
Programming Robosoccer agents by modeling human behavior

Ricardo Aler3'1, José M. Valls a ' \ David Camachob'*, Alberto López a ']

a Computer Science Department, Universidad Carlos III de Madrid, Ávenue Universidad, No, 30, 28911, Legones, Madrid, Spain
b Computer Science Department, Universidad Autónoma de Madrid, CIFrancisco Tomás y Valiente, No. 11, 28049, Madrid, Spain

Abstract

The Robosoccer simulator is a challenging environment for artificial intelligence, where a human has to program a team of agents and
introduce it into a soccer virtual environment. Most usually, Robosoccer agents are programmed by hand. In some cases, agents make
use of Machine learning (ML) to adapt and predict the behavior of the opposite team, but the bulk of the agent has been
preprogrammed.

The main aím of this paper is to transform Robosoccer into an interactíve game and let a human control a Robosoccer agent. Then
ML techniques can be used to model his/her behavior from training instances generated during the play. This model will be used later to
control a Robosoccer agent, thus imitating the human behavior. We have focused our research on low-level behavior, like looking for the
ball, conducting the ball towards the goal, or scoring in the presence of opponent players. Results have shown that indeed, Robosoccer
agents can be controlled by programs that model human play.

1. Introduction

The Robosoccer simulator is a challenging environ
ment for artificial intelligence, where a human has to pro
gram an agent and introduce it into a soccer virtual
environment. Programming complex behaviors in soft
ware agents is usually a time-consuming and difficult task
for human programmers. Machine learning (ML) is
becoming a promising way of automatically endowing
agents with complex skills. The main approach that has
been followed so far is to let the agents learn the behav
iors by themselves, totally or partially. For instance, in
the case of the Robosoccer simulator, Luke, Hohn, Far-
ris, and Hendler (1997) uses genetic programming to

evolve a complete team of agents whereas Stone and
Veloso (1998) proposes an agent architecture where learn
ing can be used at many levéis, from acquiring skills to
adapting to the opponent.

But ML can be used in another interesting way. Human
players can learn to play many games well and quickly, so
it makes sense to attempt to imítate them and transfer their
experience to computer agents. Learning by imitation and
modeling humans is a field common to many research
áreas like robotics (Kuniyoshi, Inaba, & Inoue, 1994), cog-
nitive science (Brown & Burton, 1978), or user modeling
(Webb, Pazzani, & Billsus, 2001). However, only recently
imitation techniques have been applied to programming
computer agents, specially in games. Sklar, Blair, Funes,
and Pollack (1999, 2001) is the first reported work (to
our knowledge) where data collected from players is used
to train an agent that plays TRON. More recent research
has produced quite remarkable human-like behavior in
the Quake game (Thurau, Bauckhage, & Sagerer, 2003,
2004a, 2004c).

Keywords: Learning to play; Imitation; Human modeling; Behavioral cloning; Machine learning; Robosoccer

1

Cita bibliográfica
Published in: Expert Systems with Applications, Marzo 2009, vol. 36, n. 2, p. 1850-1859

The work reported in this paper follows this line of
research and attempts to imitate a human player with the
purpose of creating a Robosoccer player that performs well
in the field. The Robosoccer type of domains is interesting
for modeling humans, as skills range from low-level reac
tive behavior to high level strategic actions and team play.
Our approach works as follows. First, we created an inter-
face to allow a person to play Robosoccer just like any
other video-game. Then, many input/output pairs were
generated and recorded after the human player played sev-
eral matches. The input is what the person can see in the
field and the output is the action the person performed
under that situation. Then, a ML technique is used to learn
the mapping from inputs to outputs. Finally, the ML
model is used to control a computer agent.

Imitation can be performed at different levéis: reactive,
tactical, or strategic. Different levéis will raise diflerent
issues. As this is the first attempt at using human experi-
ence to control an agent in the Robosoccer domain, we
have chosen to imitate the human player in low-level
actions like running, turning, or kicking the ball. However,
results show that learning when to perform such low-level
actions allow to learn slightly more complex sequences of
actions like conducting the ball to the goal, dribbling oppo-
nents, or stealing the ball from opponents.

Results have shown that indeed, agents can be pro-
grammed by modeling the experience of humans playing
Robosoccer and performing behaviors like looking for
the ball, conducting the ball towards the goal, or scoring
in the presence of opponent players.

This paper has been divided into the following sections.
First, Section 2 deals with work related to modeling other
agents, human modeling, imitation, and modeling in
games. Section 3 describes our modeling approach in the
Robosoccer domain. Section 4 describes how the agent
was trained from the instances generated by the human
in different types of behavior and discusses the results.
Finally, 5 draws the most important conclusions of this
work and posits some future lines of research.

2. Related work

Currently, there is a lot of interest in automatic model
ing of other agents and also of human users/players. In this
Section, we will overview related work about agent model
ing, considering whether models were reactive or had some
form of internal memory, the power of the modeling lan-
guage (propositional, first order, etc.), the task involved
(classification, prediction, imitation, . . .) , or the domain
type (continous, noisy, . . .) . We will also focus on aspects
related to human modeling.

One of the first attempts at modeling opponents was
that of Carmel and Markovitch (1996). Here, the goal
was to learn finite automatons (DFA) consistent with the
behavior of the opponent. The model was used to improve
a mini-max search algorithm. Interestingly, models
included an internal state. This approach was valid only

for discrete, round-based games, and required complete
non-noisy information. Prediction was the goal, but such
models could be used to imitate the opponent. Machine
learning has been used extensively since then in classical
and strategic games. Frnkranz and Kubat (2001) contains
a good survey with some discussion of opponent modeling.

Behavioral cloning is an attempt to imitate other agents
behavior (Urbancic & Bratko, 1994; Bain & Sammut,
1999). Sammut, Hurst, Kedzierand, and Michie (1992)
uses this technique to learn from a human piloting a sim-
ulator, from whom input/output traces are obtained. It
learns a decisión tree for each of the four plañe controls.
It is a non-deterministic, quickly changing, noisy domain.
The complete fly is divided into seven stages, each one
with a different goal. Otherwise, similar situations (inputs)
in different stages would have very different outputs.
Goals are taken into consideration, and it distinguishes
between two kinds of goals: homeostatic (non-persistent)
and standard (persistent). The authors identify a problem
when learning from different persons, because they use
very different piloting styles. It differs with our work
because the testing domains is different and no informa
tion about the stage or the current goal is supplied to
the learning system.

KNOMIC (Lent & Laird, 1999) is an approach that
learns to imitate an expert from input/output traces in
dynamic, non-deterministic, and noisy domains. It uses a
rich knowledge representation based on SOAR rules. For
instance, actions (operators) are decomposed into three
kinds of rules: selection, application, and goal-detection.
As in behavioural cloning, two kinds of goals are consid
erad: non-persistent and persistent. The expert is required
to decompose a task into operators and sub-operators (a
hierarchy of them, actually). This eliminates ambiguity
between traces belonging to different parts of the task,
which usually aim to achieve different goals (some research
that tries to work around this problem, by inducing the
agent's subgoals and using them to build the model, is
reported in Suc & Bratko (1997)). The expert is also
required to annotate the traces by telling the system which
operators are selected and unselected. The authors claim
that KNOMIC can learn from observing a human in diffi-
cult domains such as air combat and Quake II. Successful
results are only given from observing a hand-programmed
agent. The authors identify a source of ambiguity for learn
ing from humans: they are less systematic, more variable,
and make errors. There are many similarities with our
approach, but no annotations are obtained from the user
in our case.

Bakker and Kuniyoshi (1996) present an overview of imi
tation in the field of robotics. They define imitation as "imi
tation takes place when an agent learns a behaviour from
observing the execution of that behavior by a teacher" and
summarize it as solving the problems of "seeing, understand-
ing, and doing". However, most work is centered around the
seeing and replicating sequences of actions (which in robot
ics is not a trivial task), and less about the understanding

2

part. Based on Piaget's work (1945), they bring up the
important issue that "it is not possible to learn a new behav-
ior unless one almost knows it already".

Kuniyoshi et al. (1994) fits into this framework: a robot
observes a human performing a simple assembly task and
then reproduces it. Here, the problem that was addressed
was to recognize the human actions (in terms of the ones
that it already knew). The robot could also adapt to small
changes in the position of Ítems on the table. In Hayes and
Demiris (1994), a robot follows a teacher through a maze
and learns to associate the environment, in terms of local
wall positions, with the teacher's actions. In short, "if situ-
ation then action" rules are learned. This second study is
similar to our input/output rule learning, but the domain
used is simpler.

An área were human behavior ML modeling has been
the focus is that of user modeling (Webb et a l , 2001).
Early work in this field was about student modeling,
which seeks to model the internal cognition of a student's
cognitive system (as in Brown & Burton (1978)). This can
be used to make online learning adaptive to the student
skills and background knowledge, as well as to predict
the student's actions. However, Self (1988) casted some
doubt on the tractability of the cognitive approach. Since
then, many researchers have followed a different approach
that models an agent in terms of the relationships between
its inputs and outputs. This approach, called input-output
agent modeling (IOAM), treats the operation of the cog
nitive system as a black box. Some of the systems include
feature based modeling (Webb & Kuzmycz, 1996), rela-
tional based modeling Kuzmycz (1994), C4.5-IOAM
Webb, Chiu, and Kuzmycz (1997), and FFOIL-IOAM
Chiu, webb, and Kuzmycz (1997), among others. Both
propositional and relational learning systems have been
used. An usual testing ground is the problem of substrac-
tion, where models are learned to predict the student
response, including mistakes, when doing subtractions.
In contrast with the Robosoccer, this is a discrete and sta-
tic domain.

Currently, the demands of electronic commerce and the
Web have led to a fast growth in research in information
retrieval, where ML can be used for acquiring models of
individual users interacting with information systems
(Bloedorn, Mani, & MacMillan, 1996) or grouping them
into communities with common interests (Paliouras,
Karkaletsis, & Papatheodorou, 1999). These models can
help users in selecting useful information from the Web.
Although user models are obtained, their domain and pur-
pose is very different to ours. Their aim is to learn user pref-
erences to filter Web information or to build adaptive
interfaces. Also, users can be classified into stereotypes,
so that user likes or dislikes can be predicted.

ML techniques have also been applied to the prediction of
user's actions, also called plan recognition. Kautz and Alien
(1986) defined it as the problem of identifying a minimal set
of top-level actions that are sufficient to explain the observed
actions. Most work learns hierarchical plans from user logs,

and associate them with the goal the user was trying to
achieve (Bauer, 1999,1996). Later, plan libraries can be used
to match actual user actions with a plan in the library and
determine the user intentions. But their purpose is not to imi-
tate the user, as in our research.

Some research deals with agents modeling opponents
and using this knowledge to beat them. In some cases,
models are not learned, but predefined and used to classify
opponent teams (not individual agents) by means of a sim-
ilarity metric (Riley & Veloso, 2000a). Models can be used,
for instance, to select the best plan to beat the opponent in
set plays (Riley & Veloso, 2000a, 2001b). However,
although Riley's RectGrid models can classify adversaries,
they cannot be used to imítate opponent behavior. Riley's
work has focused mostly on the Robosoccer domain, as in
our case.

Riley, Veloso, and Kaminka (2002) uses ML for a coach
agent in the Robosoccer domain. That is, here learning
takes place at a more strategic higher level. The coach
can learn from previous games three kinds of models about
teams: team formations and passing behaviour. These
models can be used to predict and beat the opposite team,
or more closely related to our research, so that the team
imitates the modeled team. Differences with our research
is that whole teams are modeled, and the coach agent is
used to observe the playing field.

In Stone (2000), a layered learning architecture is pro-
posed. It is designed to use Machine learning in complex
domains, where learning a direct mapping from sensors
to actuators is not tractable, and a hierarchical task decom-
position is given. Different learning mechanisms are used to
learn behaviors from the bottom level (simple behaviors) to
the highest level (more complex, strategic behaviors). The
architecture is instantiated in the Robosoccer to learn an
individual skill (ball interceptation), a multi-agent behavior
(pass evaluation and selection), and adapting the team
behavior (here, a new reinforcement learning algorithm
called TPOT-RL is used Stone & Veloso (1999)). Although
this work does not focus particularly on modeling other
agents, it is relevant because if their working hypothesis
is correct, it should be expected that learning the detailed
models required to imítate other agents should require a
layered architecture too (i.e. a direct mapping from inputs
to outputs will be almost impossible to learn). This is very
likely to be true in general, and should be taken into
account in future research, but our work shows that learn
ing input-output mappings yield some positive results. In
the opponent-modeling context, Bowling (2003) uses rein
forcement learning for multi-agent systems where other
agents are also learning. There, the CMUDragons Robo-
cup team is described, that is able to adapt online to an
unknown opponent team. Finally, Ledezma, Aler, Sanchis,
and Borrajo (2004) proposed a ML scheme to take advan-
tage of prediction of opponents based on visual observa-
tions in the Robosoccer simulator. In all these cases, the
goal is learning to play and predict/adapt to opponents,
but not imitation.

3

R. Aler et al. I Expert Systems with
Sklar et al. (1999, 2001) is the first reported work (to our

knowledge) where data collected from players playing a
dynamic video-game, is used to train an agent. In this case,
data was collected from humans playing Tron over the
internet and a neural network was trained. Although they
managed to créate effective controllers for this game, it is
less clear that the resulting behavior imitated the humans.
They bring up the issue that a person, under the same sit-
uation can produce different responses, which can confuse
the learning process.

Spronck, Sprinkhuizen-Kuyper, and Postma (2004) uses
a new technique called dynamic scripting in role playing
games (RPG), to assign weights to rules in a reinforcement
learning way. In Spronck, Sprinkhuizen-Kuyper, and Post
ma (2002) neural networks and genetic algorithms are used
to online learning in RPG. In Ponsen and Spronck (2004)
the same techniques are applied to real time strategy games.

Recent research has shown a lot of interest in first per-
son shooter games (FPS), like Quake. In this kind of
games, human players must react to situations very
quickly. So, it is a very suitable environment for learning
reactive behaviors. They are played in networks by hun-
dreds of people and records of the best games are kept,
so there are good opportunities for Machine learning. Thu-
rau, Bauckhage, and Sagerer (2004a) provide a good sum-
mary of how imitation can be used at all levéis (reactive,
tactical, strategic, and motion modeling) in FPS games.
In Thurau et al. (2003), the authors report some initial
research in learning running and aiming behaviors from
recorded human games. They built a MATLAB interface
to allow a human to play Quake II and record pairs of
state-vectors and actions. Then, they used a self-organizing
map to reduce the dimensionality of state-vectors and
multi-layer neural networks to map state-vectors to
actions. Initial results in learning this kind of reactive
behavior seem positive. In Bauckhage, Thurau, and Sager
er (2003), neural networks are used to learn trajectories,
aiming behavior and their combination. They bring up
the important issue of taking into account the context
and the past, in addition to the state-vector, to reduce
ambiguity when deciding which action to perform. Also
in the Quake game, recent research tries to improve imita
tion models by means of genetic algorithms (Priesterjahn,
Kramer, Weimer, & Goebels, 2005).

In Bauckhage and Thurau (2004), tactical knowledge
about which weapon to use is learned from human play
by means of a mixture of experts. In Thurau, Bauckhage,
and Sagerer (2004b), Neural Gas algorithms are used for
learning the topology of the environment, and potential
fields for learning human trajectories for picking up objects
situated at different locations. This is strategic knowledge,
because it tells which is the most important place to pick
up the next object. The bot got stuck at some locations
and temporal changes to the potential field had to be added
(pheromone's trails). The author's claim that the bot imi
tated human behavior in simple setups and showed a mix
ture of intelligent behavior for more complex missions (i.e.

Applications 36 (2009) 1850-1859 1853
less imitation but still clever movements). In Thurau,
Bauckhage, and Sagerer (2004c), principal component
analysis is used to extract primitive movements (building
blocks for more complex sequences of movements) and
conditional probabilities on the state-vector and the last
action are learned. The artificial movements learned seem
realistic and even certain human habits are preserved.

3. Our modeling approach

3.1. Modelling process

As Fig. 1 shows, a human player interacts with an inter
face (the GUI soccerclient) that allows to play Robosoccer
as a video-game. This GUI sends the human commands to
the Soccerserver and displays the state of the field to the
human. The interface has been carefully designed so that
the only information that is displayed to the user is the
one available to the actual agent in the simulated field.
The trainer is used to set the playing field in a particular
state, because many different states are required to learn
general models.

From the GUI, a trace is obtained by observing the
human play. Records are obtained for every server cycle.
This trace is made of many (s, a) such records, where s is
the observation made by the agent sensors (distance to
the ball, angle to the ball, etc). And a is the action carried
out by the human player in that situation (for instance,
kicking the ball, turning, etc.).

Then, Machine learning techniques can be used to
obtain a classifier that determines which action has to be
carried out in a particular situation. Then, the classifier will
be translated into C code, which will be used to control a
soccer agent. If the modeling process is correct, the soccer
agent will play Robosoccer similarly to the human.

3.2. The Robosoccer interface

In order to build a good model for the soccer agent, the
information available to the human through the interface
must be as cióse as possible to that available to the agent.
The XClient programmed by Itsuki Noda2 accomplishes
this restriction. It is a first person interface, so the human
player observes the objects in the field in 3D perspective.
However, the versión of the Soccerserver we have used is
2D and it is a bit confusing to observe a 2D world in a first
person view. Therefore, we decided to program our own
interface, that is displayed in Fig. 2.

This interface displays a complete 2D real time view of
the field, just like the soccer monitor. Absolute positions
are computed by means of the (Matellan, Borrajo, & Fer
nandez, 1998) library (trigonometry computations are used
to obtain absolute positions of objects from the known
position of the banners distributed along the field border).

4

Fig. 1. Process to obtain a model from a person playing Robosoccer by using Machine Learning.

Fig. 2. 2D Interface. Objects are represented by probability circles.

Although the whole field is visible, only those objects probability circle. Different colors3 are used to differentiate
within the visión cone of the agent are displayed. Also, in the ball, the opponents, and the same team players. Those
Robosoccer, perception of far away objects is noisy. Thus,
objects are displayed as probability circles: the radius of the
circle depends on the radius of the object and the distance 3 F o r ¡nterpretation of color in Fig 2, the reader is referred to the web
to the object. In Fig. 2, the ball is represented as a versión of this article.

5

objects which are no longer visible are represented at the
last position they were seen.

In order to improve playability, not all Soccerserver
commands are available to the player. For instance, it is
possible to kick the ball with any strength, but the interface
only allows a standard kick. The commands allowed by the
interface are:

• turn left: the player can turn the agent's body a 10° to
the left. The player is only allowed to turn left (but
not right) because in some preliminary experiments we
found out that it was very difficult for the Machine
learning algorithm to discrimínate between turning left
and right.

• run slow/fast: only these two kinds of dash are allowed.
Their power is 60 and 99, respectively. These valúes were
obtained experimentally.

• kick ball: kicks the ball in the direction of the agent's
view line with a strength of 60.

• kick to goal: kicks the ball towards the goal, with a
strength of 99.

3.3. The trainer (coach) agent

In order to have a diverse set of instances for learning
behaviors, a diverse set of situations has to be presented to
the human player. The trainer agent was used for this pur-
pose. The trainer agent allows to position the agent, the ball,
and same-team/opposite team agents in arbitrary positions
in the field. Our trainer agent puts objects in random posi
tions in the field according to Fig. 3. In this way, an initially
defensive positioning of the opposite team is achieved.

3.4. Opposite agents

In the most complex situations, the human player will
play within a team against a complete opposite team. In
this paper we want to determine whether human input/out-
put modeling of persons works in principie in the Robosoc-

cer domain. To achieve this, we have used a simpler
situation where a single human-controlled agent plays
against a defensive opposite team (Camacho, Fernández,
& Rodelgo, 2006; Fernandez, Gutiérrez, & Molina,
2000). This team is based on zones, where each of the team
members is located. Among the agents, the player closer to
the ball takes the role of leader. The rest of agents maintain
a distance from the leader so as to maintain the formation.
Agents determine who is the leader and pass this informa-
tion to others. When the agent moves away from its zone, it
tries to pass the ball to other agent, if available. Otherwise,
it continúes towards the goal, in order to score. The goalie
follows a similar behavior: it stays within its zone and looks
for the ball. If it is cióse (15 units), goes for it and kicks it
towards the opposite goal.

3.5. Model representation

Human behavior can be modeled in many ways. Some
of them have been used traditionally in AI: rules, trees,
regression models, logic programs, etc. In this paper we
intend to study how far first order representations can
get. For this paper, we have chosen rules as a way of rep-
resenting human behavior. They have a long tradition for
representing knowledge and their conversión to C if-
t h e n - e l s e structures is straightforward. Also, we have
used the C4.5 algorithms for generating the rules, although
any rule-based ML algorithm would work just as well.
Most specifically, the PART algorithm (Revisión 8 of
C4.5) included in the Weka ML tool has been used (Ian,
2000). The rules follow a i f (s i t u a t i o n) t h e n a c t i o n
structure, where the s i t u a t i o n checks the valúes of the
agent's sensors and the a c t i o n tells what the agent should
do next. Table 1 displays two actual rules obtained in the
course of our research.

With respect to the i f part of the rules, it is very impor-
tant to select informative attributes so that they capture all
information used by the human player to make decisions.
Table 2 displays the attributes we have chosen. All positions

Fig 3 Rectangles where opposite agents will be randomly positioned by the trainer

6

Table 2
Attributes used in the left hand side of rules

Attribute

X, Y
Angle
Anglejall

Distance Ball
Distance_Opposite 1

AngIe„Oppositel

Valid Oppositel

Distance_Opposite2

Angle_Opposite2

Valid_Opposite2

Angle_Opponent_goal

Distance_Opponent_Goal
Valid OpponenLGoal

Meaning

Absolute agent location
Angle of the agent's view Une
Angle between the ball and the
agent's view line
Distance from the ball to the agent
Distance from the closest opposite
player to the agent
Angle between the agent and the
closest opponent
It indicates whether the closest
opponent could be seen in the last
server cycle
Distance from the second closest
opposite player to the agent
Angle between the agent and the
second closest opponent
It indicates whether the second
closest opponent could be seen in
the last server cycle
Angle between the opponent's
goal and the agent
Distance to the opponent's goal
It indicates whether the
opponent's goal could be seen
during the last server cycle

Type

Real
Real
Real

Real
Real

Real

Boolean
(0,1)

Real

Real

Boolean
(0,1)

Real

Real
Boolean
(0,1)

of objects (ball, opponents, and goal) are relative to the view
line of the agent and expressed in polar coordinates: dis
tance and angle. If the object is too far away, it cannot be
seen and the valúes of these attributes are meaningless. This
is indicated by other attributes, prefixed by v a l i d which
tell whether the associated object was visible or not. Abso
lute attributes are only used for the X and Y coordinates of
the agent. In this paper, only the two closest opponents are
considered by the rules, although it would be easy to créate
new attributes so that more opponents can be taken into
account.

The valúes that the right hand side of rules (the action
part) can take are: kickóO, kick99, dashóO, dash99, tura 10,
and turnminuslO. They have already been explained. Cur-
rently, the interface can only use these discretized actions,
but in the future, it could be modified so that the human
player can select a continuous valué to turn, to kick, or
to dash.

4. Training the agent

Some preliminary experiments were carried out for test-
ing simple behaviors like looking for the ball and advanc-
ing with the ball in an empty field. As these behaviors
were easily learned and properly performed by the agent,
we proceeded to more complex behaviors, which involve
playing against opponents.

4.1. Dribbling static opponents

This skill involves a striker advancing with the ball and
scoring, after dribbling static opponent agents located near
the goal. These opponents can only kick the ball when it
comes cióse to them. Eleven opponent players are used.
The training cases will be generated in such a way that
the striker is forced to dribble opponents to find the ball,
and then continué dribbling them until it scores.

A first attempt was done with 5370 training instances,
obtaining a 95.88% 10-fold cross-validation accuracy.
The agent is able to find the ball when there are no oppo
nents and conduct it to the goal. The agent also does well
when confronting the 11 opponents. However, in some
cases it displays the following flawed behaviors:

• The agent tries to kick the ball when it is too far away,
or when the angle is not appropriate.

• When the agent was cióse to the ball, it turns left again
and again.

• The agent collides with an opponent and stops there.

Once the agent performs these flawed behaviors, it
never gets out of these states. So for instance, the agent
will try to kick the ball forever, or it will get into an eter
na] turning loop. In general, and this is a property of our
reactive approach, if for some reason, the agent performs
an action that does not change its environment, or that it
changes it but this change is not perceived by the left
hand side of the rules, the agent will get stuck in that
behavior forever. For instance, when the agent tries to
kick the ball, but it is not cióse enough, nothing has chan-
ged in the world, so the agent will repeat its kicking
behavior again and again. Similarly, if a chain of rule
actions gets the agent to do a complete 360° loop, this will
be done forever. Perhaps a mechanism should be added
on top of the rules, that realizes when the agent has got
into such states and do some random actions until it gets
out. However, in this paper we only want to study the
puré learning approach, so we will leave that for the
future.

In order to improve this behavior, the number of train
ing instances was increased to 14,915, obtaining 172 rules,
and a 95.11% accuracy. The behavior improved, but the
agent still performs flawed behaviors. These flaws restrain
the agent from fulfilling its objective. Our final agent dis-
played flawed behaviors in 12% of the triáis (a trial involves
letting loóse the agent in the field, finding the ball, and

7

scoring). We found very hard to improve these results by
adding more training instances. In the conclusions section,
we will discuss why this is so and propose new lines of
research to overeóme these limitations.

Thus, results are not perfect but we considered it to be
acceptable. Also, these behaviors happen in a world where
the only agent that can initiate actions (and change the
world) is the striker. When there are more active opponents
in the field, the world will change independently of the
agent, and the agent will get out of its static states more
easily.

4.2. Match with opponents

This is the most complex behavior learned: a striker
must get to the ball and score against three defences and
one goalie. For this task, it would seem that it would be
desirable to choose very diíBcult opponents, like CMUnit-
ed or FC-Portugal, which were previous Robocup champi-
ons. However, the human player found impossible to beat
them. This was due to these teams playíng extremely well,
but also to the interface not being responsive enough. This
latter problem could not be solved, because the Robosoccer
server was not designed with interactive play in mind.

As our aim is to show that human experience can be
transferred to soccer agents, we have chosen a challenging
but beatable Robosoccer team (Camacho et al., 2006; Fer
nandez et al., 2000), which has the advantage that although
their players have a team behavior, we can use as many
players as desired. In this case, only four of them were
used. In any case, it must be remarked that, although the
(Camacho et al., 2006; Fernandez et a l , 2000) team is
not a Robocup champion, it is still a very challenging situ-
ation, because:

• The opponents outnumber our agent and play
cooperatively.

• The opponent can use more actions (turning the neck,
turning left and right, kicking and dashing with any
power and angle, . . .) .

• The opposite team has a goalie, whereas our agent must
defend and attack.

By confronting a human player against this team, we
were able to learn rules that could be transferred to an
agent that performed very well, as it will be shown next.

16,124 instances were obtained and 234 rules were cre-
ated, with a 93.44% cross-validation aecuracy. Then, the
agent had to play in six new testing matches. Although
the agent did not win any of the six testing matches, it
scored some goals. Results were: 2-5, 1-6, 0-5, 1^1, 1-5,
0-4 (where the first number indicates goals scored by the
agent, and the second one, goals scored by the opponents).
The agent incurs in previous flawed behaviors like trying to
repeatedly kick the ball when it is not there. However, in
this case the world is more dynamic and when an opponent

or the ball comes cióse, the agent gets out of the loop, and
reaets.

In order to improve these results, we increased the num
ber of instances to 24594. 332 rules were generated
(93.65%). In this case, we also pruned the rules using
WEKA's standard parameters. The number of rules was
reduced to 164 (92.65%). Yet, the behavior was greatly
enhanced: the agent was able to find the ball on the field,
to conduct it towards the goal, to score, to dribble oppo
nents, and to steal the ball from them. The scores in six
matches display this improvement, as the agent won one
of the games: 5-4, 2-4, 3^1, 4-5, 2^1, 3^1. The agent scored
19 goals versus 25 goals scored by the opponents. The
learned classifier was further pruned to 69 rules (91.90%).
Similar results were observed in six new matches: 3—4, 2-

4, 3-3, 2-5, 3-1, 4-3. The agent scored 17 goals versus 20
goals scored by the opponents. Table 3 summarizes these
results.

5. Conclusions and future work

In this paper we have applied an input-output modeling
approach to model a human playing Robosoccer. First, an
interface was built that displayed to the user the objeets in
the playing field that could be seen according to Robosoc
cer rules. This interface allowed the user to send low-level
commands (dash, turn, and kick) to the Soccerserver.
Input/output instances generated by the human player
were used by a Machine learning algorithm (PART) to
learn a model. This model was then introduced into a com-
puter agent. Results show that in different low-level behav
iors, like looking for the ball, conducting the ball to the
goal, dribbling opponents, and scoring in the presence of
other players, our approach works well. The final agent
was able to score many goals against a computer team that
the human found challenging. As far as we know, this is the
first time that behavioral cloning techniques have been
applied in the Robosoccer domain, with positive results.
This shows that this is a very promising line of research
whose results could be improved further, as discussed
below.

Building a user-friendly and responsive interface is of
great importance for the human play. Unfortunately, the
Soccerserver was not thought as a video-game and it is dif-
ficult to construct a responsive enough interface for it. Our
current interface is still not as good as commercial video-
games. It would be possible to overeóme this issue by rep-
licating the functionality of the Soccerserver, but bearing in

Table 3
Summary of results in six testing matches for the "playing with
opponents" behavior

Instances

16,124
24,594
24,594

Pruning

No
Yes
Yes

Rules

234
332
69

Aecuracy

93.44%,
92.65%
91.90%

Goals scored

+5
+19
+ 17

Goals against

-29
-25
-20

8

mind interactive play. Rules could be learned from the
modified Soccerserver and transferred to agents playing
the actual Soccerserver, after, perhaps, some small adapta-
tion. Having a responsive interface is very important for
learning low-level behaviors.

We have found out that the agent displayed some flawed
behaviors, although not very frequently. This problem
could be reduced by increasing the size of the dataset and
pruning the model. However, the problem did not disap-
pear completely. We believe that the underlying assump-
tions of a purely input-output behavioral approach may
be the culprit. Our approach works well when the behavior
to be cloned is reactive (i.e. the behavior is an input-output
map). But if the action of the human depends on hidden
variables, in addition to what the human can see on the
field, the model of the human will degrade. For instance,
the human can make use of memories and predictions
about the opponents, even when he is not watching them.
But these variables are hidden to the modeling algorithm
(i.e. it is not possible to see what the human is thinking).
Therefore, our approach worked well because the behav
iors to be learned are mostly reactive, but even in this case,
there are probably some hidden variables that could help to
improve the results.

In the future, we plan to add estimations of some hidden
variables to the agent, via new attributes, computed by spe-
cial purpose algorithms. If human-models are to be used,
we should delve more into the cognitive functions applied
by a person when playing Robosoccer (like planning,
opponent prediction, trajectory computation, . . .) . These
cognitive abilities could be supplied to the agent, and used
in the left hand side of the rules via new attributes. For
instance, humans use memory to keep track in their minds
of opponents and the ball, even when these objects are out
of view. In the same way, tracking algorithms could be
used to genérate attributes that estímate where the ball
might be at some particular time.

Imitating humans in the Robosoccer can be done at
many levéis. Inspired in computer games like FIFA 2006,
we intend to let the human use higher level actions like
passing the ball, shooting to the goal, pushing the ball,
dribbling, etc. In this case, the human player will only have
to press a key, and the computer will carry out a pre-pro-
grammed behavior (for passing the ball, etc.). Thus, the
human can focus on a more strategic level and leave the
low-level details to the computer. Modeling can be done
at even higher levéis, as the team level, or the coach agent.
We would also like to test the approach in more complex
situations like real matches and real team play.

Acknowledgements

We would like to thank Vicente Matellan for letting us

use his ABC2 routines, and Fernando Fernandez for provid-

ing us with his useful Robosoccer team. Agapito Ledezma

has been very helpful with his knowledge of Robosoccer.

References

Bain, M., & Sammut, C. (1999). A framework for behavioral cloning. In
Machine intelligence agents (pp. 103-129). Oxford University Press.

Bakker, P., & Kuniyoshi, Y. (1996). Robot see, robot do: An overview of
robot imitation. In AISB' 96 workshop in robots and animáis (pp. 3-
11).

Bauckhage, C, & Thurau, C. (2004). Towards a fair'n square aimbot -
Using mixtures of experts to learn context aware weapon Handling. In
Proceedings of the GAME-ON (pp. 20-24).

Bauckhage, C, Thurau, C, & Sagerer, G. (2003). Learning human-like
opponent behavior for interactive computer games. In B. Michaelis &
G. Krell (Eds.), Pattern recognition. Lecture notes in computer science
(Vol. 2781, pp. 148-155). Springer-Verlag.

Bauer, M. (1999). From interaction data to plan libraries: A clustering
approach. In International joint conference on artificial intelligence (pp.
962-967).

Bauer, M. (1996). Machine learning for plan recognition. In Machine
learning meets human computer interaction. Workshop of the Interna
tional conference on machine learning (pp. 5-16).

Bloedorn, E., Mani, I., & MacMillan, T. R. (1996). Machine learning of
user profiles: Representational issues. In Thirteen national conference
on artificial intelligence (pp. 433-438).

Bowling, M. (2003). Multiagent learning in the presence of agents with
limitations. PhD thesis, Computer Science Department. Pittsburgh,
PA: Carnegie Mellon University, May 2003. Available as technical
reportCMU-CS-03-118.

Brown, J. S., & Burton, R. R. (1978). Diagnostic models for procedural
bugs in basic mathematical skills. Cognitive Science, 2, 155-192.

Camacho, D., Fernández, F., & Rodelgo, M. A. (2006). Roboskeleton: An
architecture for coordinating robot soccer agents. Engineering Appli
cations of Artificial Intelligence, 19(2), 179-188.

Carmel, D., & Markovitch, S. (1996). Opponent modeling in multi-agent
systems. In Adaptation and learning in multiagent systems. IJCAI' 95
Workshop. Lecture notes in computer science (Vol. 1042, pp. 40-52).
Springer.

Chiu, B. C, Webb, G. I., & Kuzmycz, M. (1997). A comparison of first-
order and zeroth-order induction for input-output agent modelling. In
Proceedings of the sixth International conference. Springer.

Fernandez, F., Gutiérrez, G. & Molina, J. M. (2000). Coordinación global
basada en controladores locales reactivos en la robocup. In Workshop
Hispano-Luso de Agentes Físicos (pp. 73-85). Tarragona, España.

Frnkranz, J., & Kubat, M. (Eds.). (2001). Machines that learn to play
games. Nova Science Publishers.

Hayes, G., & Demiris, J. (1994). A robot controller using learning by
imitation. In Proceedings of the second international symposium on
intelligent robotic systems (pp. 198-204).

Kautz, H., & Alien, J. F. (1986). Generalized plan recognition. In
Proceeding ofthe AAAInational conference on artificial intelligence (pp.
32-37).

Kuniyoshi, Y., Inaba, M., & Inoue, H. (1994). Learning by watching:
Extracting reusable task knowledge from visual observation of human
performance. IEEE Transaction on Robotics and Automation, 10(6),
799-822.

Kuzmycz, M. (1994). A dynamic vocabulary for student modeling. In
Proceedings of the fourth international conference on user modeling
(pp. 185-190).

Ledezma, A., Aler, R., Sanchis, A. & Borrajo, D. (2004). Predicting
opponent actions by observation. In RoboCup international symposium
2004 (RoboCup2004), Lisbon (Portugal).

Luke, S , Hohn, C, Farris, J. Jackson, G., & Hendler, J. (1997). Co-
evolving soccer softbot team coordination with genetic programming.
In Proceedings of the first international workshop on RoboCup, at the
international joint conference on artificial intelligence, Nagoya, Japan.

Matellan, V., Borrajo, D., & Fernandez, C. (1998). Using ABC2 in the
Robocup domain. In Robocup-97 Robot soccerworld cup I. Lecture
notes in artificial intelligence (pp. 475^183). Springer-Verlag.

9

Paliouras, G , Karkaletsis, V., Papatheodorou, C, & Spyropoulos. C. D.
(1999). Exploiting learning techniques for the acquisition of user
stereotypes and communities. In Seventh international conference on
user modelling (pp. 169-178).

Piaget, J. (1945). Play, dreams and imitation in childhood. Heinemann.
Ponsen, M , & Spronck, P. (2004). Improving adaptive game ai with

evolutionary learning. Computer games Artificial intelligence, design
and educalion, 389-396.

Priesterjahn, S , Kramer, O., Weimer, A., & Goebels, A. (2005). Evolution
of reactive rules in multi player computer games based on imitation. In
International conference on natural computation (ICNC 05) Changsha,
China.

Ríley, P., & Veloso, M. (2000a). On behavior classification in adversarial
environments. In Distributed autonomous robotic systems 4. Springer-
Verlag.

Ríley, P., & Veloso, M. (2001b). Coaching a simulated soccer team by
opponent model recognitíon. In Proceedings ofthe agents international
conference (pp. 155-156). ACM Press.

Ríley, P., Veloso, M , & Kaminka, G. (2002). An empirical study of
coaching. In Proceedings of DARS-2002, the seventh international
symposium on distributed autonomous robotic systems.

Sammut, C, Hurst, S , Kedzierand, D., & Michie, D. (1992). Learning to
fly. In D. Sleeman (Ed.), Proceedings of the ninth international
conference on machine learning (pp. 385-393). Morgan Kaufman.

Self, J. A. (1988). Bypassing the intractable problem of student modelling.
In Proceedings of the intelligent tutoring systems conference (pp. 107-
123).

Sklar, E., Blair, A. D„ Funes, P., & Pollack, J. (1999). Training intelligent
agents using human internet data. In Proceedings of the first Asia-
Pacific conference on intelligent agent technology (IAT-99) (pp. 354-
363).

Sklar, E„ Blair, A. D., & Pollack, J. B. (2001). Training intelligent agents
using human data collected on the internet. In Agent engineering
(pp. 201-226). World Scientific.

Spronck, P., Sprinkhuizen-Kuyper, I., & Postma, E. (2002). Improving
opponent intelligence through machine learning. In Proceedings of the
fourteenth Belgium-Netherlands conference on artificial intelligence (pp.
299-306).

Spronck, P., Sprinkhuizen-Kuyper, I., & Postma, E. (2004). Online
adaptation of computer game opponent ai. International Journal of
Intelligent Games & Simulation (IJIGS), 5(1), 45-53.

Stone, P. (2000). Layered learning in multiagent systems: A winning
approach to robotic soccer. MIT Press.

Stone, P., & Veloso, M. (1998). A layered approach to learning client
behaviors in the RoboCup soccer server. Applied Artificial Intelligence,
12, 165-188.

Stone, P , & Veloso, M. (1999). Team-partitioned, opaque-transition
reinforcement learning. In M. Asada & H. Kitano (Eds.), RoboCup-98
Robot soccer world cup II. Berlín: Springer-Verlag, Proceedings of the
third international conference on autonomous agents.

Suc, D., & Bratko, I. (1997). Skill reconstruction as induction of lq
controllers with subgoals. In Proceedings ofthe 15th international joint
conference on artificial intelligence (Vol. 2, pp. 914-920).

Thurau, C, Bauckhage, C, & Sagerer, G. (2003). Combining self-
organizing maps and multilayer perceptrons to learn bot-behavior for
a commercial computer game. In Proceedings of the GAME-ON
(pp. 119-123).

Thurau, C, Bauckhage, C, & Sagerer, G. (2004a). Imitation learning at
all levéis of game-AI. In Proceedings ofthe international conference on
computer games, artificial intelligence,design and educalion (pp. 402-
408).

Thurau, C, Bauckhage, C, & Sagerer, G. (2004b). Learning human-like
movement behavior for computer games. In Proceedings of the eighth
international conference on the simulation of adaptive behavior
(SAB'04).

Thurau, C, Bauckhage, C, & Sagerer, G. (2004c). Synthesizing move-
mentsfor computer game characters. Lecture notes in computer science
(Vol. 3175). Heidelberg, Germany: Springer-Verlag.

Urbancic, T., & Bratko, I. (1994). Reconstructing human skill with
machine learning. In European conference on artificial intelligence
(ECAI1994) (pp. 498-502).

van Lent, M., & Laird, J. (1999).. Learning hierarchical performance
knowledge by observation. In Proceedings ofthe sixteenth international
conference on machine learning (pp. 229-238). Morgan Kaufmann
Publishers Inc.

Webb, G., Pazzani, M., & Billsus, D. (2001). Machine learning for user
modeling. User modeling and user-adapted interaction, 7/(19-20).

Webb, G. I., Chiu, B. C, & Kuzmycz, M. (1997). Comparative evaluation
of alternative induction engines for feature based modelling. Interna
tional journal of artificial intelligence in educalion, 8, 97-115.

Webb, G. I., & Kuzmycz, M. (1996). Feature based modelling: A
methodology for producing coherent, dynamically changing models of
agents' competencies. User modeling and user-adapted interaction, 5(2),
117-150.

Witten, I. H., & Frank, E. (2000). Data mining Practical machine learning
tools and techniques with java implementations. Morgan Kaufman.

10

