show that if 

SE Jrl n IT and xl1 E K(vJr ) for every n, then /im xl1 (S) = -21 
Vj(,u(T)). ,u(S). 

o • I1~OO 

Note that sincefis non-decreasing the game v is superadditive. Therefore, for every n, 

the game v Jr. is zero-monotonic, and thus K( v Jr. ) = P K( v Jr. ) for every n. Let n be a 

fixed natural number and let j E JrI1 n ITo' Assume that xn E K( v Jr
n 
). Then for 

every i E Tl we have 

and 

Sij(XI1 ) ~ v( T\ j) - xl1 (T) + xn(J) = f{,u( TI j)) - f(,u(T)) + xl1 (J) 

Since xn E PK( vJrn ) , we have 

Therefore 

Since j is concave and differentiable, 
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Thus, 

Let & > O. As / is continuously differentiable on int 91: , there exists <5 > 0 

such that for every x E 91: we have 

where e = (J,1, ... ,1). Since Pi,"" Pm are absolutely continuous with respect to A and 

the restriction of A to (To, IT 0) is non-atomic, there exists a natural number no such 

that IIJI(J )11 < <5 for every j E Jr no n ITa' Therefore by (3.1) and (3.2), for every 

11 ~ no and j E Jr/1 n IT we have 
o 

Let S E Jr i nIT . Then S is the union of members of Jr/1 for every 11. 
o 

Therefore for every n ~ no 

Since & is arbitrary, we have 

We now show that limxn(S) ~ ~ Vj(p(T)). p(S). Since/is continuously 

differentiable on int 91: and Vj(p(T))» 0 ,·there exists 8 > 0 such that for every 

x E 91~ we have 



9 

IIX - ,u(T)11 < 8 => Vf(x) ~ % vf(,u(T)). 

Let 11 j be a natural number such that 1I,u{J )11 < 8 for every j E 7r n 1 n ITo . 

Then 

Therefore by (3.1), for every 11 ~ 11 j and j E 7r n n Ir we have 
o 

Hence, 

(3.3) xn(S) ~ ~ Vf(,u(T)). ,u(S) 

Now there exists a natural number 112 ~ 11 j such that for every n ~ 112 and 

j E trn n IT we have 
o 

(3.4) 

(note that sincefis concave, f(; ,u(T)) ~ ~ f( ,u(T)) > 0). 

Let 11 ~ 112 be fixed and let i E Tj and j E trn n Ir . Choose Qn C trn such 
o 

that {i} E Qn' j (l Qn and 

Let Sn = u I. We show that Sn:J Tj . Assume not. Then v(Sn) = 0, and 
leQn 

thus xn(J) = xn(Sn) ~ xn({i}). Since all the players in Tj are interchangeable in the 

game v" (two players in a finite game are interchangeable if they have the same . 
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marginal contribution to every coalition which does not contain them), they get the 

same payoff in every member of K( v Jr. ). Hence, 

Sincefis concave and differentiable, 

Thus, xn({i});::: 1:1 f{~ fl{T)). Since xn(j);::: xn({i}). this contradicts (3.4). 

Therefore Sn =:J Tj , and thus there exists Sn E I To such that Sn = (T \ j) ': S n' Hence, 

Thus 

By (3.3) 

Since f is concave, 

Therefore, 
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Hence, 

Xn(S) ~ ~ Vf(,u(T)). ,u(S) for every n ~ n2. 

This implies that lim xn (S) ~ ~ Vf(,u( T») . ,u(S) . 

Assume now that S E re 1 is any coalition. Then for every natural number n we have 

Let In be the payoff which is assigned by xn to a player in Tj. Then 

Therefore, 

Let v be a game on (T, I). The core of v, denoted by C ore (v ), is the set of all payoff 

measures ,u E ba such that ,u(S) ~ v(S) for every S E I. 

We want to determine the location in the core of the asymptotic nucleolus of a game 

which satisfies the conditions of Theorem 3.1. We first state and prove a representation 

theorem for the core of such games. 

Theorem 3.2 

Let ,u = (,ul ,···,,um) be a vector o/non-trivial measures in ca+(A). Assume that 

/:91~ -+ 91+ is a concave/unction which is differentiable at fl (J) and satisfies 

f(,u( T \ {a})) = 0 for every a E Tj. Then the core of the game v = f 0 fl is given by 

Core(v) = {~Eca+(A) I ~(T) = f(,u(T») and VS E ITo' ~(S) ~ V/(,u(T»). ,u(S)} 
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Let 

M(v) = {q ECa+(A) I q(T) = f(,u(T)) and VS EITo' q(S) $ Vf(,u(T)). ,u(S)} . 

We will show that M(v) = Core{v). We fir;;t show that M{v) c Core(v). Letq E M(v) and 

S E I. Now if S does not include 7J then v(S) = 0 and clearly, q (S) 2: v(S). If S :::> T] then 

TIS eTa. As q EM(v), 

q(T IS) $ Vf(,u(T)). ,u(T I S) . 

Therefore 

q (S) = q (T) - q (TI S) 2: q (T) - Vf(,u(T)).,u (TI S) = f(,u(T)) - Vf(,u(T))·,u (TI S) . 

Asfis concave, 

Hence, q(S) 2: V(S) , and thus q ECore(v). 

It remains to show that C ore( v) c M( v). Let q E C ore( v). Then for every S E I we 

have 

(3.4) 0 $ q(S) $ q(T) -v(TIS). 

Asfis continuous at ,u (T) and ,u], ... ,,um are in ca+(A) , the inequality in (3.4) implies that 

q E ca+ (A). Since the restriction of A to (To, IT 0) is non-atomic, the restrictions of 

Ji],··.,Jim and'; to (To,ITo) are also non-atomic. Let SEI To ' We will show that 

.; (S) $ V f(,u(T)). ,u(S) . By Lyapunov's theorem, for every 0 < a < 1 there exists a coalition 

Sa E I To such that ,u(Sa) = a,u(S) and q (Sa) = aq (S). Asfis differentiable at ,u (T) , for 

every 0 < a < 1 we have 
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f(.u( TI Sa)) = f(.u(T)) - aVf(.u(T)) . .u (s) + o(a). 

As ~ E Core(v) , we have 

Hence, 

~ (s) ~ 'Vf(Jl(T)). Jl (S) + g(a) , 

where lim g(a) = O. Therefore ~ (S) :::; Vf(.u(T)) . .u (S) , and the proof is complete. Q.E.D. 
a-+o 

Let A be a subset of a linear space. A point Xo E A is called a center of symmetry of A 

if for every x EA, the point 2xo - x also belongs to A. Note that if A is bounded, there may 

be at most one center of symmetry. 

The following corollary is a direct consequence of Theorems 3.1 and 3.2. 

Corollary 3.3 

Let Jl = (Jll, ... , Jlm) be a vector of non-trivial measures in ca+ (A). Assume that 

f: 91.~ --; 91.+ is a non-decreasing concave function which is differentiable in int 91.~ and 

satisfies, Vf(Jl(T))» 0 and f(Jl(TI {an) = 0 for every a E Tj. Then the asymptotic 

nucleolus of the game v = f 0.u coincides with the center of symmetry of the subset of the 

core of v in which all the members of 'Fj receive the same payoff. 

§4 - Market Games 

In this section we apply Theorem 3.1 to games which arise in economic applications. 

We consider a pure exchange economy E in which the commodity space is 91. ~ . The 

traders' space is represented by the measure space (T,.E,A). We assume again 

that T = To U 'Fj, where Ta and 'Fj are non-empty and disjoint coalitions, 'Fj is a finite set of 
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atoms of A such that every subset of T] is in I , and the restriction of A to (To, Ir 0) is 

non-atomic. We will interpret the members of 1J as monopolists. Every trader t E T has a 

utility junction Ut :9t~ ~ 91+. An assignment in E is an integrable function x: T --; 91~. 

There is a fixed initial assignment W (w(t) represents the initial bundle density of trader t). 

An allocation is an assignment x such that f r xdA ~ f rW dA. A tramferahle utility 

competitive equilibrium (t.u.c.e.) of the economy E is a pair (x,p) , where x is an allocation 

and p E 9t~ , such that for all t ET, Ut (x) - p. (x - wet)) attains its maximum (over 9t~) at 

x = X(I). The measure <p (S) = f)ut (x(t)) - p' (x(/) - W(/))] dA (when the function 

Ut (X(/)) is integrable) is called the competitive payoff distribution; and p is the vector 

competitive prices. We assume the following 

(4.2) For every trader a E 1J there exists a commodity 1 ~ ka ~ m such that wk (t) = 0 for 
a 

every t ET'. {a} (where Wk denotes the ka -component of w). 
a 

The meaning of (4.2) is that every atom of A has a corner on one of the commodities 

in the economy. 

We restrict our analysis to two cases: (1) when every trader in E has the same utility 

function and (2) when E has a finite number of types. 

Denote by U the set of all functions u: 9t ~ --; 9t + which are continuous and concave 

on 9t ~ , continuously differentiable and increasing on the interior of 9t ~ and vanish on the 

boundary of 9t~ . Note that any differentiable neoclassical utility function is in U (see 

Definition 1.4.2 in Aliprantis, Brown and Burkinshaw (1989». 
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We first study the case in which all the traders in the economy E has the same utility 

function u: ~~ ~ R+. We assume that u E U and that u is homogeneous of degree one on 

m~ (note that, for example, any Cobb-Douglas utility function satisfies these assumptions). 

The Aumann-Shapley Shubik market game which is associated with the economy E (see 

Shapley and Shubik (1969) and Section 30 of Aumann and Shapley (1974» in this special case 

is defined by 

(4.3) v(S) = sup{fsu(X(t))dAlxiS an assignment such that fsxdA = fsCVdA} 

Proposition 4.1 

Assume that the economy E sati::,fies (-1.1) and (-1.2) and that evelY trader in E has the 

same utility function U E U which is also homogeneous of degree one. Then the market game 

v which is defined in (-1.3) has an asymptotic nucleolus If v which is given by 

(4.4) 

Moreover, there exists a competitive payoff distribution qJ which corresponds to a t. u. c. e. of 

J 
E sllch that If yeS) = "2 «p(S) for every S E ETo . 

We first note that for every SEE, v( S) = u( f s cv dA). Indeed, let SEE. Then by 

the definition of v, we have yeS) 2:: lids cv dA). Since u is concave and homogeneous of 

degree one, by Jensen's inequality, for every assignment x such that fsx dA = Is cv dA we 

have fsu(x (t)) dA::; udscv dA}. Therefore yeS) = udsW dA}. Now, since II vanishes on 

the boundary of ~~, by (4.2), for every a E 1] we have v(TI {an = udTl{a} w dA) = o. 
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Also the assumption that u is increasing in the interior of 9\ ~ implies that 'VurJ T m dl) » 0 . 

Thus the game v satisfies the requirements of Theorem 3.1 and therefore (4.4) is satisfied. Let 

b = f T m dl. Since u is homogeneous of degree one, by Euler's theorem 'Vu(b)· b = u(b). As 

u is concave, for every x E 9\~ we have 

u(x) 5, u(b) + 'Vu(b). (x - b) = 'Vu(b)· x . 

Therefore max (u(x)-'Vu(b).x)=O. Consequently, for every t ET we have 
xE9t~ 

max (u(x) - 'Vu(b)· (x -m (t))) = 'Vu(b)·m (t). 
XE9t~ 

Let <p = 'Vu(b) . f m dJ... Then <p is a competitive payoff distribution in E and If/ v(S) = f <p(S) 

for every S E IT 0 . Q.E.D. 

We now analyze the case when there is a finite number of traders' types in the 

economy E. Two traders are of the same type if they have identical initial bundles and 

identical utility functions. We assume that the number of different types of traders in 

1'0 is n. For every 15, i 5, n, we denote by Si the set of traders in 1'0 which are of 

type i. We assume that Si is measurable (i.e., Si E I) andl(Si) > o. The utility 

function of the traders of type i (J s is n) is denoted by ui, and their initial bundle by 

m i. We assume that for every 1 5, i s n, Ui E U and in addition ui is homogeneous of 

degree one. We also assume that for every a E Tj the utility function ua of the trader a 

is in U (but not necessarily homogeneous of degree one). The Aumann-Shapley-Shubik 

. market game which is associated with the economy E in this case of finite number of 

types is 
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where, X(S) = {x I x is an assignment such that f s XdA = f sO) dA} . 

Define a function f:9t~ ~ 9t+ by 

Since the utility functions of the traders are continuous and concave, it is easy to see 

that f is well defined and concave on 9t ~ . 

Lemma 4.2 

Let v be the market game in (4.5), then v(S) = fdsO) dA)for every SE I, 

wherefis given by (4.6). 

Let S E I. Assume first that S does not include 1]. Then by (4.2), f sO) dA 

belongs to the boundary of 9t ~. Since the utility functions of the traders in T vanish 

on the boundary of 9t ~ , we have v(S) = 0 and f ( f sO) dA) = O. So assume that 

We first show that v(S)2::f(fsmdA). Let (xa)aETjand (Xi);=1 suchthat 

n 

fds
mdA) = LA({a})ua(xa)+ LUi(Xi)' 

aETj i=1 

Define an assignment x by x(t) = xt if t ET] and for every t E Si (J::; i ::; n) 
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otherwise 

Then 

n 

J XdA = LA ({anxa + LXi:::; J WdA 
ST'] S aE ] 1= 

Therefore v(S) ~ J s Ut (x(t)) dA. Since the ui are homogeneous of degree one, 

n 

Jsut(x(t)) dA = LA ({an lIa(xa) + LUi (Xi) = i rJS
WdA ) 

aET] 1=] 

It remains to show that v(S) :::; i (J s cv dA). Let x be an assignment such that 

fsxd), = fswdA. For every a ET] let xa = x(a) and for every 1:::; i:::; n let 

Xi = Isns, x dA. Then 

n 

LA ({an Xa + LXi = fsxdA = Iscv dA 
a ET] i=] 

Therefore by the definition off, we have 

n 

id WdA)~ LA ({a})ua(xa)+ LUj(xi) 
S aET] i=] 

Since the lIj are concave and homogeneous of degree one, 

As x was an arbitrary assignment which satisfies f S x dA = f SW dA , we obtain that 
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Lemma 4.3 

The function fwhich is defined in (4.6) is continuously differentiable on 

We first show that f is differentiable at every point in the interior of 9\:1. Let 

y* E in! 9\~. Then from the definition offit is clear that f(y *) > O. Sincefis 

concave on 9\ ~ , it is sufficient to show that 0 f(y *) consists of a unique point. Let 

(X; ) and (x;)n be such that 
aET] 1=1 

n 

f(Y*)= LA({a})ua(x;)+ LUi(Xt) 
GET] i=1 

Since the utility functions of the traders are non-decreasing, we have 

n 

LA({a})x~ + Lx7 =y* 
i= 1 

Since f(y *) > 0, the assumption that the utility functions of the traders vanish on the 

boundary of 9\:1 implies that there exists j E T1 u {1, ... , 11} such that x; E int 9\ ~l . 

Assume first that 1~j~11. We will show that of(y*)couAx;). Let P Eof(y*). 

Then for every x E 9\ ~ we have 
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U /X) - U j(X ~) = Uj(X) + LA ({a})ua(x;) + LUi{X;) 
aeT] i~j 

- lIAx ~)- LA ({a})ua(x;) - LUi{X;) ~ 
a eT] i~ j 

f(X+ LA ({a})x; + LxtJ- f(Y*)~p,(x-x;). 
aeT] i~ j 

Thus p E Oll Ax;) and of(y *) C Oll Ax;). Since U jis differentiable at x;, we have 

for every x E 9t~ we define Uj(x) = A ({j})u/x). Then the above argument implies 

that c f(y *) = {'Viij (x j)}. Thus, in any case 0 f(y *) consists of a unique point, and 

therefore j is differentiable at y *. The assumption that the utility funcitons of the 

traders are increasing in int 9t': implies that 'VfrfTcvdAJ» o. Now sincejis 

concave on 9t~, it is continuous on int 9t'!!. Moreover, since the utility functions of 

the traders vanish on the boundary of 9t:1 it is easy to see thatfis also continuous on 

the boundary of 9t~. Now Proposition 39.1 of Aumann and Shapley (I 974) asserts 

that any continuous concave function on 9t ~1 which is differentiable on il1l 9t '!! is 

continuously differentiable in int 9t':. Thereforefis continuously differentiable on 

int 9t~ . Q.E.D. 

We are now ready to state and prove the main result of this section. 
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Theorem 4.4 

Assume that the economy E satisfies (l1), (4.2) and also 

(1) There is afinite number n of traders' types in To' 

(2) Theutilityfunctions u1, .. ·,un of the traders in 'Ia are in Uandinadditionthey 

are homogeneous of degree one on 91:1 
• 

(3) The utility functions {lla} a ET] of the traders in Tj are in U 

Let f be the function which is given by (4.6). Then the market game v which is defined 

in (-1.5) has an a~ymptotic nucleolus IfI v which is given by 

Moreover, there exists a competitive payoff distribution qJ which corresponds to a 

. 1 
t.u.c.e. in the economy E such that IfIv(S) = -2 t;O(S) for evelY S E IT . 

() 

(4.7) follows from Theorem 3.1 and Lemmata 4.2 and 4.3. Denote 

b = f OJ d)' . Let (x ~) and (xt)n be such that 
T aET] 1=1 

Then by a similar argument to that which was used in the proof of Lemma 4.3, we 

obtain that for every t ET and x E 91~ 
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Since/is non-decreasing on 'R':, V/Ch) ~ O. Let 1::; i ::; m. Now if Xj* is on 

the boundary of 'RT, then Ui{Xn = 0, and thus by (4.8), Uj(x) - V/Ch) . x s. 0 for 

every XE'R~I. If Xj* Eint 'RT,then V/Ch) =VUj{x;). Sinceuj is homogeneous 

of degree one, VUj (xt). xt = Ui (xt). Therefore we again have by (4.8), 

Uj (x) - V/Ch) . x::; 0 for every x E'R': and thus 

max (Uj(x) - V/(h) . x) = 0 
XEm~1 

This implies that for every t E T 

max (uJx) - Vj(h)· (x - m (t))) = Vj(h)· m (I). 
X Em "..1 

Now by (4.8), for every a E 7J and t ET we have 

For every { ET let 

{

lIt (X*(tn-Vj(h).(x*(t)-m (t)) 
get) = 

Vj(b)· m (t) 

F or every S E I define rp (S) = f s gdJ.. Then rp is a competitive payoff distribution in 

1 
the economy E and for every S E IT we have IjIv(S) = -qJ(S). 

a 2 
Q.E.D. 
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