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The purpose of this paper is to extend Himmelberg's fixed point theorem replacing the usual 

convexity in topological vector spaces by an abstract topological notion of convexity which generalizes 

classical convexity as well as several metric convexity structures found in the literature. We prove 

the existence, under weak hypotheses, of a fixed point for a compact approachable map and we 

provide sufficient conditions under which this result applies to maps whose values are convex in the 

abstract senSe mentionned above. 

1. INTRODUCTION 

The Himmelberg's theorem ([11], Theorem 2) generalizes to correspondences the 

Schauder fixed point theorem. It asserts that every compact upper semicontinuous corre­

spondence <I> with nonempty closed convex values from a nonempty convex subset X of a 

locally convex topological vector space E into itself has a fixed point. The first important 
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step in proving this theorem when E is a normed space, is to show that the correspon­

dence <I> can be approximated (in the sense of the graph) by continuous single-valued 

functions. A straightforward use of the Brouwer fixed point theorem (applied to those 

approximations) together with compactness arguments conclude the proof (see for exam­

ple, the proof of Theorem 5.11.3 in Dugundji and Granas [9]). In Ben-EI-Mechaiekh and 

Deguire [5] and in Ben-EI-Mecchaiekh [4], a thorough study of correspondences that can 

be approximated in this way - called approachable correspondences - was presented with 

emphasis on non-convex correspondences. Among other things, a version of Himmelberg's 

theorem for approachable upper semicontinuous compact correspondences defined on a 

convex subset of a locally convex topological vector space was proved (Lemma 4.1 below). 

The first concern of this paper is to extend this theorem (for the class of approach­

able correspondences) by replacing the usual convexity in topological vector spaces with 

a quite general abstract convexity concept defined in topological spaces. Second, and in 

order to state a "topological analogue" of the Himmelberg's theorem, we provide suffi­

cient conditions for a map whose values are convex in an abstract topological sense to be 

approacha ble. 

Our paper is organized as follows: 

In Section 2, we recall some definitions and extend to a uniform spaces setting some 

definitions previously given in the context of topological vector spaces. 

In Section 3, we introduce a convexity concept which encompasses most of the con­

vexity structures previously defined in the literature in order to extend the Brouwer or the 

Kakutani theorem. We then give some analogues of Cellina's approximation theorems for 

upper semicontinuous correspondences with nonempty (generalized) convex values. 

In Section 4, a fixed point theorem for compact, upper semicontinuous with nonempty 

closed values, approachable self-correspondences is proved for a large class of uniform con­

vex spaces and for the most general convexity structure. Taking into account the conditions 

of application of this result given in Section 3, this theorem allows for a generalization of 

most of the Himmelberg type fixed point theorems. 

2. PRELIMINARIES 

Let X, Y be two sets and <l> : X -+ Y be a set-valued map (simply called correspon­

dence). The graph of <l> is the set: 

graph(<l» = ((x,y) E X x Y lyE <l>(x)}. 

If X ~ Y, a fixed point for a correspondence <l> : X -+ Y is an element x E X with 
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x E <ll(x). 

If X and Y are topological spaces, a correspondence <ll : X ---7 Y is said to be upper 

semicontinuous (u.s.c) on X if for any given x E X and any open subset V of Y, the set 

{.1: E X I <I>(x) c V} is open in X. 

In this paper, the pair (X,U) denotes a uniform space with U being a basis of sym­

metric entourages for some uniformity on the space X. Given U E U, the U-ball around 

a given element x E X is the set U[x] = {x' E X I (x,x') E U}. The U-neighborhood 

around a given subset A c X is the set UtA] = U U[x] = {y E X I U[y] n A =1= 0}. It is 
xEA 

well known that for every x E X, the sets {U[x] I U E U} form a basis of neighborhoods of 

.1: for the uniform topology on X. A topological space is said to be uniformizable if there 

exists U such that the topology given on X is the uniform topology associated with (X,U). 

If (X,U) and (Y, V) are uniform spaces and if <I> : X ---7 Y is a correspondence, instead 

of upper semi continuity of <ll, we will use the following slightly weaker continuity property 

(equivalent to upper semicontinuity for compact-valued maps) : 

\IV E V, \Ix E X, :3U E U, <ll(U[x]) c V[<ll(x)]. (1) 
In what follows, all topological spaces are supposed to be Hausdorff, which means for 

uniform spaces that n{U I U E U} is the diagonal of X xX. 

The definitions and properties of the class A of approachable correspondences, given 

in Ben-EI-Mechaiekh [4] and Ben-EI-Mechaiek and Deguire [5] in the case where X and Y 
are topological vector spaces, easily extend to the uniform spaces setting. 

Let us first recall that if (X,U) and (Y, V) are two uniform spaces and if 

TV = {((x,y), (x',y')) E (X x Y) x (X x Y) I (x,x') E u, (y,y') E V}, 

then the family (W) U E U is a basis of symmetric entourages for the product uniformity 

VEV 
and that the associated uniform topology on X x Y is the product of the uniform topologies 

on X and Y. 

DEFINITION (2.1). Let (X,U) and (Y, V) be two uniform spaces and let <ll : X ---7 Y 

be a correspondence. Given a member W of W, a function s : X ---7 Y is said to be a 

IV-approximative selection of <ll if and only if: 

graph(s) C W[graph(<ll)]. 

DEFINITION (2.2). Let X and Y be topological spaces. The correspondence <ll : X ---7 

Y is said to be approachable if and only if: 
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(i) X and Y are uniformizable (with respective basis of symmetric entourages U and 

V), 
(ii) <I> admits a continuous W-approximative selection for each W in W (the basis of 

the product uniformity on X x Y). 

Let c(X, Y) be the class of continuous functions X -7 Y. Note that, in view of the 

symmetry of the entourages in U, V and W, the condition (ii) is equivalent to : 

{
VU E U, "IV E V, :ls E c(X, Y) such that 
"Ix E X, :lx' E U[x] with s(x) E V[<I>(x')J. 

The class A of correspondences from X into Y is defined by: 

A(X, Y) := {<I>: X -7 Y I <I> is approachable}. 

"Te write A(X) for A(X, X). 

It is clear from Definitions (2.1) and (2.2) that the problem of finding a graph­

approximation for a given correspondence <I> reduces to that of finding a selection for 

an open neighborhood of the graph of <I>. With this remark in mind, let us first observe 

that with some compactness, every nonempty valued u.s.c. correspondence admits an 

open-graph majorant. More precisely: 

LEl\IMA (2.3). Let (X,U), (Y, V) be two uniform spaces with X paracompact, and 

assume that <I> : X -7 Y satisfies (1) and has nonempty values. Then, for any pair 

of entourages U E U, V E V, there exists an open-graph map, depending on U and V, 

W U, V : X -7 Y such that: 

<I>(x) ~ wU,v(x) ~ V [<I> (U[x])], "Ix E X. 

Proof. Let (U, V) E (U x V) be given. Without loss of generality, we can assume that 

all U E U and V E V are open. By (1), for each x E X, there exists Ux C U such that 

<I> (U;r; [:I:]) C V [<I> (x )]. Let {OdiEI be a point-finite open refinement ofthe cover {Ux [X]}xEX, 

i.e. for every i E l, Oi C UxJxil for some Xi E X and the set lex) := {i Ell x E Od is 

finite. Define the correspondence W U, v : X -7 Y by putting: 

wU,v(x) = n V[<I>(Xi)], x E X. 
iEI(x) 

Clearly: <I>(x) C wU,v(x) for all x E X. Moreover, for every x E X and every i E lex), 

we have wU,v(x) C V[<I>(Xi)]. If x' E n Oi, then lex) C lex') and consequently, 
iEI(x) 
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Wu,v(.1:) C Wu,V( n Oi) C Wu,v(x), i.e. Wu,v is locally constant. Finally, for any given 
iEI(x) 

.1: E X, the set ( n Oi) x WU,v(x) is an open set around {x} x WU,v(x) contained in 
iEI(x) 

the graph of wu,v, i.e. wu,v has an open graph. 0 

';Ye will also make use of the following lemma; it rephrases, in the context of uniform 

spaces, Proposition 2.5 in Ben-EI-Mechaiekh [4] and its proof is therefore omitted. 

LEMMA (2.4). Let (X,U), (Y, V) (Z, W) be three uniform spaces, with Z compact and 

let W : Z ---+ X , <I> : X ---+ Y be two u.s.c. closed valued approachable correspondences, 

then so is their composition product <I> 0 W. 

3. APPROACHABLE CORRESPONDENCES AND LOCALLY 

(GENERALIZED) CONVEX SPACES 

vVe now precise the topological convexity notions that we will use in this paper. 

Generally speaking, a convexity structure on a set E is given by a family C of subsets 

of E, stable under finite or infinite intersections and containing E and the empty set. The 

elements of C are said to be C-convex and, for any X C E, a natural definition of the 

C-convex hull of Eis: 

coc X = n{y I X C Y and Yis C - convex}. 

In what follows, E stands for a topological space. If (E,U) is a uniform space and C is 

a convexity structure defined on E, then (E, U) is said to be locally C-convex if U is such 

that for every U E U, U[X] is C-convex whenever X C Eis C-convex. It should be noticed 

that, with this definition, U-balls U[x] are not necessarily convex. 

A quite general convexity structure on the topological space E can be given as follows. 

Let (E) denote the family of all nonempty finite subsets of E. If n is any integer and 

if J c {D, 1, ... , n}, 6 n will denote the unit-simplex of lRn +1 and 6 J the face of 6 n 

corresponding to J, i.e. 6 J = co {ej I j E J} where eO,el, ... ,en is the canonical basis of 
lR,n+l: , 

DEFINITION (3.1). An L-structure on E is given by a nonempty set-valued map 

r : (E) ---+ E verifying: 

(*) For every A = {xo, xI, ... , xn } E (E), there exists a continuous function fA : 6.n ---+ 

r(A) such that for all J C {D, 1, ... , n}, fA(6J) C r( {Xj,j E J}). 
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The pair (E, f) is then called an L-space and X c E is said to be L-convex if V A E (X), 

f(A) eX. 

Clearly, the L-convex subsets of E form a convexity on E. If X is an L-convex subset 

of E, the pair (X,fi(x)) is an L-space on its own right. If (E,U) is locally L-convex, then 

for the uniformity induced on X by U, (X, fi(x)) is locally L-convex. 

An interesting geometrical interpretation is given by the following proposition which 

shows the equivalence between Definition (3.1) and a previous definition given by Llinares 

[19] for an L- structure. 

PROPOSITION (3.2). E can be endowed with an L-structure if and only if for any 

nonempty finite subset A = {ao, a1, ... , an} of X, there is a family of elements {bo, bI , ... , bn } 

'in X and a family of functions p/ : X x [0,1] -+ X, i = 0,1, ... , n such that: 

1. p/(x,O) = x, , p/(x, 1) = bi, i = 0,1, ... , n, 

2. The function G A : [0, l]n -+ X defined by: 

'is a contirwous function. 

Proof. If E has a L-structure, then we can define VA E (E), A = {ao, 0,1, ... , an}, the 

functions p/ as follows: 

P~(an, 1) = fA(c n ) 

P~-l (P~(an, 1), tn-l) = fA(tn-ICn-1 + (1 - tn-l)cn ) 

P'~-2PT~-1 (P1~(an, 1), tn-l), tn- 2) = fA(tn- 2Cn-2 + (1 - tn-2)[tn- Ien-1 + (1 - tn-dcn]) 

and so on. Moreover, the functions p/ will be defined in those values not considered until 

now so as to verify p/(x, 0) = x, and p/(x, 1) = fA(ei). Therefore, the function 

n 

GA(to, t l , ... , tn-l) = fA(~:= (}iCi) 
i=O 

where'coeficients (}i depend continuously on tj, j = 0,1, ... ,n, will be continuous. 

On the other hand, if for any finite set A E (E), there exists a family of functions p/ 
satisfying the conditions 1 and 2, then we define the function fA : ..6.n -+ E by 
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where T(A) = (to(A), tl (A), ... , tn - 1 (A)) and for each i = 0,1, ... , n, 

if Ai = 0 
if Ai > 0 

It is not hard to prove that composition G A 0 T is continuous. 

To define the multifunction r : (E) ---7 E in order to obtain the same convexity 

structure, we need to introduce a new concept, the restriction of function G A to some 

subset B of E: 

where P~ are the functions associated to the elements aij E AnB. We now construct the 

IIlultifunction r : (E) ---7 E as follows 

(m = pB). One easily verifies that if A = {xo, ... , xrJ, J c {O, ... , n} and A E 6), then 

o 

Note that in the previous proposition, function PiA (X, .) can be interpreted as a path 

joining x and bi , while the composition of these paths (function GA) can be seen as an 

abstract convex combination of the finite subset A. So, a subset X is L-convex if it contains 

every abstract combination of any finite subset of X. 

In order to prove a selection theorem, let us now introduce a stronger convexity 

requirement which however weakens a definition given by Bielawski [6]. 

DEFINITION (3.3). A B'-simplicial convexity on E is given by a family of functions 

(<PA)AE(E) such that: 

('i). if A = {Xo, Xl, ... , xn }, <I>A : 6 n ---7 E is continuous and if A E 86n , then <I>A(A) = 

<pB (A), where B is obtained from A by removing Xi whenever Ai = O. 

Defining r(A) = <I>A(6n ) for A = {xo, XI, ..• , xn }, it is quite obvious that a B'­

simpliclal convexity on E is a L-structure on E. Then, as previously, X c E is said to be 

E'-convex if \;fA E (X), r(A) eX. 
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The class of B' -spaces contains topological vector spaces and their convex subsets as 

well as a number of spaces with different abstract topological convexities that can be found 

in the literature. Two typical examples are the following: 

DEFINITION (3.4). A B-simplicial convexity on E is given by a family of functions 

(<DA ) A E (E) satisfying condition (i) of the previous definition and: 

('ii) <I> {x} (1) = x. 

This is the definition given by Bielawski [6] with the same convex sets. 

DEFINITION (3.5). An H -structure is given by a set-valued map f : (E) ---+ E such 

that f(A) c f(B) if A c B and assumed to have nonempty Coo values (any continuous 

function defined on the (relative) boundary of a finite simplex with values in f(A) can be 

extended to a continuous function defined on the whole simplex with values in f(A)). 

X c E is said to be H-convex if VA E (X), f(A) eX. 

Definition (3.5) is due to Horvath [13-15] who uses the terminology c-structure and 

c-sets for H-structure and H-convex sets defined above. We adopt here the terminology 

of Bardaro and Cepitelli [3], Ding and Tan [8], Tarafdar [26-27]' Park and Kim [21]. As 

noted by Park and Kim [21], it follows from Theorem 1, Section 1 of Horvath [14] that if 

f defines an H-structure, then (X, r) is a L-space. Moreover, we have the following: 

PnOPOSITION (3.6). Let (E, r) be a H -space. Then it is possible to define a B'­

s'irnpl'ic'ial convexity such that H -convex sets are B' -conve.T sets. 

Pmoj. Since (E,r) is a H-space, with every x E E we can associate an element 

Zx E f( {x}) . Then we define functions <I>A for the singletons as follows 

Vx E E, <I>{x} (1) = Zx 

Next we construct functions <I>A associated to finite subsets A of E by induction on the 

number of elements of A. Suppose that for any finite subset B = {ba , . .. ,bk } (k < n), there 

exists <DE : 6k ---+ r(B) satisfying condition (i) of Definition (3.3). Let A = {xo, . .. ,xn}' 

For A.E o6n, we define WA(A) = <I>AJ(>.) (A) where J(A) = {i I Ai > O} and A J (>-) = {Xi I 
Ai > O}. By the induction hypothesis, wA(..\) = <I>AJ(>.) (A) E r(AJ('\») c r(A) and WA(A) 

coincides with <I>AJ (A) for all J C {O, ... ,n}, J =1= {O, ... ,n}, such that J(..\) C J, so that 

the continuity of wA on o6n follows from the continuity of all <I>E. Since f(A) is Coo, we 

can find an extension <I>A of wA, continuous on 6 n with values in f(A), which satisfies by 

construction condition (i) of Definition (3.3). 
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It only remains to show that H-convex sets are B'-convex sets. If X is a H-convex set, 

then it is verified that \fA E (X), then r(A) eX. Therefore, in order to prove that X is 

a B~-convex set, we have to verify that \fA = {xo, ... ,xn } E (X), cpA(.6 n ) C X but, by 

construction, cpA(.6n ) C r(A) c X. 0 

COROLLARY (3.7) If (E,r) is a H-space S1J,ch that\fx E E, x E r({x}), then E has a 

simplicial convexity. 

The two previous examples encompass (sometimes obviously) topological convex struc­

tures introduced in [1], [2], [12], [16], [17], [18], [20], [21], [22], [23], [24], [25]. [16] gives an 

order theoretical version of the H-convexity. The proof that hyperconvex spaces ([1], [2], 

[23]) are locally H-convex spaces is not trivial and can be found in Horvath [15]. 

The interest of Definition (3.3) is in the following selection theorem which extends 

Proposition (3.9) in Bielawski [6] and for which we give the same simple proof. 

PROPOSITION (3.8) Let C be a E'-convexity on a topological space Y. Let X be a 

pamcompact space and let </J : X -7 Y be a correspondence with nonempty, C-convex values 

and open lower sections </J -1 (y) = {x E X lyE </J( x)} . Then </J has a continuous selection. 

Proof Let (Ui)iEI be an open neighborhood finite refinement of the open covering 

(<p- 1 (y)) yEY of X and let (Ai)iE/ be a continuous partition of unity subordinated to 

(Ui)iEI. To each i E I, we associate Yi E Y such that Ui c </J-1(Yi). We can assume that 

I is a well-ordered (hence completely ordered) indexing set and define for x EX, 

where {ill ... , im } = {i E I I Ai(X) > O} and i l < i2 < ... < im . 

Let r be the map associated to the E'-convexity. Then f(x) E r({Yill ... ,Yim }) 

with Yik E </J(x), k = 1, ... , m. Since </J(x) is E'-convex, f(x) E </J(x). On the other 

hand, let Vx be a neighborhood of x which intersects only a finite number of Ui, let say 

UjOl •• • 1 Uj ", where jo < j1 < ... < jn· For all x' E Vx , if J(x) = {i I Ai(X' ) > O}, then 

J(X') C {jo, ... ,jn} and 

f(x' ) = <I>{YiO'···,Yin}(Ajo(XI), ... ,Ajn(X' )). 

It then follows from (i) in Definition (3.3) that f is continuous at x. o 

'Ve are now ready to state the main result of this section. Let X and Y be two 

topological spaces. For a given convexity structure C on Y, let us define the following 

10 



classes of correspondences: 

C(X, Y) := {cl> : X --t Y I cl> is u.s.c. with nonempty C - convex values}. 

If (X,U) and (Y, V) are uniform spaces, we use the continuity property (given in Section 

2) : 
\/V E V, \/x E X, :3U E U, cl>(U[x]) C V[cl>(x)] 

and set: 

C(X, Y) := {cl> : X --t Y I cl> satisfies (1) and has non empty C - convex values}. 

"'"e will write C(X) for C(X, X). 

PROPOSITION (3.9). In all the three following cases: 

(i) C is a H -structure, 

(ii) C is a E -simplicial convexity, 

(i'ii) C is a E' -convexity, 

(1) 

we have C(X, Y) c A(X, Y) provided X is paracompact and Y is a locally C-convex space. 

The same is true if C is an L-structure and if X is compact. 

Pmo.t: Recalling that a paracompact topological space is uniformizable, let U be a 

basis of symmetric entourages for the uniformity on X. Let us also assume that (Y, V) is 

endowed with a C-convexity such that for every V E V, V[A] is C-convex whenever A is 

C-convex. Given cl> E C(X, Y) and (U, V) E U x V, let \]!u,v : X --t Y be the open-graph 

majorant of cl> given by Lemma (2.3). By construction, the values of \]!u,v being finite 

intersections of C-convex sets (namely, V-neighborhoods of values of cl» are also C-convex. 

By Proposition (3.8), in cases (i), (ii) and (iii), the map \]!u,v admits a continuous selection 

su,v satisfying su,v(x) E \]!u,v(x) ~ V [cl> (U[x])] , \/x E X. The entourages U and V being 

arbitrary, it follows that cl> E A(X, Y). 

If X is compact and C is an L-structure, the existence of a selection follows from 

Llinares [19]. 0 

COROLLARY (3.10). Under the assumptions of the previous proposition, if X is com­

pact, j~r every (U, V) E U x V, there is a finite subset A of Y such that su,v(X) c r(A). 

Aloreover, in all cases where su,v is pmved to exist, it can be chosen so that su,v(X) 2S 

contained in any C-convex subset of Y containing cl> (X) . 

Pmo.t: The first assertion is obvious given the proof of the existence of su, v. To prove 

om last assertion, it suffices to apply Proposition (3.9), replacing Y by coc(cl>(X)). 0 
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Corollary (3.10) extends Theorem 6 in Horvath [15], stated for the case where X and 

Y are metric spaces. Both have as an obvious corollary Theorem 1 in Cellina [7], stated 

for the case where X is a metric space, Y a Frechet linear space (where balls are convex) 

and the correspondences <P are compact. 

For other examples of non-convex approachable maps, the reader is referred to Ben­

EI-Mechaiekh and Deguire [5] and Ben-EI-Mechaiekh [4]. 

4. THE MAIN THEOREM 

The Himmelberg fixed point theorem for self-correspondences defined on convex sub­

sets of locally convex topological vector spaces was extended to the class A by the first 

author as follows. 

LEMMA (4.1), [4]. If X is a nonempty convex subset of a locally convex topological 

vector space and if <P E A(X) is upper semi continuous with nonempty closed values, then 

<P has a fixed point provided <p(X) is contained in a compact subset K of X. 

'Ve provide now a generalization of this result to a class of uniform L-spaces satisfying 

an additional property borrowed from Horvath [14]. 

THEOREM (4.2). Assume that (X, U, r) is a uniform L-space such that for every 

U E U, there exist two correspondences S : X ---+ X and T : X ---+ X (depending on U) 

satisfying: 

(i) Vx E X, S(x) c T(x) 

(ii) Vx E X, VA E (S(x)), r(A) c T(x) 

(iii) X = U{intS- 1(y), yE X} 

(iv) Vx E X, T(x) c U[x]. 

Assume also that <P E A(X) is U.S.c. with nonempty closed values. Then <P has a fixed 

point, provided <p(X) is contained in a compact subset K of X. 

Proof. Let U E U be arbitrary but fixed and consider a cover of K by a finite collection 

{intS-I(Yi)}i=o and a continuous partition of unity Q = (Qi)i=o subordinated to this cover. 

Applying condition (*) in the definition of L-convexity, there exists a continuous 

function f : 6 N ---+ X such that VJ E (N), f(D.J) c r({Yi liE J}. Note that for every 

xEK, 

f 0 Q(x) E r( {Yi I x E intS- 1 [yd}) er( {Yi I Yi E S(x)} c T(x) 
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so that f 0 ex(x) E U[x]. 

Let us now consider the correspondence 

A f <I> et 
W = ex 0 <I> 0 f : Un - X - K - ~n' 

Since ~n is compact, it follows from Lemma 2.3 that W is approachable. By Lemma 4.1, 

W has a fixed point 8 E ~n' that is 8 E ex 0 <I> (J (8) ). Recalling that the previous results 

depend on the choice of U, let Xu = f(8). Then, 

xu E f 0 ex 0 <I>(xu) E U[<I>(xu]. 

Clearly, Xu is a U- approximative fixed point for <I>. Since U was arbitrarily chosen 

and <I> is U.S.c. with compact values, the net {xu} has an accumulation point which is a 

fixed point for <I>. 0 

Note that the condition (iv) in the previous theorem means that T and I dx are U-

near. 

Clearly, if (X,U,r) is such that for every U E U, there exists V E U, V C U such that 

V.T E X, VA E (V[x]), r(A) c U[x], then the correspondences defined by T(x) = U[x] and 

S(x) = (int V)[x] satisfy the conditions (i) - (iv) in the previous theorem, so that we have 

the following corollaries. 

COROLLARY (4.3). Assume that (X,U,r) is a uniform L-space such that for every 

U E U, there exists V E U, Vc U such that Vx E X, VA E (V[x]), r(A) c U[x]. Assume 

also that <I> E A(X) is U.S.c. with non empty closed values. Then <I> has a fixed point, 

provided <I>(X) is contained in a compact subset K of X. 

COROLLARY (4.4). Assume that (X,U, r) is a uniform L-space such that for every 

U E U and for every x E X, the ball U[x] is convex. Assume also that <I> E A(X) is U.S.c. 

with non empty closed values. Then <I> has a fixed point, provided <I>(X) is contained in a 

compact subset K of X. 

REMARK (4.5). In Corollary (4.3), the condition on (X,U,r) corresponds to what is 

called by Bielawski [6] "local simplicial convexity" when the convexity on X is a simplicial 

convexity. 

REMARK (4.6). Obviously, under the condition of the previous theorem (or of Corol­

laries (4.3) and (4.4)) on (X,U, r), a compact continuous function from X to X has a fixed 
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point. This remark generalizes Theorem 4, Section 4 in Horvath [14] and Remark (2.4) in 

Bielawski [6]. 

Therefore, combining Corollary (4.4) with Proposition (3.9), we obtain the two fol­

lowing consequences. 

COROLLARY (4.7). Assume that C is either an H -structure or alternatively a simplicial 

convexity or a E' - simplicial convexity, that (X, U) is a nonempty paracompact locally 

C-convex space where the balls U[x], x E X, are C-convex (or equivalently, since X is 

Hausdo rfJ, such that f( {x}) = {x}, x EX) and that cl> E C(X) has nonempty closed values 

in X. Then cl> has a fixed point, provided cl>(X) is contained in a compact subset K of X. 

The same is true if C is an L-structure and if X is compact. 

COROLLARY (4.8). In the previous statement, the condition that X is paracompact 

can be replaced by X metric. 

Recalling that X as in Corollary (4.8) is called an lc-metric space by Horvath, Corol­

lary (4.8) generalizes in several respects the Corollary to Theorem 6 in Horvath [15] and 

also: in the particular case where the correspondence is a single-valued function, the Corol­

lary 4 to Proposition 1, Section 4 in Horvath [14]. 

REFERENCES 

1. N. Aronszajn and P. Panitchpakdi, Extensions of uniformly transformation and hyper­

convex metric spaces, Pacific J. Math., 6 (1956),405-439. 

2. J.B. Baillon, Nonexpansive mapping and hyperconvex spaces, Contemporary Mat­

hematics, 72 (1988), 11-19. 

3. C. Bardaro and R. Ceppitelli, Fixed point theorems and vector valued minimax theo­

rems, J. Math. Anal.AppZ. 146, 363-373 (1990). 

4. H. Ben-El-Mechaiekh, Continuous approximations of multifunctions, fixed points and 

coincidences, in "Approximation and Optimization in the Carribean Il, Proceedings 

of the Second International Conference on Approximation and Optimization in the 

Carribean", (Florenzano et a1. Eds.), Peter Lang Verlag, Francfurt, 1995, pp. 69-97. 

5. H. Ben-El-Mechaiekh and P. Deguire, Approachability and fixed points for non-convex 

set-valued maps, J. Math. Anal. Appl., 170 (1992), 477-500. 

6. R. Bielawski, Simplicial convexity and its applications, J. Math. Anal. Appl., 127 

(1987), 155-171 

14 



7. A. Cellina, A theorem on the approximation of compact multivalued mappings, Atti 

Accad. Naz. Lincei 8 (1969), 149-153. 

8. X.P. Ding and K.K. Tan, Matching theorems, fixed point theorems and minimax in­

equalities without convexity, J. Austral. Math. Soc. (Series A) 49 (1990) 111-128. 

9. J. Dugundji and A. Granas, Fixed point theory, Vol.1, Polish Scientific Publishers, 

\Varszawa, 1982. 

10. K. Fan, Fixed point and minimax theorems in locally convex topological linear spaces, 

Proc. Nat. Acad. Sc. U.S.A., 38 (1952), 121-126. 

11. C.J. Himmelberg, Fixed point for compact multifunctions, J. Math. Anal. Appl., 38 

(1972): 205-207. 

12. C.D. Horvath, Points fixes et coincidences pour les applications multivoques sans 

convexite, C. R. Acad. Sci. Paris, 296 (1983), 119-148. 

13. C. Horvath, Some results on multivalued mappings and inequalities without convexity, 

in "Nonlinear Analysis and Convex Analysis" (B.L.Lin and S.Simons, Eds), pp. 99-

106, Dekker, New York, 1987. 

14. C. Horvath, Contractibility and generalized convexity, J. Math. Anal. Appl. 156 

(1991): 341-357. 

15. C. Horvath, Extension and selection theorems in topological spaces with a generalized 

convexity structure, Annales de la Faculte des Sciences de Toulouse, Vol 2, no 2 

(1993), 253-269. 

16. C.D. Horvath and J.V. Llinares, Journal of Mathematical Economics, 25 (1996), 291-

306. 

17. H. Komiya, Convexity on a topological space, Fund. Math., 111 (1981), 107-113. 

18. M. Lassonde, On the use of KKM multifunctions in fixed point theory and related 

topics, J. Math. Anal. Appl. 97 (1983), 151-201. 

19 .. LV. Llinares, Unified treatment of the problem of existence of maximal elements in 

binary relations. A characterization, Working-paper: A discussion. WP-AD, 95-17 

1995, University of Alicante, Spain 

20. E. Michael, Convex structures and continuous selections, Canad. J. Math., 11 (1959), 

556-575. 

21. S .. ~ark and H. Kim, Admissible classes of multifunctions on generalized convex spaces, 

Proc. Coll. Natur. Sci., SNU, Vol. 18, Nos. 1-2 (1993), 1-21. 

22. L. Pasicki, Nonempty intersection and minimax theorem, Bulletin of the Polish Acade­

my of Sciences, 58 (1983), 295-298. 

23. R. Sine, Hyperconvexity and approximate fixed points, Nonlinear Analysis, Vol. 13 

No. 7 (1989), 863-869. 

15 



24. V\T. Takahashi, A convexity in metric space and nonexpansive mappings I, Kodai Math. 

Sem. Rep., 22 (1970), 142-149. 

25. L.A. Talman, Fixed points for condensing multifunction in metric spaces with convex 

structure, Kodai Math. Sem. Rep., (1977), 62-70. 

26. E. Tarafdar, A fixed point theorem in H -spaces and related results, Bull. Austral. 

Math. Society 42 (1990), 133-140. 

27. E. Tarafdar, Fixed point theorems in H-space and equilibrium points of abstract 

economies, J. Austral. Math. Soc. (Series A) 53 (1992),252-260. 

16 



WORKING PAPERS 1997 

Business Economics Series 

97-18 (01) Margarita Samartin 
"Optimal allocation of interest rate risk" 

Economics Series 

97-04 (01) 

97-05 (02) 

97-06 (03) 

97-07 (04) 

97-09 (05) 

97-10 (06) 

97-12 (07) 

97-14 (08) 

97-17 (09) 

97-21 (10) 

97-22 (11) 

Iiiigo Herguera and Stefan Lutz 
"Trade policy and leapfrogging" 

Talitha Feenstra and Noemi Padr6n 
"Dynamic efficiency of environmental policy: the case of intertemporal model of 
emissions trading" 

Jose Luis Moraga and Noemi Padr6n 
"Pollution linked to consumption: a study of policy instruments in an environmentally 
differentiated oligopoly" 

Roger Feldman, CarIos Escribano and Laura Pellise 
"The role of government in competitive insurance markets with adverse selection" 

Juan Jose Dolado and Juan F. Jimeno 
"The causes of Spanish unemployment: a structural V AR approach" 

Juan Jose Dolado, Florentino Felgueroso and Juan F. Jimeno 
"Minimum wages, collective bargaining and wage dispersion: the Spanish case" 

Victor Aguirregabiria and Cesar Alonso-Borrego 
"Employment occupational structure, technological capital and reorganization of 
production" 

Alfonso Alba-Ramirez 
"How temporary is temproary employment in Spain?" 

Laurence Kranich 
"Equalizing opportunities through public education when innate abilities are 
unobservable" 

Michael Florig 
"On the irreducibility of a competitive economy" 

H. Ben-EI-Mechaiekh, S. Chebbi, J.V. Llinares and Monique Florenzano 
"A fixed point theorem without convexity" 


