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Abstract

Let p be a finite positive Borel measure supported in [ 1,1] and introduce the discrete
Sobolev type inner product

1 K Ny
Loy = [ S dux) D3 M Ve 6 @),
- k1 i0

where the mass points i belong to [ 1,1], M;>0, i=0,...,Ny 1,and My, >0. In this
paper, we study the asymptotics of the Sobolev orthogonal polynomials by comparison with
the orthogonal polynomials with respect to the measure u and we prove that they have the
same asymptotic behaviour. We also study the pointwise convergence of the Fourier series
associated to this inner product provided that u is the Jacobi measure. We generalize the work
done by F. Marcellan and W. Van Assche where they studied the asymptotics for only one
mass point in [ 1, 1]. The same problem with a finite number of mass points off [ 1, 1] was
solved by G. Lopez, F. Marcellan and W. Van Assche in a more general setting: they consider
the constants Mj; to be complex numbers. As regards the Fourier series, we continue the
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results achieved by F. Marcellan, B. Osilenker and I.A. Rocha for the Jacobi measure and
mass points in R\[ 1,1].
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1. Introduction

Let 1 be a finite positive Borel measure supported on the interval [—1,1] with
infinitely many points at the support and let ax, k =1, ..., K, be real numbers such
that aye[—1,1]. For f and g in L?(u) such that there exist the derivatives in ay, we
can introduce the Sobolev-type inner product

Ny
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where M ;>0 for i=0,..., Ny — 1, and My, >0 when k=1, ..., K. We assume
u({ar}) = 0, otherwise the corresponding My should be modified. Let (lA?k),in be
the sequence of orthonormal polynomials with respect to this inner product,

<§n7§k>:5n,k7 kan:()ala'--

Lopez et al. [1] deduced the relative asymptotics for the orthogonal polynomials with
respect to the Sobolev inner product with mass points outside [—1, 1] and complex
constants My ;. Marcellan and Van Assche [4] analyzed such a question when there is
only one mass point inside [—1,1]. Here we deal with an extension of this last
problem with a finite number of masses. We compare the polynomials E,, with the
polynomials ( p,),-, orthonormal with respect to u. The technique used in this paper
is a generalization of the one used for obtaining estimates of the Sobolev orthogonal
polynomials in [2,3]. There, F. Marcellan, B. Osilenker and I. A. Rocha studied the
pointwise convergence of the Fourier series for sequences of orthogonal polynomials
with respect to the inner product (1) for the Jacobi measure and with mass points
outside [—1,1].

The main results concerning asymptotic properties are given in Section 2. In

g”((::; tends to 1, in Theorem 2.2 we obtain for B,(x) the

usual weak asymptotics, and, in Theorem 2.3, the asymptotics for the coefficients in
the recurrence relation of the Sobolev orthonormal polynomials are given.

In Section 3, we consider the pointwise convergence of the Fourier series with
respect to (1) provided that u is the Jacobi measure. We continue the work achieved
in [2,3] and prove the pointwise convergence for the Fourier series of functions which
satisfy some standard sufficient conditions as in the previous mentioned papers.
Although the techniques used there are not valid when the mass points lie in [—1, 1],

Theorem 2.1 we prove that

following the same idea, they can be generalized and, apart from the estimates of B,



which allow more precise results for the behaviour of the kernels, the same
conclusions follow.

2. Asymptotics

From now on k(I1,,) denotes the leading coefficient of any polynomial IT, with real
coefficients, and »n is the degree of the polynomial.
Let N; be the positive integer number defined by

. Ni+1 if Ny is odd,
k= N +2 if N is even,

and let wy (x) =[5, (x — @) where N = S°5_ | Nj. Let (p,).", be the sequence
of orthonormal polynomials with respect to u.

Lemma 2.1.
R ON
w (x) B, (x) = Z A, jPnin j(x)7 Ano#0.
=0

Moreover, Ay ; are bounded and A,y = :E§+z; t¢0'
X n+N n,

Proof. Since wy(x)B,(x) = Z;'Iév oy, ;pj(x) and

1
O, j :/ Wi (%) Ba(xX)pj(x) du(x) = {Bu,wnp;» =0, j<n—N,
1

we have the first assertion with 4, ; = a, ,1n ;. Furthermore,

xe[ 1,1]

2N 1
Z Af,‘j = /lﬁi(x)w?\,(x) du(x)< max_ w3 (x)
=0

~

and thus (4, ;) are bounded. Also A, = fll W (X) B (X) P (x) du(x) = =Bl ag

n
K( ppin)

well as
.l
B > K
Anan = / Wy (X)By(x)pn v(x) du(x) = By, wypn n) = 7(1)'1 v)
! k(By,)

(
K(Pn N)

)

1
K(pn+N) An,O
and the lemma holds. O

Let A be a sequence of nonnegative integers such that lim,cp 4, ; = 4; for j =

0,...,2N. When u/(x)>0 a.e., since 49< oo and lim,, o % = 2% as it is well

known (see [5,6]), Aoy has to be greater than zero. Let



2N 4;
Iy (x) = ; A— T;
where, for each j, Tj(x) is the Chebyshev polynomial of the first kind and degree ;.

Lemma 2.2. If (/(x)>0 a.e. then the polynomial T,y satisfies Hgl)v(ak) =0 fori=
0,1, .., N —landk=1,.. K.

Proof. For a given ke{l,2,...,K}, let £>0 and ie{1,2,...,N;}. Consider the
function

0 if xe[—1,ar + ¢,
VialX) = —— if xe(ax +¢1].
(x —ax)
This function is bounded in [—1,1] and satisfies the condition
max,c( 1,1 (W (x)¥;,(x)| < C for some constant C independent of e.

As it is well known (see [5,6]), since ¢/(x) >0 a.e.,

dx
i [ rpe im0 =L [ reomic
n— o \/ 1—x2
for all Borel measurable function f bounded on [—1,1]. As a consequence, the

n+N

expression of wy(x)B,(x) in terms of (pj)j=p of Lemma 2.1 gives

1

i [ B (00 ) = [ ZAT et

nei

From the Cauchy—Schwarz inequality,

‘/11 En(x>pn+N(X)M/N(X)[//i’g(x) du(x)
12

<(/ 11 B du(X)>]/2 (/ llpiw(x) i) <c

and we get
1 2N dx
lim su 7/ A, Ty (x <C fori=1,...,N} 2
nswp D AT < Lo

When i = 1 we have

/. ILN(x)wl,a(x)mL

~ M (@) / V() / (Mo (x) — Moy (@) (
1

%) dx
V1—x2
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Thus, condition (2) holds if and only if IToy (ax) = 0. If we suppose now Hgﬁ (ax) =0
for 0<j<i— 1<N;—2 and write Thy(x) = (x — @) Ty ;(x), with the same
argument for fll(x — ;) Thy ,-(x)n//iﬂ,g(x)ﬁ we get Hg])\,(ak) = 0. Note that
when g, =1 the definition of ,, must be modified in the obvious way. O

Lemma 2.3. If i/(x)>0 a.e. then

Iy (x) —2 Tn(x) H X — ag) Ne.

Proof. Fora givenke{l,...,K},lety,,(x), e>0andi=1,..., N}, be the functions
given by

_
l//i,s(x) = (X - ak)i

0 if |x — ax|<e.

if |x —ar|>e,

Using Lemma 2.2, write Z A,T(x) =TI, (x— a)V Ry (x) where Ry(x) is a
polynomial of degree N. From the boundedness of ¥, (x) we get

1
lim lim W () By ()i () . (x) du(x)

e—>0 neA 1
dx
7315%75/ ZAT" lﬁ,s \/1_x2
1 ILE (X—a')N-"* dx
— [ P R 3)
T J (x —ax) V1= x2

K N?
because [ [, (x — ;)" ¢;,(x) are bounded and as a consequence of the Lebesgue
dominated convergence Theorem. Moreover

/IE(X) )22 g 1 liv:AT(x\ ! dx
X n Dn+N (x—ak)i u p e vy /(x—ak)i\/l—xz

<

/ By ()pmin () Yy [ B () )
(x —ar) 1

| / ()P (O (W () d(v)
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Given 6 >0, from (3), lim,ca 1,5? <6 for ¢>0 small enough. On the other hand,

“te w(x
IIS.Q = / Bn(x)pn+N(x) L)ld,u(x)
a e (x —ar)
and, since there is a constant C, independent from ¢ and i, such that —(‘\f’”i“‘;, <C,
A k

from the Cauchy—Schwarz inequality,
] ag+e 5 1/2
wee([" Rawd)
aj &

But  p2,y(x) du(x) 5 L

T+l x2

and it means that, for ¢ small enough,

. 1
lim sup,,_, o, 1,578) <. As a consequence,

. b wy (x
imsup) [ By (o) ()
nelA 1 (X — ak)
1 2N
_l/ Z A‘,Tv(x)%L <25
TJ D (x—a)' V1—x2

for 6>0. By orthogonality,

1
[ Bapain (0 2 ) =0, i = 1N k= 1K
1 (x—ak)

and Ry(x) satisfies

/l ﬁ(x*a)N/f#R (X) dx —0 N N P
1 k=1 g (X—ak)i N V1 — 32 ) 3 ey Ve ;.o K.

Since {—L Hle (x—ak)NZ': k=1,...,K; i=1,...,N}} is a basis of the space of

(x a)
polynomials of degree less than or equal to N —1, Ry(x) is the Chebyshev
polynomial of the first kind and degree N up to a constant factor. If we compare the

leading coefficients, 2, ﬁ T(x) = 2V Ty (x) TIE, (x — )™ and the proof is

complete. [

Denote qoi(x):xi\/xz—l where the square root is such that
‘QD (X)|<17 XEC\[_LI]

Lemma 2.4. If 1/ (x) >0 a.e., the coefficients A,, satisfy

() 1im,_ o Ayy=A4,, v=0,...,2N where 23}:\’0 A, Ty(x) = H,’le(x — ak)N; Tn(x).
" 2 v 2 -
(D) 32 Au(e (0)" = [Lie (0 (%) =2 (x) + D).



Proof. From Lemma 2.1 and the ratio asymptotics of p, with ¢'(x)>0 a..,
we get

oy (0)Ba(x) Parn v(X)
lim = lim Any Ao (x)]
neA [),H_N(X nelA VZ(; pn+N Z (

uniformly in compact sets of C\[—1,1]. Denoting again Ty(x) = 3.2, j: Ty(x),
since
ivj A () = Va1 /1 Ly (1) dt
OAN(p R 1 X—1V/1-p

as it can be deduced from the residue theorem after the change ¢ = cosf, the
expression of T,y in Lemma 2.3 gives

%i( (x))’ :—\/x2—1 / (1+& ey (& =2a+ D™ dé
Aay i Jjg= E=9 ())E—-0"(x)
V-1 [Ty (& —2ae+ )™
i =1 (€= ()€ —ot(x))
K *
= H —2arp (x)+ DM
In particular, this means that /f; = hmrﬁOO Z 0 A (e (x) "=1; but, from
Lemma 2.1, Aoy = lim,,, o igﬁ‘:; L= xA and Ay = Aoy = 2% follows.

Now the coefficients 4; are completely determined for any subsequence A and we
can assert that lim,_, , 4,, = 4,, v=0,1...,2N, with
K

ZA T( (x — a) Y Ty (x),

k=1

_ '
ZAv[(p X)) :—NH ) = 2arp (x)+ M. O

Theorem 2.1. If 1/(x)>0 a.e. then

(@) B
fim 220) _

n—w0 p,(x)
uniformly on compact subsets of C\[-1,1].

() n— N zeros of §n(x) belong to [—1,1] and the other N zeros accumulate in

1, 1].

(iif) 5
lim Bi;l(x):x—i-\/)@—l
n— o0 Bn(x)

uniformly on compact subsets of C\[—1, 1].



(iv) Iffl1 log i/ (x )\/1 —> — o0 then
n(x)
o (x+Vx2-1)"

uniformly on compact subsets of C\[—1,1]. Here S,(x) denotes the Szegd
Sfunction of 1 (x). (see [9, Theorem 12.1.2] as well as the definition in p. 276).

= Sp(x)

Proof. Item (ii) follows from fll x*B,(x)wy (x) du(x) = 0 for k + N <n and formula
(i). Ttems (ii1) and (iv) are consequences of (i) and the well-known ratio and strong
asymptotics of p,. So, we only need to prove (i).

From Lemma 2.4 we have

lim wy(x) B ()
n— oo Py (X)

2N K
]
=2 Al ()Y =35 || ) = 2arp (x)+ 1),
=0 —1

which yields

)

. 1 (X)
HILIT’?IL\ WN(x)p (x)

2

1 £ .
- ¥ H —2arp (x)+ DM =wy(x). O

Remark.

1. This relative asymptotics is the same as the relative asymptotics analyzed by
Nevai [7, Lemma 16, p. 132], where he adds to a measure u in the class M(0,1) a
Dirac mass located in [—1, 1].

2. Formula (i) of Theorem 2.1 remains true for a measure u in the Nevai class

M (0,1) because the only facts we use are the ratio and weak asymptotics of
(pn),—y and the asymptotics of x( p,), and all these properties are still valid for a
measure in M(0,1). We only should replace [—1, 1] with supp(u) and everything
works in the same way.

Now we will prove weak asymptotic properties for the Sobolev polynomials B,.
To do it we need some auxiliary results.



Lemma 2.5. With the previous notation, if i/ (x)>0 a.e., we get

2N 2N v

w2, (x Z AFTo(x) +2 Z Z AjA; Ty (x

Proof. From Lemma 2.4, Z A;Ti(x) = Ty(x) Hk | (x —a;)™. Besides, as it
was proved, Aoy = Ay, and for] =1,....,N—1, we get

1 K
_AN+1 1/ Hx—ak TN( )TN+j(X)

T 1k7

\/l—x2

1 /1 K
=5 x = ar) " (Ton (%) + T(x)) ———
2n ,1:[1 \/1 fxz
1 S dx
— X — a) kT
27'[ ]]L[l I( )\/1
and
1 1 1 K
—A -:—/ x—a ) Ty(X)Ty i(x
v = [ 1T e-a s
1 1 K
— X—a T X
=32/, I =)™ (T () + <>>w_x2
1 S N dx
— x — a )V T(x —_
" 2n 1 ,1:[1 T )\/1 —x2
which yields Ay, = Ay jforj=1,...,N — 1. As a consequence
K . N
Ty(x) [T c—a)™ = AnTw(x) + Y An i (Twi(x) + Ty j(x))
k=1 j=1

and thus [[L, (x — @)™ = AxTo(x) +2 ZJ 1 An4;Ti(x). Now, if we work out the
coefficients of w% (x) = (AxTo(x) + 2 Z, | AniTi(x ))? in terms of the polynomials
(T,)2Y,, the statement of the Lemma follows. []

Lemma 2.6. If i/ (x)>0 a.e. and f is a Borel measurable function bounded on [—1,1]
then

lim f(X)WN(X)B( ) Bk (%) du(x)

n— oo

2 dx -
T /1f(x)wN(x)Tk(x)m» k=0,1,...



Proof. Let f be a Borel measurable function bounded on [—1,1]. Writing the

polynomials wN(x)lA?,, in terms of ( p,),~, as in Lemma 2.1, from the asymptotics of
the polynomials p, we get

tim [ 7y (B (9B (9

n— o0

:nlLIg / f(x) <Z+Z+Z> An, jAnsksPuin /( X)Purirn v(xX)) dp(x)

v j>vo j<v

dx
/f {ZATk ZAA Tk+lt )+Tk ]t)( ))}\/1x2

2N
= lim /1f(x) Z Ap, jpnin j(X) Z Ak sPrien (%) du(x)

j>v
1
dx
A7 +2 ) AAT; (x) p Ti(x
i {Z 3 a2
5 2N 2N v dx
/f ZA +ZZ Z AjAj T (x) Tk(x)m
dx
2
=— X)Wy (%) Ti(x) ——
L reomwne 4
according to Lemma 2.5. O
Lemma 2.7. If (/(x)>0 a.e. then
agte
lim ~ lim B (x)du(x)=0, k=1,..,K.
e— n— o0 ae €

Proof. Denoting by || f|| = Cff D2 the Sobolev norm, for k=1, ...,K and i =
0, ..., Ny we have

' 1
My<int{||m degmy<n, x0(a) =1} = ———
Yy (BY (@)’
2
o s B (a0) B (x
because 1= Y0y B (@) < iy & Sy (B (@))® and ‘Z)») _
'k
lA. . Then, for any (k,i) such that My ;>0,>"_, ( )(ak))ng— and, in

>, @)
particular, B (ak)—>0 for 0<i< Ny and 1 <k<K provided that the corresponding
coefficient satisfies the condition M ;>0. As a consequence,

1

lim B2(x) du(x) = 1. 4)

n— oo 1

10



For ¢>0, let y, be the function defined by

T R

0 it xe U, [ax — & ar + &)

Then, using Eq. (4), Lemma 2.6 and dominated convergence theorem, we have

K agte
lim lim )~ / B2(x) du(x)
=1 ¢ €

-0 n—w a

=lim lim [ (1= 2wy (x)B;(x) dp(x)

. 1! d
= 11m<1 - /1 W2 (w3 (x) 7 fx2> =0,

1
1

which gives the lemma. [

Now we can prove the weak convergence for the Sobolev orthonormal
polynomials.

Theorem 2.2. If /(x)>0 a.e. and f is a Borel measurable function bounded on [—1, 1]
then

1

in [ BB duo) = [ ST

n— oo

dx

T k=o1,... .
V1 —x2

Proof. For ¢>0, let i, be the function defined in the previous lemma. Let f be a

Borel measurable function bounded on [—1,1]. Since f(x)2(x) is also bounded,
according to Lemma 2.6,

1 ~ ~
Jm [ OO (0B (6) B () di)

dx

-1 [ S

and, by the Lebesgue dominated convergence theorem,

~

1
iy Jim [ FCOW20095 (5B (0B () ()

e—>0 n—w
1 /! dx
= /lf(x)Tv(X) Tl (5)

1"



Moreover

[ rom@B ) -1 [
< / SR B0 [ 7O B () By (5 )
]/f RB0Br ) i)~ [ 7T

1) +1).

n,e

Given 6>0, from (5), lim,_, o I,ﬁ) < for ¢>0 small enough. On the other hand,

ag+e

<

n.e

S(X)B(x) By (x) dp(x)|

k= &

Since f is bounded on [—1,1], there exists a constant C such that
|f(x)|<C, xe[-1,1], and we get

K arte = ai+e = 1/2
IIS,IS><CZ/ | By (x) By (x)| du(x) < C Z(/ B (x) d,u(x)> )

k=1 k€ k€

By Lemma 2.7, lim sup,,_, ., I,(,lﬁ) <0 for ¢ small enough. Then

/f By(x)B, /f T(x

and the proof is complete. [

lim sup <26

n— oo

Theorem 2.3. The polynomials B, satisfy the recurrence relation

Wy (x)By(x) = Z oc,,7_/-1§,,+j(x), Op, j=0p jj, J=1,....,N, a, ny#0.
= N

Furthermore if @' (x)>0 a.e. then lim,_, o o, ; =05, j=0, ..., N, where
N
wy(x) = +2 > oTi(x)
=1
(N )
and are given by o; = 2% ”2]\‘, jj;!()), Jj=0,...,N, with Wyy(¢) = H,Ile (52 —2ai.& +
1M,

Proof. We can write wy(x)B,(x) = Z”év An, ,B,( ) where

1
I = CwnB, By = / W () B (x) B (x) dpu(x) = < By wyB;> =0
1
for j<n—N.

12



Thus we get the recurrence relation with o, ; = 4,4, j = —N, ..., N. Moreover, for
j = l7 ...,]V7 O(n, j= <M}NBn7Bn j> = <WNBI1 j7BH> = Op Bt

On the other hand, if ¢/(x)>0 a.e., for j =0, ..., N, from Theorem 2.2
dx

1 i
lim o, ; = lim W (X) By (x) Bys () du(x) = 1 wy (x) Tj(x) ———
Toonmw ) T V1—x2

1 K , AR

=— -2 1'% Z—d¢

i /5—1 ,1;[1 (¢ ac+1) ON+1 .
1

v
= =i wiy Y. O

In terms of linear operator theory, the recurrence relation may be more useful in
the form given in the following theorem.

Theorem 2.4. If 1/(x) >0 a.e., the Sobolev polynomials satisfy the recurrence relation
XBy(x) = hyBys1 (x) + 0,B,(x) + hy 1By 1(x) + Fy(x),

where hy, and v, are the coefficients of the recurrence relation xp,(x) = hyp,+1(x) +
Oupn(X) + hy 1pn 1(x), and F,(x) are functions such that

fim 1)

——= = 0 uniformly on compact subsets of C\[—1, 1].
n— oo Bn(x)

Proof. From Lemma 2.1,

2N
x wy(x)By(x) = Z Ay, jxpnin ()

Jj=0

2N

= Z An,j(hn+N jPn+14N j(x) + UntN jPut+N j(x)
=0

+ hy 14N jPn 14w (X))

= WN(X)(hnErH—l (x) + UnEn(x) + hn IEH ](X))
2N

+ (A, jhusn j— huApir, j)Pur1en j(X)
=0

2N
+ Z An,j(UnJrN j— Un)pn+N j(x)
=0

o
+ > (Aujh 1o =T 1 An 1 )P 1w ()
Jj=0

13



and the lemma follows from Lemma 2.4, Theorem 2.1 (i) and the asymptotics of the
sequence (p,(x)),—,. O

Remark. Once again, we may replace [—1,1] with supp(p) and consider, in
Lemmas 2.6 and 2.7 and Theorems 2.2-2.4, p in the Nevai class M(0, 1) instead
of u/'(x)>0 a.e.

3. Fourier series

In this section we are focused on the study of the pointwise convergence
of the Fourier series expansions in terms of the sequence of polynomials

(1},,),,1 o orthonormal with respect to the inner product (1) provided that u
is the Jacobi measure. In order to do this we need some previous results and,

in what follows, we will denote by ||f||= ¢ f.f>'/> the Sobolev norm of a
function f.

Lemma 3.1. Given a positive Borel measure p supported on [—1, 1] with infinitely many
points at the support, the polynomials B, (x) satisfy

) 1f My;>0 then 7, (B (A(i)(a )’ =
(i) If My ;>0 then Y, (ak) ,/>(a,) = Ofor (¢, j) #(k,i) such that M, ;>0.

D) 77 My ;>0 then lim,, ., [*, (3" B\ (ax)B\(x)) du(x) = 0.

Proof. For i=0,1,...,N;y and k=1, let /y)k:inf{\|nn||2' degm, <

n, 1(a;) = 1}. It is clear that for all n, Mk,</,<qk and, as it was proved at the
beginning of the proof of Lemma 2.7,

1
Yo (B (@)?
Let N* = 3%, (Ni + 1) and introduce the function
exp{—"5}, [xl<1,
o(x) =

0, |x|=1.

Ci =

Then ¢@e%™*(R), ¢(0) =1, |p(x)|<1 for every xeR, and ¢?(0) =0 for i=
I,...;Ny, k=1,...,K.Forafixed ke{l, ..., K} and ¢>0 such that a, ¢ [ax — &, ax +
e] for t#k, let us consider the function ¢, ,(x) = (*~%). For ie{0,1, ..., N}, let

_(xa’

Wi,i(X) and consider a polynomial TI(x) such that I1¥(a;) = 1 and satisfies

14



max M) = (weip)' (<, J=0,1.... V"
X€E 5

Since (wk,,'qokﬁg)(j)(a,) =0 for t#k and j=0,1,...,N,, and (wk‘,-(pk‘yg)(-")(a/{) =0
when 0<j< Nj, we have

T < 1wk (%) @ (O 4 [TL0x) = wi i (%) @, (X

< {,u([ak —&,ar +¢]) Yg[lalxl] wi,i(x) + My,

N, 1/2
+ & (u([—l, m+> > Mt,f)}
=0

t=1

= (My; + h(z))",
where lim,_,¢ /(¢) = 0 because p({ar}) = 0. As a consequence,

i 1
M< lim /Y = <||T|P< My, + h(e)
e M (B (@) 1
and thus Mk,i = L+“
Yo, B (@)
Moreover, for (k,i) such that M ;>0,

n

N, n 2
+ 33 My, (Z E&’%ak)ﬁsﬂ(a») :

t#k j=0 v=0

Multiplying this equality by /:(11)k and taking limit when n— oo, (ii) and (iii) follows
from (i) and the proof is complete. [

Corollary 3.1. Let p be a positive Borel measure supported on [—1, 1] with infinitely
many points at the support and let f be a function of L*(i) such that there exist the
derivatives { ) (a) for i =0,1,...,Ny and k = 1, ..., K. If My ;>0 then

S S BB a) =fNax), i=0,1,... Ni, k=1,....K.
n=0

15



Proof.

n n

1
> <L BIB@) = [ 100Y B @B () du(x)
v=0 v=0

+ MiifD(a) Y (BY ()
v=0

+ 3 M) Y B (a)BY (ar)

J#I v=0

N, n
+ 3N M) Y BO(@)BY (a).

£k j=0 =0

Since

‘ [ 1693 BB dutw
1 v=0

<< / 11f2(x)du(X)>1/2 / 11(VHOE&”(czk)ﬁv(x))zdu(x) 1/2,

taking limit in n, the statement follows from Lemma 3.1. [

So, we have convergence at the mass points for any function belonging to L?(u)
and with derivatives at such points. But for the convergence at other points, more
conditions are needed and, in order to study this problem, we start with some

straightforward estimates for the polynomials B,. The polynomial wy(x) defined in
Section 2 will be used again.

Lemma 3.2. Let (py),-, be the sequence of orthonormal polynomials with respect to
the measure u. Then there exists a positive constant C such that

N
[wy (x)B,(x)|<C Z | pusi(x)|  for every xeR.
= N

J=

This lemma is an obvious consequence of Lemma 2.1.
When du(x) = (1 —x)*(1 + x)ﬁdx, o> —1, f> —1,1i.e. the Jacobi measure, as it
is well known (see [8, Theorem 3.14, p. 101]), the orthonormal polynomials p,, satisfy

2,1 g1 |
(l_x)2 4(1+X)2 4|pn(x)‘<cv 0(>7%, ﬂ>7§7 (6)
|P’l(‘x)|<C7 —1<(X<—%, _1<ﬁ<_%7
for xe[—1,1] and, as a consequence of the previous lemma, the corresponding

16



Jacobi—Sobolev polynomials §,7 satisfy the condition
| B, (x)| < Ch(x) (7)

for xe (—1, 1)\ U, {ax} and for all n, where /(x) is the function which depends on «
and f deduced from (6) and Lemma 3.2.

Lemma 3.1 gives some properties of the Dirichlet kernels D,(x,?) =
oo B,(x)B,(1) and, as it was proved in [3] for the case |ax|>1, they satisfy a
Christoffel-Darboux formula deduced from the recurrence relation. If xoe[—1,1]
the polynomial wy(x) — wy(x9) may have more than one zero at [—1, 1] and this is
not convenient for the representation of the Dirichlet kernel. Instead of wy(x) we
will consider the polynomial wy.i(x) = [~ ,wn(t)dt and, from the positivity of
wy(x), when xo#ar, k=1,...,K, xo is the only zero of wyi1(x) — wyii(xp) in
[-1,1]. Because the derivatives of wyyi(x) vanish at the as, we have

(wNHlA?n,lA?m} = (En, wN+11A3m> and this means that the Sobolev polynomials §n
satisfy the recurrence relation

N+1 N+1

WN+1 E Z O‘n» n+‘ )+Z On v7v§n v(x)~ (8)
v=I

Moreover, the coefficients a,, are bounded because

= |<WN+IBnaBn+v>|

V By (X0 1(x) dia(x)

|0t

+22mmmwwwﬁmn

k=1 i=0

K N ‘
S max, |WN+1(X)|<1 +>- > Mkaf|Br(1l>(ak)Blgl—)O—v(ak”)a
’ k=1 i=0

xe[

and, from Lemma 3.1, IAS’,(,i) (a) are bounded when M ;> 0.
Christoffel-Darboux formula now takes the following form,

Lemma 3.3. The orthonormal polynomials with respect to the inner product (1) satisfy
the following Christoffel-Darboux type formula:
17



{WN+l(x) _WN-H(y)} §,1(X)§”(y)

~ -~

= 0,1 (By41(x)By(») = Bii (y
+ 02(By12(x)By(¥) — Bysa
+ o 12(Bet (¥)By 1(2) = Bt (1), 1(x)

+ o 4 ont (Bupn 1 (9)By(9) = Buaw 1 (2)By(x))

)
+ oty N,N+1(Bv+1(x)§v N(y) _Bv+l(y)§‘/ N(x))

with bounded coefficients.

Corollary 3.2. Let xe(—1,)\Ur_,{a} and u the Jacobi measure. If My ;>0 then

B\ (ax)By(x) =0
n=0

and the convergence is uniform in compact subsets of (—1,1)\ Ule {a}.

Proof. Let (k,i) be such that M;;>0. From the Christoffel-Darboux formula of
Lemma 3.3 it is clear that Y ,_ BY (ax)B,(x) is a sum of a finite—depending on N—
number of terms of the following type:

“ ) En v+j(x)§;(1i) v(ak)
"y (%) = wa (ax)”

Since the coefficients o, , ; are bounded, |B,(x)|<h(x) with i(x) a continuous

function in compact subsets of (—1, 1)\t {a} and lim,_, lA?,(f)(ak) =0, the
lemma is proved. [J

Theorem 3.1. Let xp€ (f 1)\ Ul \ {ai} and let f be a function with derivatives at the

points ay such thar 15 /(1) { D belongs to L*(u) when u is the Jacobi measure. Then

X0

(1) Z;O:O <](.,§n>§n(x0) :f(x())'
(ll) I.ka«,i>0 then Z,;i() <f7 §n>§£li)(ak) :-f(j)(ak)'

Proof. Because of /€ L2(u) when . ) flw) 70 ¢ 2(y), Corollary 3.1 yields (ii). Now, we
denote by S,(xo;f) the nth partlal surn of the Fourier Sobolev expansion and by
D, (x,1) the Dirichlet kernel 3"_, B, (x)B, (). Then

18



F(x0) = Sulxif) = < f () —£(0), Duxon )
- / (f (x0) — (1)) Du(xo, 1) du(2)

1
1

+ > Mio(f (x0) = f (@) Da(o, ak)
k=1

K Nk i
; d'D
=0 > M/ (@) 5 (X0 ak)-
k=1 i=1

From Corollary 3.2 we get

1
Jlim () = S,Gxaif) = Jim [ () = (0)Duto0, ) di(0)

Using the Christoffel-Darboux type formula, the above expression is the limit of a
sum of a finite—depending on N—number of terms

/Bn i+j(x0)§n [([)
wy1(Xo) — wa1(2)

1
/ () =) 1) du(1).

B

~ ~

Bn i+j(xO)Bn i(t)
wy1(x0) — wy1(2)

ut
1
’/I(f(xo) —f(0)on i wu(?)

~ Lr —f — —~
o il B ool | [ SOOI BB ) o),

Wwr1(X0) — wy1(2)

where the coefficients |o, ; ;| are bounded and |§,, i+7(X0)| <h(xo) from Lemma 3.2
and the comments after the lemma.
Since the function

Jxo) /(1) xo —

xo—1t  wyii1(xo) —wyii(2)

gxo(t) =

belongs to L?(u) and there exist the derivatives q(xlo) (ax), then

<g‘c07§n>2
n=0
© 1 R K N ‘ o 2 ,
= Z( / 1 G (OBa(1) du(t) + > Y Myigl(ar) £z><ak>> < |9l
n=0 k=1 i=0

and, as a consequence, lim,_, o, < ng,§n> = 0. Taking into account that, when
My ;i >0, lim,_, o E,(,i) (ax) = 0, we have lim,,, o f'l ng(t)E,,(t) du(t) = 0. This means
that lim,,_, o, (f(x0) — Su(x0;/)) =0. O
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Theorem 3.2. Let f(x) be a function with derivatives at the points ay satisfying a
Lipschitz condition of order 0<n<l uniformly in [-1,1], ie. |f(x+h)—
S(xX)|<M|h" for |h|<é and for some 5>0. For the Jacobi measure, if ¢, =
{f.By> then

0

enBa(x) =f(x), xe(=1,1),
n=0

and the convergence is uniform in compact subsets of (—1, 1)\ U,f: \ {ax}. Moreover, at

the mass points, >, c,1§£,i)(ak) = 9 (ay) provided that M ;> 0.

Proof. As in the previous theorem, we only need to prove that [ ! S (@) D(x, 1) dut)
converges to f(x) for x#ax, k=1, ..., K. Besides,

/ (f(x) = £(0)Da(x. 1) du(2)

1

<

/ r\>5(f(x) —f () Dy(x, 1) du(1)

+

/I:\f t\<5(f(x) _f([))Dn(x, t) d‘u([)

LYV () + 17 (x).

—
n
S(x) f(1) - (1 — A 5,x+5)([))7 where (. &Hé)(t) is the characteristic

WN+1(X) Wl

function of the interval (x — &, x + J), belongs to L?(u), using Christoffel-Darboux

Since

type formula and the same procedure as in the previous theorem, the term I,Sl)(x)
tends to zero.

On the other hand, 7,” (x) is a sum of a finite number of terms

O i,jEn i () / f|<s e — B, i(1) du(1),

x—t wyp(x) —wyii(2)

where the coefficients o, ;. jﬁn i+j(x) are uniformly bounded in closed sets of
(71,1)\Uf:1{ak}. Furthermore, when x belongs to a compact subset F of
(=1, 1\ Uf;l {ax}, Lipschitz condition gives
/ S(x) /() x—t

Wod<s  X—1 Wy (X) = wa (2)

<C/ du(1)

x 1|<d |X—l|1 "

By (1) du()

where the constant C depends on max{m: te[-1,1], xeF}, the constant

of the Lipschitz condition, and max{/(x): xe F}, h(x) being the function such that
|B,(x)|<h(x) on the interval (—1,1)\ UL, {ax}. Hence, since u is the Jacobi
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measure, for ¢>0 there exists 6>0 such that |I,(,2)(x)|<s and the pointwise
convergence is proved. The uniform convergence is an easy consequence of the

uniform continuity of % when (y,7) belongs to {(y,): [y — x|<%, |t —

w1 () Wt

x|=0, x,yeF} for a fixed xe F and for a fixed ¢ such that f‘ i) _ ¢ and the

x f[<d|x o' "
compactness of F. [J
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