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§1 - Introduction

Monopolistic coalitional games (or more generally, mixed games) describe
situations in which some of the players are "small," i.e., individually insignificant,
whereas others are "large," 1.e., individually significant. The main purpose of this work
is to study the asymptotic nucleolus in such games. Since Shitovitz's (1973) seminal
paper (which analyzed the core of large oligopolistic markets), many works on mixed
markets have been written (for a comprehensive survey see Gabszewicz and Shitovitz
(1992)). Guesnerie (1977) and Gardner (1977) investigated the asymptotic behavior
of the Shapley value in such markets. Legros (1989) deals with the nucleolus of a
bilateral market with two complementary commodities. In this work we study the
asymptotic nucleolus of large differentiable monopolistic coalitional games.

Mathematically, we shall present the set of players by a measure space in which
the small players form a non-atomic part and in which the large players are atoms. We
assume that any atom has a monopolistic power, that is, the worth of a coalition which
does not contain all the atoms is zero. In the asymptotic approach, a game with an
infinite set of players is regarded as a limit of games with a finite set of players.

We first prove (see Section 3) that if v is 2 monopolistic game of the form
v=fou,where u=(y,..., it ) is a vector of measures and £ RY - RN isa
non-decreasing concave function which is continuously differentiable in the interior of
R, then the game v has an asymptotic nucleolus. We also provide an explicit
formula for the asymptotic nucleolus. This formula implies that it coincides with the
center of symmetry of the subset of the core of v in which all the atoms receive the

same payoff. Actually, we prove a stronger result, namely that every sequence of

payoff vectors which belongs to the kernels of any admissible sequence of finite



partition games which approximate the game v converges to the center of symmetry of
the above mentioned subset of the core of v (see Theorem 3.1 and Corollary 3.3).

We note that any game of the above-mentioned form can be viewed as a large
production game, where 1 is the distribution of the production factors among the
owners and fis the production function.

In Section 4 we apply the above-mentioned result to large monopolistic market
games. We prove that under some mild conditions (on the untility funcitons of the
traders) the asymptotic nucleolus of the transferable utility monopolstic market game
which is associated with an economy with a finite number of types exists and coincides
on the atomless part of the players' space with half of a competitive payoff distribution
of the economy (see Proposition 4.1 and Theorem 4.3).

§2 - Preliminaries

In this section we define the basic notions which are relevant to our work. Let
(T,2) be a measurable space, i.e.,, Tis a set and 2 is a o -field of subsets of 7. We
refer to the member of T as players and to those of X' as coalitions. A coalitional

game, or simply a game on (7,%), is a function v: 2 — R with () =0. If T'is
finite and £ = 27 is the set of all subsets of 7, the game v will be called a finite game.
A game v is superadditive if v(S; U S;)2v(S;)+v(S;) whenever §; and §, are
disjoint coalitions. A payoff measure in a game v on (7,2) is a bounded finitely
additive measure A: X — R which satisfies A(T)<v(T).

We denote by ba = ba(T,~Z) the Banach space of all bounded finitely additive
measures on (7,2 ) with the variation norm. The subsl;ace of ba which consists of all
bounded countably additive measures on (7,2) is denoted by ca =ca(T,Z). If A is

a measure in ca then ca( 1) = ca(T,Z, 1) denotes the set of all members of ca which



are absolutely continuous with respect to A . If 4 is a subset of an ordered vector
space we denote by A4, the set of all non-negative members of 4.

Let K be a convex subset of an Euclidean space and let f:K — R be a concave
function. A vector p is a supergradient of fat x eK if f(y)- f(x)<p-(y—x)for
all y eK . The set of all supergradients of fat x will be denoted by Jf(x). It is well
known that if x is an interior point of K thendf(x) # & and fis differentiable at x iff it
has a unique supergradient at x which, in this case, coincides with the gradient vector.

For two vectors x,y in R™ we write x > y to mean x; > y; forall /<i<m,

x>ytomean x>y and x # y,and x>>y tomean x; > y; forall /<i<m. A
function f defined on a set 4 < N™ is called non-decreasing if for every x,y € 4 we
have x 2 y implies f(x)2 f(y). Itis called increasing if, in addition, x > y implies

S(x)>f(y).

§3 - The Asymptotic Behavior of the Kernel and the Nucleolus in Mixed Games

In this section we investigate the asymptotic behavior of the kernel and the

nucleolus in a class of mixed games.
Let v be a finite game (that is, 7'1s finite and 2 = 2T). If xeRand ScT

we define x(S)= D x; if S =@, and x(@) = 0. Denote
ieS

Iv) = {x e‘.R,TI‘ x; 2v{({i}) forevery i € T and x(T) = v(T)}
and

[*(v)= {xeilex(T)=v(T)}.

Foreveryi,jeT,i# jand x e R define



s,-j(x) = max{v(S) - x(S) I ScT ieSandj eS}

The prekernel of the game v is the set

PK(v) = {x el*(v) (s,-j(x) =s;;(x) VijeT, i:tj}.
The kernel of the game v is the set

K() = {x el(v)]| (sij(x) —sj,-(x)) (xj —v({j})) <0 VijeT, i ;tj}.

It is well known that if v is a finite game which is zero monotonic (that is,
WS {i}) 2 v(S) +v({i}) forevery Sc Tandi e T\S), then PK(v) and K(v)

coincide (see Theorem 2.7 in Maschler, Peleg and Shapley (1972)). For a further

discussion of the kernel the reader is referred to Maschler (1992).

Let v be a finite game. For every x eI(v), let@(x) bea 2|T|-tup1e whose
components are the numbers v(S) — x(S), S = T , arranged in non-increasing order,
ie, 6 (x) 2 91-(x) for 1<i < j<n. The nucleolus of the game v, denoted by Nv | is
the payoff vector which is "closest" to v in the sense that 6( Nv)is the minimum in the
lexicographic order of the set {0( x)|xel(v )} . It is well known that the nucleolus

of a finite game v always exists when /(v) # & and it consists of a unique point which
belongs to the kernel of v (e.g., Schmeidler (1969)).

In the rest of the paper we assume that a fixed measure 4 €ca +(T, X)is
given. We interpret A as a population measure, that is, if S is a coalition, then A(S) is
the proportion of the total population which is contained in S. We also assume that 7

can be represented in the form 7' =T, U 7}, where T, and 7 are non-empty disjoint

coalitions, the restriction of A to (7}, , ZTO ) is non-atomic (where, here and in the
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sequel, if Sis a coalition Zg = {Q el |Q cds }) and 7; is a finite set of; atoms of A4
such that every subset of 7; isin2'.

Let v be a game on (r.x )and let 7 be a finite subfield of £ . The set of all
atoms of 7 is denoted by A, . The set of all subsets of 4, is identified naturally with
7, and thus a finite game with a set of players A4, is identified with a function

w: — R with w(@) = 0. The restriction of the game v to 7 is denoted by v, . An

admissible sequence of finite fields is an increasing sequence (ﬁ,, )n_ J of finite

o0

subfields of 2 such that every subset of 7; isinz; and U 7, generates X .
n=1

Let v be a superadditive game on (7, X). It is said that v has an asymptotic

nucleolus if there exists a game /v such that, for every admissible sequence of finite

fields (7z,,)ao ; and every S'in 7;, [lim Nv,,n (S) exists and equals wv(S) . It

n= n->o©
follows that wv eba, and it is called the asymptotic nucleolus of the game v.

The asymptotic approach was introduced in Kannai (1966) in the context of the
Shapley value of non-atomic games (see also chapter III of Aumann and Shapley
(1974)).

We are now ready to state and prove the main result of this section.

Theorem 3.1
Let u= (,u ) ,um) be a vector of non-trivial measures in ca, (1) . Assume
that f:RY — R is a non-decreasing concave function which is continuously

differentiable in int RY and satisfies, Vf ( u(T )) >>0 and f ( w(T {a})) =0 for every

a €Ty. Thenthe game v = f ou has an asymptotic nucleolus. Moreover, if



(7r,1 ):: / is an admissible sequence of finite fields and x, € K (v,rn ) for every n,

then for every S € m; we have

¥

S (D)1 (D) T,
n[—i—’:zoox”(s)zévf(#(ﬂ)-#(sr‘\ 7;;)+ g < lle’u #( )

Proof

Let (72',1):; , be an admissible sequence of finite fields. We first show that if

Vf (4(T)) - ().

o |~

SemnZr and x, eK(v,, )for every n, then lim x,(S) =
" n—»w

Note that since f is non-decreasing the game v is superadditive. Therefore, for every n,

the game v, 1s zero-monotonic, and thus K(v,, ) = PK(v,r ) foreveryn. Letnbea

fixed natural number and let j ez, N2y . Assume that x, € K(v,," ) . Then for

every i € I; we have

s7i(xn) = max{W(0) ~ x,(0) [0 € 7. j €0, {i} €0} = ~x,())

and
s (20) 2 (T 1) = 20 (D) + %, (1) = 7 (7)) = £ () + 2, ())
Since x, & PK(vy, |, we have
sy(0en) = 551 (on).
Therefore
%2 (7) < 5 (/WD) 1 (1)

Since fis concave and differentiable,



Let &> 0. As fis continuously differentiable on int R} | there exists § > 0

such that for every x e R’} we have
(32) |x-u(D]<8 = Vi) < V(D) +ee

where ¢ =(/,1,...,1). Since y;,..., i, are absolutely continuous with respect to 1 and

the restriction of 4 to (To ) To) is non-atomic, there exists a natural number #, such

that “,u( ])" <9 forevery j em, n 27 . Thereforeby (3.1)and (3.2), for every

nzn, and j €my, NI wehave

(v () +¢) - 1)

to | ~

HUE
Let S € x; m 27 . Then §is the union of members of =z, for every n.

Therefore for every n 2 n,,

x2(8) < 3(v/ (1) +£¢) ()

Since ¢ is arbitrary, we have
-— 1
lim x,,(S) < 5 Vf(,u(T)) - u(S)
. 1 . . .
We now show that limx, (S) > SVf ( (T )) - 1(S). Since fis continuously

differentiable on inf RY' and Vf (,u(T )) >> 0,-there exists 8 >0 such that for every

x e R we have



v - (D] <8 = V() <39 (u(D).

Let n; be a natural number such that ",u( j)” <& for every j €m,, N2, .

Then
V({11 ))) < 3 V(D).

Therefore by (3.1), for every n 2njand j €7, A 57 we have
xa(7) < 5 97 (D) 1))

Hence,

(3.3)  x,(8) = 29/ (u(D))- ()

Now there exists a natural number »n, > n; such that for every n > »n, and

J €my N 21 we have

1
64 wli) <1 S(Gur)

(note that since fis concave, f(é,u(T)) > éf(,u(T)) >0).

Let n2n; be fixed and let i €7} and j em, N 27 . Choose O, < 7, such
that {i} €Q,, j €0, and

Vi (@) = xn(0) = max{y 5, (0) - x4 (0) | Q < 7, (1} €0, ) 20
As x, eK(v,," ), then v, (Qn)— x,,(Qn) = —xn(j).

Let §, = Iuol . We show that S, ©7;. Assume not. Then v(S,,) =0, and
€n

thus x,, ( j) =X, (Sn) > x,({i}). Since all the players in T; are interchangeable in the

game v, (two players in a finite game are interchangeable if they have the same
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marginal contribution to every coalition which does not contain them), they get the

same payoff in every member of K (v,," ) . Hence,
f(:u(T)) = xn(T) = lTll x11({i})+xn(7;))'
By (3.3), x, (TO) < ;Vf(,u(]“)) - ,u(Y;)) Therefore,

/ (,u(T))—thf (D)7,
7]

xl’l( ! 2
Since f'is concave and differentiable,

A1) =207 (D) l53) 2 71D -2 (T, )) 2 £ (L (T)
Thus, x,({i}) 2 ﬁ f(gy(T)). Since x,, (/) > x,({i}), this contradicts (3.4).
/

Therefore S, S 77, and thus there exists $, € L7, such that S, =(71)1S,. Hence,
=5, (7) = (8n) = %a(S0) = AD) = ) = (30 )) = D) 430 (1) + 20(35)

Thus
xn(J) = 2| A1) = £ D) - 1)) = 1Sy ) - 2, (3,)]

By (3.3)

nl60) <297 () 45,

Since fis concave,

Al = FLAD) - 15) - S, )) 2 VI (D) () + 1430 )

Therefore,
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Hence,

x,(S) = éVf(p(T))-,u(S) for every n>n, .

1
This implies that Lim x,,(S) > = Vf ((T)) - i(S).
Assume now that S € 7; is any coalition. Then for every natural number » we have

x,(S) = xn(Sm 7;,)+xn(Sm TI)

Let 7, be the payoff which is assigned by x,, to a playerin 7;. Then

1
(D=5 (1)) T
V(T)an(T)leA In +x;1(7;>)‘—‘> lim t, = 2 (,u )#( 0)
n—>o0 lTll

Therefore,

V(T)—:;-Vf (u(T ))-u(TO )

lim x,(8) = 5V (idT))- S T,) + m |S~T;| QED.

n—>x0

|~

Let v be a game on (7,%). The core of v, denoted by Core(v), is the set of all payoff
measures 4 € ba such that u(S) > v(S) for every S € .

We want to determine the location in the core of the asymptotic nucleolus of a game
which satisfies the conditions of Theorem 3.1. We first state and prove a representation
theorem for the core of such games.

Theorem 3.2
Let p= (,u Lreeer ,um) be a vector of non-trivial measures in ca, (). Assume that
f:RY — R is a concave function which is differentiable at p (T) and satisfies

f(,u(T\.{a})) =0 for every a € T;. Then the core of the game v = f o u is given by

Core(v) = {5 eca, (1) | KT) = f(u(T)) and VS € =7, , &(S) < Vf (1(T))- ,U(S)}
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Let

M(v) = {cf eca, (7) | &1) = £(u(T)) and VS e 57, , &8) < VF (u(D) ~/1(S)} .
We will shovs taat M(v) = Core(v) . We first show that M(v) < Core(v). Leté e M(v) and
S € 2. Now if S does not include 7; then w(S) = 0 and clearly, £(S)2v(S). If S T; then
T\ScT,. As £ M(v),

HT1S) < Vf(ulT)) p(T1S).
Therefore

£(8) = E(D) =& (T18) 2 E(D) = Vf (D)) e (118) = £(uD) = Vf (D)) - 1 (T15).
As fis concave,

v (8) = (1)) < £(lD)) - VF (1)) 1 (T1S).
Hence, £(S) 2 v(S), and thus & € Core(v) .

It remains to show that Core(v) = M(v). Let & € Core(v). Then for every S € X we

have
(3.4) 0<E(S)<&E(D)-W(T\S).

As fis continuous at x (7)and gy,..., i, are in ca, (1), the inequality in (3.4) implies that

£ eca,(A). Since the restriction of 1 to (To ) To) is non-atomic, the restrictions of

M. M, and & to (TO,)JTO) are also non-atomic. Let § € X7 . We will show that

ES)<VS ( (T )) - u(S) . By Lyapunov's theorem, for every 0 < a </ there exists a coalition

Sq €21, such that ,u(Sa) = au(S) and & (Sa) = af(S). Asfis differentiable at u (7), for

every 0 <a </ we have
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F(1l1184)) = 7(6(D)) - a9 (1)) - 11(8) + o).

As & e Core(v) , we have

£(Sq)= (1) - £(118,) < £(u(D) - £(u(T1S4).
Hence,
£(S) < Vf (1)) () + gla),

where lim gla)=0. Therefore £(S) < Vf ( ,u(T)) -1 (S), and the proof is complete. Q.E.D.

a—>o

Let A be a subset of a linear space. A point x, € 4 is called a center of symmetry of A
if for every x € 4, the point 2x, — x also belongs to A. Note that if 4 is bounded, there may
be at most one center of symmetry.

The following corollary is a direct consequence of Theorems 3.1 and 3.2.

Corollarv 3.3

Let p= (,u I ,um) be a vector of non-trivial measures in ca,(1). Assume that

f:RT - R is a non-decreasing concave function which is differentiable in int R and
satisfies, Vf ( 1( T)) >>0 and f ( (T {a})) =0 for every a €T;. Then the asymptotic
nucleolus of the game v = f o u coincides with the center of symmetry of the subset of the
core of v in which all the members of T; receive the same payoff.
§4 - Market Games
In this section we apply Theorem 3.1 to games which arise in economic applications.
We consider a pure exchange economy E in which the commodity space is RY . The
traders' space is represented by the measure space (T, 2z, /1). We assume again

that7 =7, U T;, where 7, and 7; are non-empty and disjoint coalitions, 7; is a finite set of
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atoms of 4 such that every subset of 7} isinZ’', and the restriction of 4 to (TO,ETO) is
non-atomic. We will interpret the members of 7; as monopolists. Every trader f € T has a

utility function u,: R’y — R, . An assignment in E is an integrable function x:7 — R’

There is a fixed initial assignment & (@(f) represents the initial bundle density of trader f).

An allocation is an assignment x such that -[T xdA < Idel . A transferable utility

competitive equilibrium (t.u.c.e.) of the economy £ is a pair (x, p), where x is an allocation
and p e R"” such that forall 7 € T, u,(x) - p-(x — @(z))attains its maximum (over R™) at
x = x(r). The measure ¢ (S) = fs[zzt (x(0)) - p-(x(r) - a)(l))] dA (when the function

uy (v(r)) is integrable) s called the competitive payoff distribution; and p is the vector
competitive prices. We assume the following

@ [wdi>>0

(4.2) For every trader a €7 there exists a commodity / <k, <m such that a;_ (¢) =0 for

every t € T {a} (where y., denotes the &, -component of @ ).

The meaning of (4.2) is that every atom of A4 has a corner on one of the commodities

in the economy.
We restrict our analysis to two cases: (1) when every trader in £ has the same utility

function and (2) when £ has a finite number of types.

Denote by U the set of all functions u: R’ — R, which are continuous and concave
on R, continuously differentiable and increasing on the interior of R’} and vanish on the

boundary of R’} . Note that any differentiable neoclassical utility function is in U (see

Definition 1.4.2 in Aliprantis, Brown and Burkinshaw (1989)).



We first study the case in which all the traders in the economy £ has the same utility

function u- R} — R, . We assume that u € U and that u is homogeneous of degree one on

R (note that, for example, any Cobb-Douglas utility function satisfies these assumptions).

The Aumann-Shapley Shubik market game which is associated with the economy £ (see
Shapley and Shubik (1969) and Section 30 of Aumann and Shapley (1974)) in this special case

is defined by
(43) v(§)= sup{IS u(x (£))dA lx is an assignment such that _[Sx diA = ISw di }

Proposition 4.1

Assume that the economy E satisfies (4.1) and (4.2) and that every trader in E has the
same utility function u € U which is also homogeneous of degree one. Then the market game

v which is defined in (4.3) has an asymptotic nucleolus wv which is given by

u(ly wd2)-2 vu(fp 0 dz). I, @d2

7l

(4.4) (//V(S)::iVu(Ideﬂ)-J.SmT wdl + !Sn TI’

Moreover, there exists a competitive payoff distribution ¢ which corresponds to a tu.c.e. of

1
E such that ywv(S) = ;(o(S) for every S e ZTO )

Proof

We first note that for every S € X', v(S) = u( I @ dA). Indeed, let § € 2. Then by
the definition of v, we have v(S) > u( j @ dA). Since u is concave and homogeneous of
degree one, by Jensen's inequality, for every assignment x su‘ch that I ox dA = JS wdl we
have IS u(x (1)) dA < u( J @ dA). Therefore v(S) = u( ISw d2). Now, since « vanishes on

the boundary of R, by (4.2), forevery a T; we have v(T\ {a}) = u(IT\{a}w di)=0.
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Also the assumption that  is increasing in the interior of R’ implies that Vu(| @ dl)>>0.
p g + Imp T

Thus the game v satisfies the requirements of Theorem 3.1 and therefore (4.4) is satisfied. Let

b= I 7 dA . Since u is homogeneous of degree one, by Euler's theorem Vu(b)-b = u(b) . As

u is concave, for every x € R’} we have
u(x) < ul(b) + Vu(b) -(x - b) = Vu(b) - x .

Therefore max (u(x) - Vu(b)-x) = 0. Consequently, for every f € 7 we have

mm
xeRy

max (u(x) ~Vu(b)-(x-w (t))) =Vuld) o (7).

xeRT
Let ¢ = Vu(b) - J' wdA. Then ¢ is a competitive payoff distribution in £ and yv(S) = éqo(S)
for every S € 27 . QED.

We now analyze the case when there is a finite number of traders' types in the
economy E. Two traders are of the same fype if they have identical initial bundles and
identical utility functions. We assume that the number of different types of traders in

T, isn. Forevery [ <i <n, we denote by S; the set of traders in 7,, which are of
type i. We assume that §; is measurable (1e,, §; € 2') and /I(Si) > 0. The utility
function of the traders of type i (/ <i < n) is denoted by u;, and their initial bundle by
@;. We assume that for every / <i <n, u; €U and in addition ; is homogeneous of
degree one. We also assume that for every a €7} the utility function #, of the trader a

is in U (but not necessarily homogeneous of degree one). The Aumann-Shapley-Shubik
- market game which is associated with the economy £ in this case of finite number of

types is
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4.5) v(S) = sup{ > a{a})ug(x (@) + Zn:JSnS- u; (x (1)) da I x € X(S) }
i=1 i

aeSnT;
where, X(S) = {x Ix is an assignment such that Jsxd/l = Iswdl} .

Define a function f:RY — R by

n
Xa,Xj em'f» Z l({a})xa +z Xp sy
aeTI i=1

(4.6) f(y) = max Z A ({a})ua (xa) + éui (x,-)

acTy

Since the utility functions of the traders are continuous and concave, it is easy to see
that f'is well defined and concave on RY .
Lemma 4.2

Let v be the market game in (4.5), then v(S§) = f(JSw dA)forevery S €,

where f1s given by (4.6).

Proof

Let S € 2. Assume first that § does not include 7;. Then by (4.2), ISaJ di

belongs to the boundary of R”. Since the utility functions of the traders in T vanish
on the boundary of R”’, we have v(S) =0 and f(ISw dA)=0. So assume that

So7T;.

We first show that v(S) > f( ISw dA). Let (xa)aeTl and (x,- )’n= ; such that

J(]g@dr)= T al{a})us(xs)+ iui(x:)

ael;

Define an assignment x by x(7) = x; if # € T} and for every t €S; (I <i <n)
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1 .
X(t) = ’I(Sr‘\Si)xi If/l (SﬁSi)>0

0 otherwise

Then

j-xa’/i Zl {a})x, +Zx, j @ dA

aely

Therefore v(S) > ISu ((x(#))d2 . Since the u; are homogeneous of degree one,

Joulxn)ar= 2 a({a})u o(x )+§nju, )=f([wdn)

ael; i=1

It remains to show that v(S) < f( IS wdA). Letx be an assignment such that
JSx d = _[Swdi . Forevery a €7} let x, =x{a) and for every / <i <n let

x; = [SmS’ xd2. Then

S i({a)) x, +Zx = xdzzjswdz

ael;

Therefore by the definition of f, we have

f(lwadr)z T a(a)) ug(x,)+ }f:]u,- (x:)

aeT1

Since the u; are concave and homogeneous of degree one,

Z"{ ({a}) ua(xa)""zn: j uz (x t))d'l < 2’1({“}) ua(xa) ij:lui(xi)

aely i=] ael;

As x was an arbitrary assignment which satisfies ISx dA = ij dA , we obtain that

(S < f([ @dh).
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Lemma 4.3
The function f which is defined in (4.6) is continuously differentiable on

int R” and Vf(JTa)dl) >>0.

Proof

We first show that fis differentiable at every point in the interior of R7'. Let
y* eint R . Then from the definition of fit is clear that f(y *) > 0. Since fis

concave on R, it is sufficient to show that &f(y*) consists of a unique point. Let

(x: )a T, and (x;k):?_l be such that

f(y *) = > A({a}) u, (x:) + éui (x,-*)

aely

Since the utility functions of the traders are non-decreasing, we have

> A(lah)x, + ixi* =y*
i=1

a ET]
Since f ( y *) > 0, the assumption that the utility functions of the traders vanish on the
boundary of R” implies that there exists j € 7; U {/,...,n} such that x; eint R7.
Assume first that / < j <n. We will show that o”f(y *) cJu; (xj) Let pe ﬁf(y *).

Then for every x € R” we have
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=1, (6) =100 T la(ss)+ Zue)

aely izj
- uj(x;)— > A ({a})ua(x;:)- Z}ui (x,*) <
ael) i#j
f(x+ Z/I({a )xa+Zx,) f( ) (x xj)
aely i#j

Thus p edu; (x;) and Jf ( y *) cdu; (xj) Since u ;is differentiable at xj, we have

éuj( 1) {Vu( )} Aso”f( ):t@,wehaveﬁf(y )={Vu< )} If jeTy,

for every x € R’ we define #,(x) = 2 ({ ]})u ;(x). Then the above argument implies

that &f (y ) {Vu ( )} Thus, in any case Jf ( ) consists of a unique point, and
therefore fis differentiable at y *. The assumption that the utility funcitons of the

traders are increasing in inz R’ implies that Vf( J}w dA)>>0. Now since fis

concave on R, it is continuous on inf R” . Moreover, since the utility functions of
the traders vanish on the boundary of R’ it is easy to see that fis also continuous on
the boundary of R”. Now Proposition 39.1 of Aumann and Shapley (1974) asserts
that any continuous concave function on R” which is differentiable on int R” is
continuously differentiable in int R’ . Therefore fis continuously differentiable on
intR”. QE.D.

We are now ready to state and prove the main result of this section.
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Theorem 4.4
Assume that the economy E satisfies (4.1), (4.2) and also

(1) There is a finite number n of traders’ types in T,.

(2) The utility functions u,...,u, of the traders in T, are in U and in addition they
are homogeneous of degree one on RY .

(3) The utility functions {ua}aeTI of the traders in T; are in U.

Let f be the function which is given by (4.6). Then the market game v which is defined

in (4.5) has an asymptotic nucleolus y v which is given by

Aipwar)-Lur(s wd2)f; wdz
(47) (,/v(s)::in(ijdA).jSmT wdh+ Hf © lsATy.

Moreover, there exists a competitive payoff distribution ¢ which corresponds to a

tu.c.e. in the economy E such that wv(S) = éw(S) forevery S € Zr .

Proof

(4.7) follows from Theorem 3.1 and Lemmata 4.2 and 4.3. Denote

b= J-Ta) dA. Let (xZ)aETI and (x,-*);:] be such that
n x:‘ tel;
f)y= 22 ({a})ua(x;) + Zui(x;). Forevery t €T, let x*(¢) = .
ael] i=1 xi* t ES[

Then by a similar argument to that which was used in the proof of Lemma 4.3, we

obtain that for every t € T and x e RY

(4.8) u(x)< u,(x*(z))+Vf(b) (x-x*(1)).
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Since fis non-decreasing on R”', Vf(b) 0. Let /<i<m. Nowif x:is on
the boundary of RY, then (x,* ) =0, and thus by (4.8), #,(x) - V() -x <0 for

every x eR”. If x, eint R", then Vf(b) = Vu,-(xf ) Since u; is homogeneous

of degree one, Vy; (x,-*) : x: =u; (x:) . Therefore we again have by (4.8),

u;(x) - Vf(b) -x <0 forevery x €RY and thus

max (u,- (x) - V£(b) -x) =0

xeR™
This implies that forevery 1 €T

max (u;(x) - V£ (8) - (x~@ (1)) = Vf(8)-0 ().

xeR™

Now by (4.8), for every a € 7; and f €7 we have

max (ua (x)-Vr®) (x-w (r))) =1, (xZ) - V7 (b) (x: -o (t)) .

xeRr™”
Forevery 1 €T let

u(x*())-vr®)-(x*()-w (1)) teT;
g(f) =
Vf(b)w (f) tETo

For every S € X define ¢ () = J‘S gdA. Theng is a competitive payoff distribution in

the economy E and for every § e Xy we have wv(S) = ég}(S). QED.
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§1 - Introduction

Monopolistic coalitional games (or more generally, mixed games) describe
situations in which some of the players are "small," i.e., individually insignificant,
whereas others are "large," i.e., individually significant. The main purpose of this work
is to study the asymptotic nucleolus in such games. Since Shitovitz's (1973) seminal
paper (which analyzed the core of large oligopolistic markets), many works on mixed
markets have been written (for a comprehensive survey see Gabszewicz and Shitovitz
(1992)). Guesnerie (1977) and Gardner (1977) investigated the asymptotic behavior
of the Shapley value in such markets. Legros (1989) deals with the nucleolus of a
bilateral market with two complementary commodities. In this work we study the
asymptotic nucleolus of large differentiable monopolistic coalitional games.

Mathematically, we shall present the set of players by a measure space in which
the small players form a non-atomic part and in which the large players are atoms. We
assume that any atom has a monopolistic power, that is, the worth of a coalition which
does not contain all the atoms is zero. In the asymptotic approach, a game with an
infinite set of players is regarded as a limit of games with a finite set of players.

We first prove (see Section 3) that if v is a monopolistic game of the form
v=fou, where p=(yy,..., 14, ) is a vector of measures and /SR — N, isa
non-decreasing concave function which is continuously differentiable in the interior of

', then the game v has an asymptotic nucleolus. We also provide an explicit

formula for the asymptotic nucleolus. This formula implies that it coincides with the
center of symmetry of the subset of the core of v in which all the atoms receive the
same payoff. Actually, we prove a stronger result, namely that every sequence of

payoff vectors which belongs to the kernels of any admissible sequence of finite



partition games which approximate the game v converges to the center of symmetry of
the above mentioned subset of the core of v (see Theorem 3.1 and Corollary 3.3).

We note that any game of the above-mentioned form can be viewed as a large
production game, where u is the distribution of the production factors among the
owners and f is the production function.

In Section 4 we apply the above-mentioned result to large monopolistic market
games. We prove that under some mild conditions (on the untility funcitons of the
traders) the asymptotic nucleolus of the transferable utility monopolstic market game
which is associated with an economy with a finite number of types exists and coincides
on the atomless part of the players' space with half of a competitive payoft distribution
of the economy (see Proposition 4.1 and Theorem 4.3).

§2 - Preliminaries

In this section we define the basic notions which are relevant to our work. Let
(T,%2) be a measurable space, i.e., Tisasetand X isa o -field of subsets of 7. We
refer to the member of 7 as players and to those of X' as coalitions. A coalitional
game, or simply a game on (T,2), 1s a function v: 2 — R with v(J)=0. If Tis
finite and £ = 27 is the set of all subsets of 7, the game v will be called a finite game.
A game v is superadditive if v(S; U S,)2v(S;)+v(S,) whenever §; and S, are
disjoint coalitions. A payoff measure in a game v on (7,2) is a bounded finitely
additive measure A: X — R which satisfies A(T)<v(T).

We denote by ba = ba(T,~) the Banach space of all bounded finitely additive
measures on (‘7,2 ) with the variation norm. The subs;;ace of ba which consists of all
bounded countably additive measures on (7,Z2) is denoted by ca=ca(T,XZ). If A is

a measure in ca then ca( 1) = ca(T, X, 1) denotes the set of all members of ca which



are absolutely continuous with respect to 4. If A is a subset of an ordered vector

space we denote by A, the set of all non-negative members of 4.

Let K be a convex subset of an Euclidean space and let f:K — R be a concave
function. A vector p is a supergradient of fat x eK if f(y)- f(x)<p-(y-x)for"
all y e K. The set of all supergradients of fat x will be denoted by Jf(x). It is well
known that if x is an interior point of K thendf(x) # & and fis differentiable at x iff it
has a unique supergradient at x which, in this case, coincides with the gradient vector.

For two vectors x,y in R™ we write x > yto mean x; > y; forall /<i<m,

x>ytomean x>y and x # y,and x >>y tomean x; > y; forall /<i<m. A
function f defined on a set 4 < R™ is called non-decreasing if for every x,y € 4 we
have x > y implies f(x)2 f(y). Itis called increasing if, in addition, x > y implies

f(x)>f(y).

§3 - The Asymptotic Behavior of the Kernel and the Nucleolus in Mixed Games

In this section we investigate the asymptotic behavior of the kernel and the

nucleolus in a class of mixed games.
Let v be a finite game (that is, 7'is finite and 2 = 2T). If xeRMand ST

we define x(S)= D x; if S# @, and x(@) =0 . Denote
ieS

Iv) = {x € ER'T” x; 2 v({i}) forevery i € T and x(7) = v(T)}
and

[*(v)= {x eRT | x(7) = v (D) }

Foreveryi,jeT,i# jand x e RI7 define



s;(x) = max{v(S) -x(8)|Sc T ieSandj GES}

The prekernel of the game v is the set

PK(v) = {x el*(v) ! sij(x) = sji(x) Vi jeT, i:tj}.
The kernel of the game v is the set

KO = fx €10} | (3509 5,,0) () - ({})) <0 VijeT i 5},

It is well known that if v is a finite game which is zero monotonic (that is,
WS uii}) 2 v(S) +v({i}) forevery S c Tand i e T\S), then PK(v) and K(v)

coincide (see Theorem 2.7 in Maschler, Peleg and Shapley (1972)). For a further

discussion of the kernel the reader is referred to Maschler (1992).

Let v be a finite game. Forevery x € /(v), letf(x) bea i l-tuple whose
components are the numbers v(S) — x(S), S © T , arranged in non-increasing order,
ie., 6 (x) 26,(x) for <i< j<n. The nucleolus of the game v, denoted by Nv, is
the payoff vector which is "closest" to v in the sense that 6( Nv )is the minimum in the
lexicographic order of the set {9( x)|xel(v )} . It is well known that the nucleolus

of a finite game v always exists when I(v) # @ and it consists of a unique point which
belongs to the kernel of v (e.g., Schmeidler (1969)).

In the rest of the paper we assume that a fixed measure 4 € ca+(T, %) is
given. We interpret A as a population measure, that is, if Sis a coalition, then A(S) is
the proportion of the total population which is contained in S. We also assume that 7'

can be represented in the form 7 =T, U T}, where T, and T; are non-empty disjoint

coalitions, the restriction of A to (TO 27, ) is non-atomic (where, here and in the
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sequel, if S is a coalition Zg = {Q e !Q S }) and 7; is a finite set of; atoms of A
such that every subset of 7} isin2’.

Let v be a game on (T ,X)and let 7z be a finite subfield of £ . The set of all
atoms of z is denoted by 4. The set of all subsets of 4, is identified naturally with
7, and thus a finite game with a set of players A, is identified with a function

w:r — R with w(@) = 0. The restriction of the game v to z is denoted by Vy. An

admissible sequence of finite fields is an increasing sequence (7{,, )n_ ; of finite

[e o]

subfields of 2 such that every subset of 7; isinz; and U 7, generates 2.
n=]

Let v be a superadditive game on (7,%). Itissaid that v has an asymptotic

nucleolus if there exists a game v such that, for every admissible sequence of finite

fields (ﬁ,, ):’_J , andevery Sin 7;, lim Nvz (S) exists and equals wv(S). It

n—>x
follows that wv eba, and it is called the asymptotic nucleolus of the game v.

The asymptotic approach was introduced in Kannai (1966) in the context of the
Shapley value of non-atomic games (see also chapter III of Aumann and Shapley
(1974)).

We are now ready to state and prove the main result of this section.

Theorem 3.1

Let u= (,u, /Um) be a vector of non-trivial measures in ca, (1) . Assume
that f:RY — R is a non-decreasing concave function which is continuously

differentiable in int R’ and satisfies, Vf ( u(T )) >>0 and f ( (T {a})) =0 for every

a €T;. Thenthe game v = f oy has an asymptotic nucleolus. Moreover, if



(7:,1 )”= ,isan admissible sequence of finite fields and x, € K (v,," ) for every n,

then for every § € r; we have

1
S-S (u(D)- AT,

n—>cc iTIi

Na¥l

Proof

Let (n”):o_ , be an admissible sequence of finite fields. We first show that if

Sem;nZr and x, € K(v,,n ) for every n, then lim x,,(S) = %Vf(y(T)) - u(S).

n—w

Note that since fis non-decreasing the game v is superadditive. Therefore, for every n,

the game v, is zero-monotonic, and thus K(v,r ) = PK(v,r ) foreveryn. Letnbea

fixed natural number and let j €7, m 27 . Assume that x, € K(v,, ) . Then for

every i € I; we have

s (sn) = max{i(0) - x4(0) [0.< 7. 20, 1 £0} =2,

and
s,-j(xn) > v(T\ j) - xn(T) + xn(j) = f(,u(T\j))—f(,u(T)) + xn(j)
Since x, € PK(v,,") , we have
5 (xn) = 573 ().
Therefore
% (1) < 5 ( (D) £ (1)

Since fis concave and differentiable,



Let £ >0. Asfis continuously differentiable on inf R’ | there exists & > 0

such that for every x e R’ we have

(3.2) “x—,u(T)“ <6 = Vf(x) < Vf(,u(T)) tee

where e =(1,/,...,1). Since y;,..., 4, are absolutely continuous with respect to A and

the restriction of A to (To & To) is non-atomic, there exists a natural number 7, such

that “,u( j)“ <& forevery jem, n27 . Thereforeby (3.1)and (3.2), for every

nzn, and j €m, N2y we have

(T (D) +ee)- )

to ]~

(/)<
Let S ey~ 27, . ThenSis the union of members of ,, for every n.

Therefore for every n > n,,

50(8) < 3 (W {u(T)) +¢) (S)

Since ¢ is arbitrary, we have
- l
lim x,(S) < 3 Vf(,u(T)) - u(S)
. 1 . . .
We now show that limx,(S) > SVf (u(T )) - u(S) . Since fis continuously

differentiable on inf R’} and Vf ( (T )) >> 0 -there exists 5 >0 such that for every

x e R%Y we have



- (D] <& = Vf () <5 VA (D).

Let n; be a natural number such that "y( ])” <6 for every j €m,, N 2r .

Then

V(7)) < 3 vr (D).

Therefore by (3.1), for every n2n;and j € m, N 27 we have

x2(J) < 597 (D) 1)),
Hence,
(33) x,(8) <5 V(D) ()

Now there exists a natural number 7, > n; such that for every n > n, and

jem N ZTO we have

1
64 i) <pr S(GuT)

(note that since fis concave, f(ép(T)) > éf(,u(T)) >0).

Let n2ny befixedandlet i €7} and j em, m 27 . Choose O, <7, such
that {i} €0, j €0, and

Vi (0) = %4(0n) = maxfvz, (0) - x(0) | 0 <y, {1} <0, 0]

As x, € K(v,," ) , then v, (Qn)— X (Q,,) = —x,,(j).

Let S, = IUOI . We show that S, D T7;. Assume not. Then v(S,,) =0, and
€Cn

thus x,, ( j) =Xy (S,,) 2 xp, ({1}) Since all the players in 7 are interchangeable in the

game v, (two players in a finite game are interchangeable if they have the same
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marginal contribution to every coalition which does not contain them), they get the

same payoff in every member of K (v,," ) . Hence,

F(D) = x0 (D) =13} x, (1) + 3, (7, )
By (3.3), xn(To) < ;Vf(,u(T)) : ,u(]},). Therefore,

S D)~ 257 (D) ()

7]

Xy 1')2

Since fis concave and differentiable,

Fr) =297 D) T, 2 £ 1) =2 (T,)) 2 £ (2 (T)

Thus, x,({i}) > ‘;j~| f(é,u(T)). Since x,, (j) > x,({i}), this contradicts (3.4).
)

Therefore §,, © 7;, and thus there exists S, e 7, such that S, = (T\ 1)5’ ,, . Hence,

Thus

—x0(7) = v(Sn) = xa(Sn) = £ (A7) = 1) - 1(3,)) = F(AD)) + 20 (1) + %4 ()

20 (1) = L[ AT = 0T - ) - 105, )]

Since fis concave,

FlD) = 7D = 1) - 1S, ) 2 Vi (D) - ((5) + 1(S,))

Therefore,

A

wa) 2 3| VDY) )+ LA (7)) S, |2 S ()- )
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Hence,

x,(S) 2 éVf(y( T))- u(S) for every n>n;.

1
This implies that fim x,,(S) = 5 Vf{(T))- u(S).
Assume now that S € z; is any coalition. Then for every natural number 7 we have

12 (8) = x, (ST, ) +x, (S T)

Let ¢, be the payoff which is assigned by x,, to a playerin 7;. Then

1
v(T)-= ()
WT) = x,(T) = lTI] In + xn(TO) = lim t, = ZVf(ﬂ ") #(Ta)
n—>ow [TIl

Therefore,

)39 (un)) 4T, )
|

lim x, (S) =

n—>x

V(D) 1S T, ) + |S~T;| QED.

tO |~

Let v be a game on (7, X). The core of v, denoted by Core(v), is the set of all payoff
measures u € ba such that u(S) > v(S) forevery Se~.

We want to determine the location in the core of the asymptotic nucleolus of a game
which satisfies the conditions of Theorem 3.1. We first state and prove a representation

theorem for the core of such games.

Theorem 3.2
Let u= (,u I ym) be a vector of non-trivial measures in ca,(1). Assume that
f:RY — R __is a concave function which is differentiable at y (T) and satisfies

f(,u(T\{a})) =0jor every a €T;. Then the core of the game v = f o u is given by

Core(v) = {¢ cca, () | &1) = £(u(1)) and VS € 5, , &(S) < V7 (ul(1))- #(S)}
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Let
MO) = {¢ eca, (1) | £0) = 7(uD) and S € 37, &8) < Vf(u(T))- us)}

We will show that M(v) = Core(v). We first show that M(v) c Core(v). Leté e M ) and
S € Z. Now if § does not include 7} then w(S) = 0 and clearly, £(S) 2 v(S). If S 7] then

T\ScT,. As £EeM(v),

HT1S) < Vf (1)) 4(T1S)

Therefore

£(8)=&(D)-£(T18) 2 £(1) -V (1dD) - (T18) = f( D)) = V(7)) - p (T1S).
As fis concave,

v(8) = £(S)) < £ (D) - VA (wl1)) 1 (T15).
Hence, £(S) > v(S), and thus & € Core(v).

It remains to show that Core(v) c M(v). Let & eCore(v). Then for every S € X we

have
(34) 0<&(S)<E(D)-w(T\S).

As fis continuous at x (7)and 4;,..., 4, are in ca, (1), the inequality in (3.4) implies that

& eca,(A). Since the restriction of 4 to (7}) D) To) is non-atomic, the restrictions of

My [y, and & to (7},,270) are also non-atomic. Let § € 2’7 . We will show that

ES)<VSf ( (T )) - u4(S) . By Lyapunov's theorem, for every 0 < a < /I there exists a coalition

Sq €21, such that ,u(Sa) = o S) and §(Sa ) = aé(S). Asfis differentiable at x (), for

every 0 <a </ we have
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71185 )) = £(1D)) - V7 (1)) - 1 () + o).

As £ € Core(v) , we have

£(S,) =D -£(118,) < F(uD) - £((T154)).
Hence,
£(8) < V(D) 1 (8) + gla),

where lim g(a)=0. Therefore &(S) < Vf (,u(T)) 1 (S), and the proofis complete. Q.E.D.

a—>o

Let A4 be a subset of a linear space. A point x, € 4 is called a center of symmetry of A
if for every x € 4, the point 2x, — x also belongs to A. Note that if 4 is bounded, there may

be at most one center of symmetry.
The following corollary is a direct consequence of Theorems 3.1 and 3.2.

Corollary 3.3

Let p= (,u1 yeee ,um) be a vector of non-trivial measures in ca,(1). Assume that
f:RT — R is a non-decreasing concave function which is differentiable in int R’} and
satisfies, Vf ( ,u(T)) >>0 and f ( (T {a})) =0 for every a € T;. Then the asymptotic
nucleolus of the game v = f o u coincides with the center of symmetry of the subset of the
core of v in which all the members of T receive the same payoff.

§4 - Market Games

In this section we apply Theorem 3.1 to games which arise in economic applications.
We consider a pure exchange economy E in which the commodity space is RY' . The
traders' space is represented by the measure space (7, Z,1). We assume again

that7 =T, U T;, where T, and 7; are non-empty and disjoint coalitions, 7} is a finite set of
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atoms of 4 such that every subset of 7; is inX', and the restriction of 4 to (TO,ZTO) is
non-atomic. We will interpret the members of 7; as monopolists. Every trader 7 €T has a
utility function u,: R’ — RN . Anassignment in E is an integrable function x: 7 — R”.
There is a fixed initial assignment o (w(t) represents the initial bundle density of trader 7).

An allocation is an assignment x such that IT xdA < J.deﬂ. A transferable utility

competitive equilibrium (t.u.c.e.) of the economy £ is a pair (x, p), where x is an allocation
and p e ", suchthat forall 7 € T, u,(x) - p-(x — (7)) attains its maximum (over R™) at
x = x(1). The measure ¢ (S) = -fS [u[ (x(0)-p-(x() - a)(t))] dA (when the function
u,(x(1))is integrable) is called the competitive payoff distribution; and p is the vector
competitive prices. We assume the following

4.1) jTa;dA 550

(4.2) For every trader a €T} there exists a commodity / <k, <m such that ay_ (#) =0 for

every ¢ € T {a} (where Ok, denotes the k, -component of @ ).

The meaning of (4.2) is that every atom of A has a corner on one of the commaodities

in the economy.
We restrict our analysis to two cases: (1) when every trader in £ has the same utility

function and (2) when £ has a finite number of types.

Denote by U the set of all functions u: R’ — R, which are continuous and concave
on R, continuously differentiable and increasing on the interior of R’ and vanish on the

boundary of R . Note that any differentiable neoclassical utility function is in U (see

Definition 1.4.2 in Aliprantis, Brown and Burkinshaw (1989)).
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We first study the case in which all the traders in the economy £ has the same utility
function u- R} — R,. We assume that ¥ €U and that « is homogeneous of degree one on

R (note that, for example, any Cobb-Douglas utility function satisfies these assumptions).

The Aumann-Shapley Shubik market game which is associated with the economy £ (see
Shapley and Shubik (1969) and Section 30 of Aumann and Shapley (1974)) in this special case

is defined by
43) v(§)= sup{js u(x (t))dl ‘x is an assignment such that 'fsx di = _[Sco dA }

Proposition 4.1

Assume that the economy E satisfies (4.1) and (4.2) and that every trader in E has the
same utility function u € U which is also homogeneous of degree one. Then the market game

v which is defined in (4.3) has an asymptotic nucleolus yv which is given by

“(IT ) dzl)— %Vaz(fr @ d)“)'ITO wdA

7))

(44) wu(S)=Vuf wdr)-[,  wdr+ ST

Moreover, there exists a competitive payoff distribution ¢ which corresponds to a t.u.c.e. of

E such that ywv(S) = é(p(S) forevery S € 3y .

Proof

We first note that for every S € X, W(S) = u( Isw dZ). Indeed, let S € 2. Then by
the definition of v, we have v(S) > u( ISw d2). Since u is concave and homogeneous of
degree one, by Jensen's inequality, for every assignment x su-ch that I ¥ dl = I @ dA we
have IS u(x (1)) dA <u( J e dA). Therefore W(S) = u( I §@ d2). Now, since u vanishes on

the boundary of R}, by (4.2), for every a € T; we have v(T'\{a}) = u(j‘T\{a}w dA)=0.
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Also the assumption that u is increasing in the interior of R”' implies that Vu( j 79 di)>>0.

Thus the game v satisfies the requirements of Theorem 3.1 and therefore (4.4) is satisfied. Let

b= _[Tw dA . Since u is homogeneous of degree one, by Euler's theorem Vu(b)-b = u() . As

u is concave, for every x € Ry we have
u(x) < u(b) + Vu(b) - (x - 8) = Vu(b) - x .

Therefore max (u(x) ~Vu(b)- x) =0 . Consequently, for every 1 € T we have
xeR?

max (u(x) ~Vu(b) (x-w (t))) =Vub) - (7).

xeRT
Let ¢ = Vu(b) - I wdA . Then ¢ is a competitive payoff distribution in £ and w v(S) = é(p(S)

forevery S € 27 . Q.E.D.

We now analyze the case when there is a finite number of traders' types in the
economy E. Two traders are of the same type if they have identical initial bundles and
identical utility functions. We assume that the number of different types of traders in

7, isn. Forevery / <i <n, we denote by §; the set of traders in 7, which are of
type i. We assume that S; is measurable (i.e, S; € 2) and l(S,-) > 0. The utility
function of the traders of type i (/ <i < n) is denoted by «;, and their initial bundle by
;. We assume that for every / <i<n, u; €U and in addition u; is homogeneous of

degree one. We also assume that for every a € T the utility function #, of the trader a

is in U (but not necessarily homogeneous of degree one). The Aumann-Shapley-Shubik
- market game which is associated with the economy £ in this case of finite number of

types is
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@5 v(S) =supd Y. Al{a})uy(x (@) + ZISmS- ui(x (1)) da | x e X(S)
i=1 '

aeSnT;
where, X(S) = {x Ix is an assignment such that Jsxd/l = Iswdl} .

Define a function f: R} — R, by
n n
(4.6) f(y) = max Z A ({a})ua (xa)—i— Z”i (xi) Xg,x; €RT, Z A ({a})xa + Z xj <y
aely i=1 ael) i=1
Since the utility functions of the traders are continuous and concave, it is easy to see

that fis well defined and concave on R”’.

Lemma 4.2
Let v be the market game in (4.5), then v(§) = f(fsw dA)forevery S € X,

where fis given by (4.6).

Proof

Let § € 2. Assume first that S does not include 7;. Then by (4.2), ISw dA

belongs to the boundary of R”Y. Since the utility functions of the traders in 7 vanish
on the boundary of R, we have v(S) =0 and f( ij dA)=0. So assume that

SoT;.

and (x,- )n such that

We first show that v(S) > f( ij dZ). Let (xa) i=1

ael;

f(Jgwdr)= T ala}) ua(x,)+ éui (x:).

ael;

Define an assignment x by x(¢) = x, if # €7} and forevery t €S; (/1 <i<n)
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1 .
(=) ifA(SnS;)>

0 otherwise

Then

j xdd = le( a})xa+2x, j ®dA

aely

Therefore v(S) > | u,(x(¢))dA . Since the u; are homogeneous of degree one
S { { g )

J'u,(,\(t)dxl— Z/l({a)ZIC,(xa) i f(j wdl)

aeT1

It remains to show that v(S) < f( J‘Sa) dA). Letx be an assignment such that
J’Sxdﬂ = ISwdl. For every a € 7} let x, = x(a) and for every / <i <n let

X; = S xdA . Then

SM

Z/l({a})xa+2x,_j xdl = jmd,z

aeT1

Therefore by the definition of f, we have

Flgodr)z 2 a(ta}) ug(xs)+ f;:]u,-(x,-)

ael}

Since the u; are concave and homogeneous of degree one,

2/1 ({a}) u, (xa) + i I ,(x(t)) di < Z/l({a}) u, (xa) + i u; (x,-)

aeTy i=1 ael) i=]

As x was an arbitrary assignment which satisfies ISx dA = jSa) dA , we obtain that

W(S) < f(fsa)dxl ).
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Lemma 4.3
The function f which is defined in (4.6) is continuously differentiable on

int R and Vf(jra)dﬁ) >>0.

Proof

We first show that £ is differentiable at every point in the interior of R7. Let
y* eint R7 . Then from the definition of fit is clear that f(y *) >0. Since fis

concave on RY | it is sufficient to show that Jf ( y *) consists of a unique point. Let

<x:)aET1 and (x;k)f_]be such that

£y¥)- D({a})ua(x:)@"]ui(x?)

ael;

Since the utility functions of the traders are non-decreasing, we have

> A({a))xg + 2 x =y
i=1]

aeT)
Since f ( y *) > 0, the assumption that the utility functions of the traders vanish on the

*

boundary of R” implies that there exists j € T; U {/,...,n} such that x ; eint R

Assume first that / < j <n. We will show that ﬁf(y*)cé’uj(x;). Let p eﬁf(y *)

Then for every x € R” we have
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uj(x) —uj(x;) = uj(x) + z/l ({a})ua(x;)+ Zui(x:)

aET] izj

-uj(x;)— > A ({a})ua(x:)— Zu,(x;k) <

ael] i#j

fex+ Tallad)s + Xx)- 1) <p-(x-x})

aely i#j
Thus p edu;(x}) and 37 (y*) < du;(x}). Since u;is differentiable at x7, we h
P E ujxj an Yy ujxj. Jj erentiable a xj,We ave

*

é’uj(xj) = {Vuj(x;)} . As o”f(y*) =, we haveo”f(y*) = {Vuj(x;)} If jeTy,
for every x € R’ we define @;(x) = 4 ({ j})u ;(x). Then the above argument implies

*

that &f ( y *) = {Vﬁ I (x j )} . Thus, in any case Jf ( y *) consists of a unique point, and
therefore fis differentiable at y *. The assumption that the utility funcitons of the

traders are increasing in in¢ R’ implies that Vf( er dA)>>0. Now since fis

concave on R’ it is continuous on int R™ . Moreover, since the utility functions of
the traders vanish on the boundary of R”' it is easy to see that fis also continuous on
the boundary of R”. Now Proposition 39.1 of Aumann and Shapley (1974) asserts
that any continuous concave function on R” which is differentiable on int R” is
continuously differentiable in 7nf R’ . Therefore fis continuously differentiable on
intR” .  QE.D.

We are now ready to state and prove the main result of this section.
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Theorem 4.4
Assume that the economy E satisfies (4.1), (4.2) and also
(1) There is a finite number n of traders’ types in T,

o

(2) The utility functions u;,...,u, of the traders in T, are in U and in addition they
are homogeneous of degree one on RY' .

(3) The utility functions {ua }aeTI of the traders in T; are in U.

Let f be the function which is given by (4.6). Then the market game v which is defined

in (4.3) has an asymptotic nucleolus y v which is given by

f(Jdeﬂ.)—%Vf(ITw da)ly, wdi
7|

Moreover, there exists a competitive payoff distribution ¢ which corresponds to a

(4.7) y/v(s)z_éw(ijdx).jSmT wdi+ IS~ T,

tu.c.e. in the economy E such that wv(S) = é(o(S) forevery S € X7 .

Proof

(4.7) follows from Theorem 3.1 and Lemmata 4.2 and 4.3. Denote

b= ITa) dA. Let (x;)aETI and (x,-*)l';l be such that
n x:‘ tel;
HOEDW! ({a})ua(x;) + Zu,-(x:). Forevery t €T, let x*(f) = .
ael] i=1 x;k t ESI'

Then by a similar argument to that which was used in the proof of Lemma 4.3, we

obtain that for every € T and x € RY

@48) u,(x) <u(x*(1))+VF) '(x—x"f(t)).
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Since f is non-decreasing on R, Vf(b) 20. Let /<i<m. Nowif x; is on
m *
the boundary of R, then 1;(x} ) = 0, and thus by (4.8), ;(x) - Vf(5) -x <0 for
every x eR". If x; eint R™ then V/(b) = Vu; (x,* ) Since u; is homogeneous
* * * )
of degree one, Vu; (x,- ) X; = U (xi ) . Therefore we again have by (4.8),
u;(x) - VF(b) -x <0 forevery x e RY and thus

max (u,- (x)-V7(d) - x) =0

xeR”
This implies that for every t € T

max ("i (x) - Vf(b) . (x - (t))) = Vf(b) o (1.

xeRr”

Now by (4.8), forevery a € 7; and 7 € 7 we have

max (uy(x) = Vf(8)-(x~ @ (1)) = s (x3 )~ V7 8)-(x2 — 0 ().

xeR”
Forevery 1 €T let

u (x (1) - VF®)-(x *(2) - » (1)) teTy
g(r) =
Vi) -o (1) relp

For every § € X define ¢ (S) = J.S gdA. Theng is a competitive payoff distribution in

the economy £ and for every S € Xy we havey v(S) = §¢(S). QED.
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