A Multi-Agent Architecture for Intelligent

Gathering Systems

David Camacho ** Ricardo Aler? and
Daniel Borrajo? and José M. Molina

& Departamento de Informdtica,

Universidad Carlos III de Madrid,

Avenida de la Universidad n°® 30, CP 28911,
Leganés, Madrid, Spain

E-mail: {dcamacho,dborrajo,molina} @ia.uc8m.es,
aler@inf.uc3.es

This paper presents a model to define heterogeneous
agents that solve problems by sharing the knowledge
retrieved from the WEB and cooperating among them.
The control structure of those agents is based on a gen-
eral purpose Multi-Agent architecture (SKELETONA-
GENT) based on a deliberative approach. Any agent in
the architecture is built by means of several interre-
lated modules: control module, language and commu-
nication module, skills modules, knowledge base, yel-
low pages, etc. ... The control module uses an agenda
to activate and coordinate the agent skills. This agenda
handles actions from both the internal goals of the
agent and from other agents in the environment. In the
paper, we show a high level agent model, which is later
instantiated to build a set of heterogeneous specialized
agents. The paper describes how SKELETONAGENT has
been used to implement different kinds of agents and
a specialized Multi-Agent System (MAS). The imple-
mented MAS, MAPWEB-ETOURISM, is the specific im-
plementation of a general WEB gathering architecture,
named MAPWEB, which extends SKELETONAGENT.
MAPWEB has been designed to solve problems in
WEB domains through the integration of information
gathering and planning techniques. The MAPWEB-
ETOURISM system has been applied to a specific WEB
domain (e-tourism) which uses information gathered
directly from several WEB sources (plane, train, and
hotel companies) to solve travel problems. This paper
shows how the proposed architecture allows to inte-
grate the different agents tasks with AI techniques like
planning to build a MAS which is able to gather and
integrate information retrieved from the WEB to solve
problems.

*Corresponding author: dcamacho@ia.uc3m.es

Keywords: Multi-Agent Systems, Agent Architectures,
Information Gathering, WEB-based Systems

1. Introduction

The Intelligent Agents and Multi-Agent Sys-
tems (MAS) research fields have experimented a
growing interest from different research communi-
ties like Artificial Intelligence (AI), Software En-
gineering, Psychology, etc...Those research fields
try to solve two distinct goals. On the one hand,
to define and design software programs (usually
called agents) which implement several character-
istics like autonomy, proactiveness, coordination,
language communication, etc...This goal tries to
obtain an adaptive and intelligent program which
is able to provide the adequate request to the in-
puts received from the environment [22,26,42]. On
the other hand, it is possible to coordinate sev-
eral of those agents to build complex societies.
When considering societies of agents, new issues
arise, like social organization, cooperation, knowl-
edge representation, coordination, or negotiation.
In this situation it is possible to speak about Multi-
Agent Systems and the previous problems can
be studied within different perspectives [7,34,54].
Those research fields allow to test and simulate
theoretical models and architectures in complex
and real domains [13,51]. There is a wide range of
different domains that can be used to test agent
organizations like business management [25,41],
robotics [8,37], the WEB [2,5,47], simulation of
complex societies [16,45], etc. ..

A common point of interest for previous re-
search fields are both how to define and design
the individual agents that make up these sys-
tems [6,27,43,44] and how to coordinate and or-
ganize groups of agents [19,35]. Different arquitec-
tures and models have been successfully designed,
implemented and deployed in several domains and
it is possible to learn from those experiences to

Cita bibliográfica
Published in: AI Communications: The European Journal on Artificial Intelligence 2005, vol. 18, n. 1, p. 15-32

build other agent-based models that could be ap-
plied in new domains.

In this paper, we develop an agent and Multi-
Agent architecture (SKELETONAGENT) based on
the CooperA and ABC? Multi-Agent architec-
tures [37,49,50]. These models have been applied in
several domains like robotics [37] or radar [40]. Our
approach has extended the later models so that Al
techniques (like Planning and Learning) and Web
Information Gathering methods can be integrated
into a MAS. Agents in SKELETONAGENT use an
agenda to store their pending goals. The agenda al-
lows to combine actions from different sources, like
the internal goals of the agent, requests from other
agents, possible changes in the agent environment,
etc. Then, a policy will select the most appropriate
action in a particular moment. SKELETONAGENT
allows to decompose high level tasks that can be
achieved by each agent in different ways, which
is very appropriate for the domains we are inter-
ested in (and many others). For instance, a par-
ticular task could be solved by either looking in a
database, asking another agent, browsing the web,
etc. In SKELETONAGENT, such high level tasks can
be decomposed, and all the alternative subtasks
will be stored in the agenda for (possible) parallel
processing. Once one of them has achieved the high
level task, the alternative medium level tasks, or
their related low level tasks, will be removed from
the agenda. We have extended the base model to
take into account these issues.

With respect to systems that search and use in-
formation from the WEB, the closest to our goals
is the field of Information Gathering (IG), that
intends to integrate a set of different information
sources with the aim of querying them as if they
were a single source [2,17,18,33]. However, these
architectures do not intend to use Al techniques
in a generic way, as we do, but only to select the
appropriate WEB sources or control the behaviour
of agents.

In summary, our approach consists of a flexi-
ble and generic MAS architecture that can use
AT and WEB gathering techniques, by means of
agenda-based agents. Besides describing the archi-
tecture, an important part of the paper deals with
its instantiation into a Information Gathering sys-
tem, named MAPWEB, and how it can be ap-
plied into a particular WEB domain (MAPWEB-
ETOURISM). The paper is structured into the fol-
lowing sections: Section 2 presents some general

characteristics about agenda-based agent models;
Section 3 describes how we have instantiated the
previous agent model into an specific agent and
Multi-Agent architecture. Section 4 analyses how
the previous architecture can be used to solve
problems in the Information Gathering field. Us-
ing this architecture, a new system called MAP-
WEB, is defined, and an application example in
a particular WEB domain is shown (MAPWEB-
ETOURISM); Section 5 describes several related sys-
tems; and finally, Section 6 summarizes the con-
clusions of the research.

2. Agenda-based Agents

As explained before, our approach extends some
ideas used by agenda based systems such as Co-
operA [49] and ABC? [37]. In this section we de-
scribe how agents are controlled by agendas in
these systems.

2.1. Agent Model

In the CooperA and ABC?, intelligent agents
are defined as a knowledge structure implemented
by a set of static and dynamic attributes as in [37].
The static attributes (Ag) are used to represent
the agent as the only element with these charac-
teristics in the system, whereas dynamic attributes
(Ap) are used to represent those characteristics
that change with time. These attributes represent
the actual knowledge about the state of the world
that the agent knows, so any agent can be repre-
sented as: A = Ag U Ap where Ag and Ap repre-
sent the tuples of the static and dynamic attributes
respectively.

The static attributes, Ag, are used to represent
the specific knowledge about any agent. These are:
name of the agent (IV), the list of its skills (.S), the
knowledge about other agents in the system and
their skills (yellow-pages, Y), the language used
to communicate with other agents (L), the ontol-
ogy that represents the knowledge managed by the
agent in a particular domain (O), and the set of
heuristic rules that govern the behaviour of the
agent (H). Therefore, the static knowledge about
any agent can be described as:

Ag =< N,S,Y,L,O0,H >

On the other hand, the following dynamic at-
tributes, Ap, are used to represent the current sit-
uation of the agent, which is stored in its agenda
(Agy). The agenda contains the acts which are un-
der consideration, the queues of messages (Q) re-
ceived or pending to be sent, and the information
(I) about the current state of the world, defined
using the language L. Any agent in a given mo-
ment is defined by Ap =< N, A,,1,Q >, and the
dynamic situation of the whole team of agents as
A}, =< N,A,,1,Q >*, where N is the name of
the agent representing each tuple.

For instance, the following example shows the
previous (static and dynamic) attributes for an
agent example and how they could be instantiated:

Example_Agentl (static)=
<N = ExAgl,

S = {suspend,register, unregister,
update,...skill_1in},
Y = {(ExAg2: insert,delete,...),

(ExAg3: planning,...)
(ExAg_k: wrapper,
WebAccess...)},
0 = {problem-domain},
H heuristics-rules>

Example_Agentl (dynamic)=
<N = ExAgl,
Ag= {lactl], [act_2]...[act_nl},

I = {AGENTS.active: ExAg2, ExAg3,
ExAg_k
AGENTS .new: ExAg_k+1
AGENTS.suspend: none},
Q = {[messagell, ...}>

2.2. Agent Control Cycle

This section describes the control cycle of the
agents that follow the model described in the pre-
vious section. It can also be seen in Figure 1, this
figure illustrates the control algorithm, which can
be summarized as:

— First, the control module checks the agenda
periodically until the first act is inserted.
When a particular task needs to be achieved,
the initial act is inserted in the agenda. This
act could be considered as the main goal or
the initial goal of the agent. Other acts will
be generated in order to achieve this initial
goal. New acts could arrive from other agents
at any moment.

— Once several acts have been inserted into the
agenda, a priority-Policy is applied to sort
them out (this evaluation happens at all cy-
cles of the agent, because the priority of the
acts change dynamically). The control mod-
ule will select the act with the highest priority
(Act; = maz; in Figure 1).

— When a particular act is selected, the con-
trol module FEwvaluates() this act and selects
the skill that will perform the associated task
(Evaluate(Act;) selects Skill,). For instance,
when an act:Planning is selected, the act and
associated parameters are provided to the
planning skill of the agent.

— Now, there are two possible situations:

* The act needs information from other tasks
and cannot be executed (the act is not
Ready() yet for execution), so it will be
inserted newly in the agenda (its prior-
ity will be increased in the next cycle:
Incrementyriority (Act;)).

x The act is Ready() for execution (the act
does not need any other information). How-
ever, it is necessary to take into account two
new situations to know if the act is directly
Ezecutable():

x If the act can be decomposed into simpler
acts, the skill will expand this act into
them, assigning new priorities to these
acts, and finally adding them into the
agenda (V}_; Act;j.priority()).

« If the act is directly executable (all the
information is available and it is not pos-
sible to expand), it has provided to the
correspondent Fzecute() function associ-
ated to this skill.

This control cycle continues while the agenda
contains acts. If the agents have their agendas
empty, they will wait for new tasks to perform.

This algorithm integrates the agenda, the heuris-
tics and the available skills as related modules to
implement different behaviours in the agents. This
approach is very flexible because it is possible to
modify the behaviour of the agent, or the way to
achieve a goal by just modifying one or several of
the following characteristics of acts:

— The priority of a particular act can be modi-
fied by the control module or by the skill. The
3

Initialize(Agenda);
while (Agenda # 0)

Evaluate(Act;) selects Skill,
if Skill;(Act;).Ready() then

Skills(Act;).expand();
Vi Actij.priority();
"_1Insert(Act;;);
else
Ezecute(Act;);
else
Incrementyriority (Act;);
Insert(Act;);

(VAct;), calculate Priority(Act;) using a Control-Policy;
Sort the acts in the Agenda by Priority;
Remove(Act;) such as Act; = max;

if not Skills(Act;). Executable() then

Fig. 1. Agent control cycle in SKELETONAGENT using the ControlPrio policy.

priorities of the acts can be redefined by us-
ing rules or policies, thus changing the global
solving algorithm performed by the agents.

— The evaluation of an act determines which
skill will execute the act. If no skill is avail-
able, the control module will generate a fail.

— Acts in the agenda are selected by means of
policies. By changing the policy it is possible
to change the behaviour of the agent.

3. SKELETONAGENT

In this section we describe how we have instanti-
ated the general model shown in the previous sec-
tion and also our extensions to that model. We ad-
dress both the agent and the Multi-Agent archi-
tecture.

3.1. Agent Architecture

This subsection defines the agent architecture
of SKELETONAGENT, which is based on the agent
model described in the previous section. Agents in
SKELETONAGENT are composed of several mod-
ules. Figure 2 shows those modules and their in-
terconnections.

Yellow-Pages

Heuristics
| agent2:

1 ControlPrio

\
|
|
|
|
|
|

|
|
|
|
|
|
|
7

Agenda
ect 1] |
! [[act 2]] . ! Evaluate agenda
P . ' Perform actions
I * !
Lo
' [act N] |

Environment

— - P

Fig. 2. SKELETONAGENT Architecture of an agent.

3.1.1. Agenda.

The Agenda is a dynamic structure (A,) that
stores items named acts [14,15]. These acts repre-
sent the actions that the agent is considering at
a given moment. The agents implemented using
SKELETONAGENT architecture share a standard
communication language (KQML [20,21]) to per-
form actions over their environment. A message
in KQML is called performative (this term is from
the speech act theory [15]) and can be understood
like a request for an specific action to be carried
out. Any performative can be translated into one

4

or several acts that could be performed by the re-
ceiver agent. When any agent receives a perfor-
mative, its related act is inserted into the agenda.
Once this act is selected, its execution could gener-
ate new acts that will be recursively added to the
agenda. These performatives are used by different
agents to implement several acts like:

— (achieve, tell): are used by different agents to
require the execution of a specific task and to
answer with the obtained results. When any
agent receives achieve, the related act con-
tains the type of skill that will be necessary.
For instance, when a planning agent receives
an achieve performative to solve a problem,
several skills can be used: planning, case-based
planning, or ask-others. When this same per-
formative is received by a WEB agent other
skills like: caching, or access-Web could be
used by the agent to execute the act.

— (insert, delete): are used to insert or delete
a specific fact (from the sender agent) in the
Knowledge Base of the receiver agent. For in-
stance if an agent is temporarily unavailable
in the society, and this fact is known by the
manager agent, it is necessary to delete it from
the yellow pages of all agents.

— (register, unregister): are used by the control-
agents in the Multi-Agent systems to manage
the insertion and deletion of the agents in the
society.

— (ok, ping): are used by the control-agents
when it is necessary to know the state of a
particular agent.

— (wake-up, sleep): are used by different agents
to activate or suspend temporarily their func-
tions.

— (request-info, tell-info, finish): are used among
agents to implement a protocol that allows
them to send all the desired information in
several steps.

The parameters of the different deployed acts
for the agents can be summarized as:

— The type of the performative (achieve, in-
sert, delete, ok,...). Those performatives are
translated into acts that the agent will try to
achieve. When these acts are handled, some
of them should be expanded to allow their ex-
ecution (see Skills).

— A list of skills that could be used by the agent
to perform the task.

— The identification code (ID-code) of the act,

that is used to relate the performative that
has been executed with the possible subtasks
that could be originated to perform the task.
This code is used to build the answer to the
performative. For instance, if a performative
to solve a general problem is inserted in the
agenda, when this act is extracted from the
agenda, the skill will generate several new acts
to achieve its goal, these new acts are inserted
into the agenda and their ID-codes are built
using the previous general code. So, if one of
the acts fail, all the related acts are deleted
from the agenda.

TimeStamp, TimeOut. Any act has two tem-
poral parameters: the TimeOQut that repre-
sents the maximum time to execute the task,
and the TimeStamp that represents when this
act has being inserted in the agenda. When
any act is inserted in the agenda, it is possible
to use these parameters to:

* know how much time it has been stored the
act in the agenda, and

+* modify dynamically the priority of any act
using a simple expression.

If an act cannot be executed within the Time-
Out, it will be removed from the agenda. The
control module will remove any other act that
needs the results of, or that could be related
to, the rejected act.

Priority of the act. This priority has a default
(initial) value which is assigned depending of
the type of the act. The priority is modified
by the control module using other parameters
(TimeStamp and TimeOut). For instance, the
performative ok has the maximum priority be-
cause it is used for the sender agent to know
if the receiver is working, so this performa-
tive has a lower TimeOut and a high prior-
ity value. This priority will be automatically
increased by the control module in any cycle
(see Section 2.2) to avoid that an act would
never be executed. When a skill expands a
complex act into subacts, the new acts will
have the same values for the TimeStamp and
TimeQut parameters. The skill will assign dif-
ferent values to the subtasks to select the or-
der to execute them.

The set of possible acts that can be used by the
agents and the heuristic used to schedule how these

5

PERFORMATIVE

(achieve
(:content (problem(data)))
(:language KQML)
(:ontology etourism)
(:reply-with 1)
(:sender useragentl)
(:receiver planneragentl))

translation

—priority:20
~TimeStamp: ssmmhh
~TimeOut: ssmmhh

ACT
—type: achieve
=skills: cbp, planning
-ID-code: 1

insert

AGENDA

Fig. 3. Relation between a performative and its translated act.

acts are selected and executed in the agenda (see
Heuristics) defines the behaviour of the agents.
Section 2.2 describes in detail how the agenda
works. Figure 3 shows the relations between an
achieve performative sent by an UserAgent to re-
quest for the solution of a problem to the receiver
PlannerAgent.

3.1.2. Heuristics.

Agents have a set of heuristics that are used to
decide at any time what act to select from the
agenda. Actually, any agent can be implemented
using in its control module three different types
of heuristics (LIFO, FIFO and ControlPrio). The
first two heuristics correspond to the LIFO (Last
In First Out) and FIFO (First In First Out) poli-
cies. These heuristics can be used when it is not
necessary to select the acts in a particular or-
der and allow to test the agents with simple be-
haviours. However, these heuristics present several
problems when it is necessary to apply a priority
in the execution of the acts, because there could
be acts with high priority that need to be exe-
cuted quickly. For this reason a simple priority con-
trol heuristic (ControlPrio) was implemented. This
heuristic is the default behaviour for a given agent
in SKELETONAGENT. In the future, we plan to use
other techniques like fuzzy logic or machine learn-
ing to implement more sophisticated heuristics to
provide other behaviours for the agents.

3.1.83. Skills.

As explained before, an agenda contains acts.
Some of them can be decomposed into lower level
acts, which are subsequently introduced into the
agenda. When a particular act (atomic, or low
level) cannot be decomposed further, it will be ex-
ecuted by the agent. Those executable acts are ac-
tually the skills S; of the agent. Automatic access
to the WEB, or executing a planner are examples of
skills. Figure 4 shows how a high level act (to solve
a planning problem) can be decomposed into sev-
eral subacts, taking into account that the Planner-

Agent who receives the problem has several skills
to obtain solutions for planning problems. From
the point of view of decomposition, it is useful
to divide acts into two types: AND acts and OR
acts. AND acts require all its subacts to finish suc-
cessfully whereas OR acts need only one of them
to end. For instance, act:WebAgentsCooperation
of Figure 4 is an AND act because it needs its
three subacts to end successfully. On the other
hand, act:Solve-Planning-Problem will end with
success if any of its subacts (act:SearchPlanBase,
act:Planning, ...) obtains a solution to the plan-
ning problem.

Figure 5 displays an example of a high level
act decomposition. When the OR-type act:Solve-
Planning-Problem is selected by the control mod-
ule, it is expanded into its component subacts
act:cbp (which allows to search for solutions pre-
viously stored in a Plan Base) and act:Planning
(which uses a planner to obtain solutions). These
new subacts acquire the characteristics (like the

TimeQut or TimeStamp values) of act:Solve- Planning-

Problem. Different subacts may have different pri-
orities. Although in this case, act:cbp has a higher
priority than act:Planning, this only means that it
will be selected first. But once it is selected, act:cbp
will be executed in a separated process, and then
act:Solve-Planning- Problem will be executed in an-
other process (i.e. they will actually work in paral-
lel). If desired, it is also possible that both subacts
work in sequence: execute the first subact, and if
it fails, execute the second one.

3.1.4. Knowledge Base.

This module stores knowledge that can be used
by the agent skills. For instance, in MAPWEB a
set of agents specialized in planning (PlannerA-
gents) are used in the team. These agents need
to use several knowledge sources to achieve their
main goal: to solve a problem using planning. The
knowledge used by these agents is: a description
of the problem to be solved, the operations (oper-

6

Solve planning ID-code: 1
Problem '

ID-code:12 1

Build
Queries

ID-code:1 2

WebAgents
Cooperation
ID-code:12 3
J AND
Send
Queries

ID-code:1231 ID-code:1232 ID-code:1233

Fig. 4. Expansion of an initial act into several subacts.

Skill: Solve Problem ‘

sub-skills:
search plan base: priority20
planning: priorityl5
Expand()------ :
Ready() :
Execute()
D1
act: Achieve | | :
B ":< B
type: achieve © IDLlID12
skills: solve problem Co
ID-code: 1
priority: 20
TimeStamp
TimeOut

Fig. 5. Relations between the selected act from the agenda (to solve a planning problem) and the skill which is able to perform

the task.

ators) that can be used (represented in a Domain
description), several domain-dependent heuristics,
etc. ..

3.1.5. Yellow Pages.

This module stores the knowledge that an agent
has about all the agents belonging to its team (T7).
This information consists of a list made by the
name of its partners (N), and the name of the
skills they can accomplish (S;). Any skill can be
considered as an abstraction of an action that will
be accessible to other agents in the team. In fact,
it means that the agent has meta-knowledge about
itself (through its skills definition) and its partners
(using the yellow-pages). Although, SKELETONA-
GENT has standard yellow pages which are initially
used by all the agents, there exist other special-
ized agents that use an extended version of the
yellow pages. For instance, the Manager Agent in

the MAPWEB-ETOURISM application uses more
information about the agents like what is the team
that has been used to allocate a particular agent.

3.1.6. Communication Module.

Agents in SKELETONAGENT use a communica-
tion language to share information. It is the control
module which decides to send a message and also
the module which receives messages from other
agents. Once the control module has received a
message, it can be distributed to any other mod-
ule in the agent. The communication module hides
the physical network transport layer from the spe-
cific language (KQmL) that is used by the agent.
In order to do so, the communication module en-
capsulates the message, adding information such
as sender, receiver, performative, ..., as shown in
Figure 6.

/ Communication Module

act: Send Message / Message: KQML
Control Module /

/ Sender: agentl k
Receiver: agent2 i
Destination: CommMod i Language: Kgml \
TimeStamp: ss mm hh ! Ontology: e—tourism \
TimeOut: ss mm hh i Performative: tell i

Type: out i | Priority: 10 i AGENT
ID: N i . TimeStamp: ss mm hh
Sender: agentl i > . Type: out
Receiver: agent2 ; . ID:N
Type-Message: tell i

Priority:10 i

I
|

— - ENVIRONMENT
\

" Data Kgml format
(attribl-valuel

" Data:
attribl-valuel
attrib2-value2

\

I

I

I

I

I

|

I
Type-Message: tell ! !

I

: |

I

i (attrib2-value2) !

I I

\ I

I

o —

Fig. 6. SKELETONAGENT Internal Data Communication.

The communication process is implemented by
several interconnected submodules that allow to
transform the data correctly. They are:

— The Manager Communication Layer. It in-
serts the messages received in the input queue
(In-Q) or in the output queue (Out-Q) de-
pending on their destination.

— The Language Layer. This module translates
the internal data into an standard KQML mes-
sage or vice versa.

— The Communication Layer. It is responsible
to serialize and deserialize the information, so
that it can be sent (received) through (from)
the network.

Figure 7 shows how the serialized messages re-
ceived by an agent are properly translated into the
internal communication data structure before it is
sent to the control module of the agent. This de-
sign allows to change the technology used to send
the messages (i.e. change TCP/IP to RMI) or the
language used by the agents (i.e. KQML or FIPA-
ACL) in an independent way.

3.2. Muti-Agent Model

In this section, how to build societies of agents
by means of the agent model outlined in the pre-
vious section will be described. Any MAS defined
using SKELETONAGENT can be implemented us-
ing one or several teams (7;). Every team is man-
aged by a specialized agent named CoachAgent
(CCH). To manage the different teams it is neces-

sary to use a single ManagerAgent (M NG). This
agent (known as the Agent Name Server, ANS,
in other architectures) is used to manage the in-
sertion and deletion of other agents in/from the
MAS, or which is the selected team that will use
the new agent. Finally, it is possible to represent
the whole Multi-Agent system (Ske;) as:

Skel = MNG-Q-U;ZlTi

Where m represents the available operative
teams in the system. Any team (T') is made of at
least one agent and can be represented as:

T:U?:lAi:A1UA2U...UAn:[Ai =<
N;, i, Y5, Li, O, Hy > U < Ny, Ag, I;, Q; >]T

Where n represents the number of agents that
compose the team. In SKELETONAGENT (like
other MAS) it is necessary to use a minimun num-
ber (and types) of agents to build an operative
team. We define an “operative team” as the min-
imun set of agents which is able to achieve the
goal or goals that the system was designed for.
These minimun number of agents may change for
every domain. For instance, the real implementa-
tion of MAPWEB-ETOURISM teams need at least
five types of agents (manager agent, coach agents,
user agents, planner agents and WEB agents) to
be an operative group. Other MAS implemented
from SKELETONAGENT, like SIMPLENEWS, re-
quires only four types of agents (manager, coach,
user and WEB agents) [10].

To
Control
Module

‘messl‘messZ ‘ ‘messK H
In-Q

Communication Manager Module

From
Control
Module

7‘ messl ‘messZ ‘ ‘messK
Out-Q

Language Layer
(Kqmi)

‘ Communication Layer ‘
(TCP/IP)

. i Message—Out

Fig. 7. SKELETONAGENT Communication Module.

3.8. Multi-Agent Architecture

Using the previous MAS model, any system im-
plemented from our architecture will need at least
the following agents to work properly:

— Control Agents. They manage the different
agents in the system. There are two types of
them:

* ManagerAgent (M NG). This agent is sim-
ilar to any ANS with can perform the fol-
lowing roles in the system:

* It is responsible to add and remove other
agents from the system.

x It controls which agents are active in the
agent society.

* It groups agents in teams. To do this,
when any agent requests to be inserted in
the society, the M NG determines which
teams require this agent.

% CoachAgent (CCH). They control a team
of agents, guaranteeing stability and smooth
operation of the active agents. Those agents
perform the following roles:

* They report problems to the M NG. For
instance, when a new agent is required
for the team.

* They guarantee that the yellow pages of
the team members are coherent.

— FExecution Agents. These agents are responsi-
ble to achieve the differents goals of the sys-
tem. To coordinate different teams of agents it

is possible to include a new skill in the control
module of the agents. Currently, three differ-
ent execution agents have been implemented:
planner agents, user agents, and WEB agents.

Figure 8 shows the general architecture for any
SKELETONAGENT MAS. The main characteristics
for any MAS implemented in this way can be sum-
marized in:

— Agents in the system use message-passing to
communicate with other agents.

— All the agents have the same architecture and
they are specialized in different tasks through
the implementation of different skills.

— Although the communication language is the
same for all the agents in SKELETONAGENT,
it is possible to distinguish two different types
of communication messages. On the one hand,
there are control messages whose main goal
is to manage the behaviour of the system.
On the other hand, execution messages are
used to share knowledge and tasks among the
agents, to achieve desired goals.

To start correctly the MAS, it is necessary to
perform the following steps, as it is shown in Fig-
ure 9 in more detail:

1. First, the M NG is executed.

2. Agents in the system need to register them-
selves to the M NG. Once a CCH has reg-
istered, the M NG will select the necessary
execution agents from its white pages and
will build an operative team. If there are not
enough agents, the CCH will wait for them.

9

Execution
Agentl,2

- CONTROL

==t Vo
*/Coach | © AGENTS
Agent K [
|
/‘\\ |
''''''''''' A N U
K | -
Execution : :
AgentK,2 | | -
- EXECUTION
| © AGENTS
|-
I
| -
|-

- - _ - —-—_—___

< ---» Control

Communication

<—» Execution
Communication

Fig. 8. SKELETONAGENT Multi-Agent Architecture.

To build a team the M NG selects the exe-
cution agents and provides the necessary in-
formation to the CCH. Once the informa-
tion of the agents has been stored in CC'H’s
yellow pages, it updates the yellow pages of
its execution agents. To select the necessary
agents to build a group, the M NG uses the
Ontology of the CCH agent.

3. Once a team is built, the execution agents can
only communicate with the agents belonging
to its team or with its CCH.

4. MAPWEB: Multi-Agent Planning in the WEB

MAPWEB [11,12] (Multi-Agent Planning in the
Web) is a generic MAS information gathering ar-
chitecture which has been implemented using the
SKELETONAGENT architecture. MAPWEB is a
Multi-Agent framework that integrates planning
and WEB information gathering (IG) agents. This
framework provides a reusable code to help with
the development of new WEB gathering systems.
The main goal of this framework is to deal with
problems that require to integrate planning with
information gathered from the WEB.

4.1. Information Gathering in the WEB
Unlike traditional Information Retrieval (IR)

techniques, IG systems extract knowledge from
documents stored in the WEB by taking advantage

Execution
Agents

CGH Agl Ag2 AgN

MNG

‘M
ok

—— regigter AL

/ ‘@‘gazA 2

] o AGN

inform; Agl

—

inform; aN

inform; Ag2

Operative
Team

\

)

Fig. 9. Operative team building process for SKELETONA-
GENT .

of their inner structure [3,18,33,36]. IG systems
like SIMS [4] use information retrieved from rela-
tional databases but other IG systems, like Hera-
cles [2,29], can use other kinds of sources that pro-
vide the information into a semi-structured way
(the useful information is stored inside the re-
trieved document and it is necessary to extract
or filter the information previously). Several prob-
lems arise when WEB IG systems are designed and
implemented:
10

1. An IG system needs to select, access and filter
the information from the appropriate sources,
and finally, reason with the gathered knowl-
edge to build a solution.

2. IG systems have to deal with multiple, dis-
tributed, and heterogeneous WEB reposito-
ries. WEB sources can be heterogeneous in
both content and format. Besides, the num-
ber and types of those repositories grow over
time.

3. WEB servers can be down at some times.

4. The IG system might find a large number of
solutions, so it is necessary to manage this
overload to provide them in a comprehensive
way to the user.

MAPWEB implements a generic IG WEB archi-
tecture which deals with the previous problems us-
ing Multi-Agent techniques to allow the coopera-
tion and coordination among heterogeneous agents
(specialized in different taks) and planning tech-
niques to integrate information managed by those
agents.

4.2. MAPWEB IG Architecture

Figure 10 shows one possible MAPWEB topol-
ogy, or configuration. This configuration is built
by two operative teams managed by a M NG, and
every team is locally managed by a CCH. Team,
has the minimun set of agents to be operative,
whereas Teams is built by K UserAgents, P Plan-
nerAgents and J WebAgents. In addition, the fol-
lowing execution agents are needed:

— UserAgents (UA) are the bridge between the
users and the system. They only implement
basic input/output skills to acquire problem
descriptions from users and to show the solu-
tions found to them.

— PlannerAgents (PLN) are able to solve plan-
ning problems using the information gathered
from the WEB.

— WebAgents (/W A) are able to provide the re-
quested WEB information like a set of re-
lational records to the PlannerAgents us-
ing wrapping techniques. These agents use
caching techniques to optimize the number of
accesses to the WEB [12].

Following the terminology explained in previ-
ous sections, MAPWEB can be described as fol-
lows. For the first team (77) the static attributes
of the control agent (CoachAgent; : CCH;), and
the specialized planner agent (PlannerAgenty; :
PLNy,) are:

CoachAgent1l (CCH1)=
<N CoachAgent1,
S = {suspend,update,...skill_1in},

Y = {(ManagerAgent: insert,
delete,...),
(PlannerAgent11:planning, ..
(WebAgentll: wrapper,
WebAccess...)},

L = {Kqml},

0 = {e-tourism},

H = hr-agenda>

PlannerAgentl,1 (PLN11)=
<N = PlannerAgentill,
S = {planning,...skill_1j},

Y = {(CoachAgentl: insert,
delete,...),
(WebAgentll: wrapper,
WebAccess...)},
L = {Kqml},
0 = {e-tourism},
H = hr-agenda>

)

Where S ={suspend, ..., skilly,, } and S ={planning,

..., skilly;} represent the available skills of both
agents. For instance, the skill;,, implemented by
CoachAgent, could be the delete-item skill. This
skill allows to delete a particular item from the
yellow pages. This skill is necessary if agents can
be temporally unavailable. In that case, they will
be removed from the yellow pages of same-team
agents to avoid communication problems. On the
other hand, the skilly; (PlannerAgent;1) can im-
plement the search-plans skill that allows the agent
to search for old stored plans in its local plan-
base. The information that the CoachAgent; has
about the j skills of PlannerAgenti; is repre-
sented using a list which contains the names of
the skills of that agent (Y = {(AgentName :
skilly, skilla, ..., skill,), (.......)}). Then the descrip-
tion of the environment is given. This information
is described using the ontology O. For instance, the
e-tourism ontology to represent travel problems,
the domain-dependent heuristics, etc ...Finally,
different sets of heuristic rules can be defined for
11

&9
ER
0

I I

! 1

I I

I I

! 1

I ,]

" o

i User : N > : :

| A WebAgentz,l |

: ! Agentl,1 i : : : User Planner : :

1 — o Agent2,1 .

: == " o] > |

1 N '

I =] vy |

5 Aga:nrgl It WebAgentz,s > i !

[[l .

N i : 1 i ol

i, np 1 User Planner) h

" o Agent2,P i
! Agent2,K)

[WeAget L= 1 ’ ‘\’ WebAgent2,) | > 1!
) \ .- -——-— ¥t ¥e e e\ -Z-Z--—-___ .

| TTTTTI T | I

! Team1) Team 2)

Communication
between agents

Fig. 10. MAPWEB Architecture.

controlling the agent behaviour. In the previous
example the PlannerAgenti; shows two different
set of heuristics. The hr — agenda is used for con-
trolling the execution of the acts inserted in the
agenda. These heuristics are actually implemented
like a set of control policies which can be used to
modify the control cycle. On the other hand, the
dynamic attributes, can be described as:

CoachAgentl (CCH1)=
<N = CoachAgentl,
Ag= {[ACHIEVE:insert,WebAgentl12,...]

[act_2]},
I = {AGENTS.active: ManagerAgent,
PlannerAgentil,
WebAgenti1l
AGENTS .new: WebAgentl12
AGENTS.suspend: none},
Q = {[REQUESTED: achieve:insert,

ManagerAgent] }>

PlannerAgentl,1 (PLN11)=
<N = PlannerAgentll,
Ag= {[ACHIEVE:solve-problem]...[act_n]},
I = {obj_1.attributel,...,
obj_n.attributeln},
{[null]l}>

Q

This dynamic information, Ap, means that the
CoachAgent; has only one act in the agenda (to

insert a new agent in the team: WebAgent;s). This
act is to be performed with the skill insert. The
information that CoachAgent; has about its en-
vironment is basically which other agents in the
team are active or suspended. Finally, the queue
of messages shows that the ManagerAgent has
requested the CoachAgent; to perform the skill
insert (the execution of this skill will allow to in-
clude WebAgent,o as a new agent member in the
team).

4.8. Implemented Skills

Although MAPWEB is a generic architecture
that combines WEB information retrieval with
planning, its skills are better understood in a par-
ticular domain. In this section, we will use the e-
tourism domain, where the goal is to assist a user
in planning his/her trips. This domain will be de-
scribed in detail in Section 4.4.

MAPWEB’s process can be described as follows.
First, the user interacts with the UserAgent to in-
put his/her query. The query captures information
like the departure and return dates and cities, one
way or return trip, maximum number of transfers,
and some preference criteria. This information is
sent to the PlannerAgent, which transforms it into
a planning problem. This planning problem retains
only those parts that are essential for the plan-

12

ning process, which is named the abstract repre-
sentation of the user query. Then, the agent gener-
ates several abstract solutions for the user query.
The planning steps in the abstract solutions re-
quire to be completed and validated with actual
information which is retrieved from the WEB. To
accomplish this, the PlannerAgent sends informa-
tion queries to specialized WebAgents, that return
several records for every information query. Then,
the PlannerAgent integrates and validates the so-
lutions and returns the data to the UserAgent,
which in turn displays it to the user.

In order to achieve the previous process, several
skills have been implemented for the Planner Agent
and the WebAgents. Figure 11 shows how these
skills can be decomposed into subskills.

— PlannerAgent skills. This agent has a general
skill Solve — Problem which is used to begin
the problem solving task. When the act asso-
ciated to this skill is selected, it is decomposed
into three subacts, associated to three skills:
Search— Plan, Ask— Others, and Planning.
Any of these skills might provide a solution for
the planning problem, so Solve — Problem is
an OR act. The idea behind these three sub-
acts is that if a relevant plan can be located
in the local database (Search — Plan skill),
then no actual planning has to be carried out.
Otherwise, the agent can ask other Planner-
Agents to provide solutions (Ask — Others
skill). Finally, the planning skill inside the
agent can also provide a solution (Planning).
These three subacts can be executed in paral-
lel, and removed once one of them returns an
answer.

When selected, the Planning act will be de-
composed into three subacts, although in this
case all of them are required to finish suc-
cessfully (AND act). These three acts are:
Obtain — Abstract — Representation (which
obtains a general representation of the prob-
lem), Call — Planner (to execute a plan-
ner (PrODIGY4.0) which is able to obtain
plans for the given problem), and Cooperate—
WebAgents (which allows to request informa-
tion to the WebAgents available in the team,
so that the plans can be completed with WEB
information).

Other PlannerAgent skills are: Integrate —
Solutions (which is used to build a set of spe-
cific solutions for the given problem once the

WebAgents have answered), and Validate —
Solutions (which is used to filter those so-
lutions for which every step in the plan can
be actually executed). For instance, flying by
plane from city A to city B can only be ex-
ecuted if there is at least one company that
flies between those cities). And finally the skill
Send— Solution sends to the requesting agent
the solution(s) found. Figure 11 shows the
representation of some of the skills defined in
the PlannerAgents.

PlannerAgent-Skills

— Solve—Problem

— Search—-Plan

— Planning
— Obtain—AbstractRepresentation
— Call-Planner
— Cooperate-WebAgents
— Build-InfoQuery
—— Send-InfoQuery
— Integrate—WebInfo

— Integrate—Solutions

—» Validate—Solutions

— Send-Solutions

Fig. 11. Skills hierarchy for a PlannerAgent in MAPWEB.

— WebAgent skills. The Search — Record skill is
used by these agents to look for stored records
in their local databases, that were previously
gathered by the agents. Otherwise, the skill
Gather-WebInfor is then used to automati-
cally access, retrieve, and filter the requested
information from the WEB source. The skill
Send — Solutions is used to communicate to
the PlannerAgents the records found.

4.4. MAPWEB-ETOURISM

In this section, we will instantiate MAPWEB
in the e-tourism WEB domain. The resulting sys-
tem, MAPWEB-ETOURISM, is able to assist a

13

user in planning his/her trips. The e-tourism do-
main is a modified version of the Logistics do-
main [52], where the user needs to find a plan
to travel between several places. We have se-
lected this domain because it requires different and
heterogeneous WEB sources (like WEB sources
for plane, train, hotels, taxi, ...companies). Cur-
rently, MAPWEB-ETOURISM is able to access,
gather, and reuse information from the following
WEB sources:

— Flight companies: Iberia Airlines, Avianca
Airlines, Amadeus flights, 4Airlines flights.

— Train companies: Renfe, BritRail, RailEu-
rope.

— Rental Car companies: Avis, Hertz, Amadeus
car rental, 4Airlines car rental.

— Hotel companies: Amadeus hotels, 4Airlines
hotels.

The previous WEB sources can be classified
into two main groups: Metasearch systems like
Amadeus, 4Airlines, BritRail, and RailEurope
which extract information from several companies,
and individual sources which belong to a particu-
lar company (Iberia, Avianca, Renfe, ...).

To describe the instantiation of MAPWEB in
this domain, it will only be necessary to detail how
the execution agents have been specialized from
the MAPWEB IG architecture:

— UserAgents. Graphical interfaces were imple-
mented to allow the user to interact with the
system.

— PlannerAgents. They were supplied a descrip-
tion of the planning domain (e-tourism) and
related information. Also, they were given a
new skill: a simple Case-Based planning tech-
nique was implemented to improve perfor-
mance (see [11,12] for more details).

— WebAgents. For every WEB source described
previously, an specialized agent has been im-
plemented. They use wrappers [32,46] to ac-
cess and retrieve the WEB information.

A topology has been implemented using an iso-
lated team composed of one CoachAgent, one

UserAgent, one PlannerAgent and four WebAgents.

Formally, the topology is:

MAPWeb — etourism = MNGUT =
MNGU [CCHh UAl, PLNq, WAAmadeus;
WARailEurope7 WAIberia7 WARenfe]

Let us suppose that a user gives the problem de-
scribed in Table 1 to the UserAgent (UA;). The
problem consists of a sequence of stages. Each
stage is a template that represents a leg of the
trip, and contains several fields to be filled by the
user. The solving process starts when the User-
Agent supplies the problem to the PlannerAgent
(PLNy).

From the point of view of acts inserted into the
agenda of the PlannerAgent PLN;, the sequence
to solve the user problem is as follows:

— Initially the problem is received by PLN;
from UA; and the act [ACHIEVE : Solve —
Problem) is inserted into the agenda. Then,
the act is selected.

— The previous act is expanded: [ACHIEVE :
Search — Plan], [ACHIEVE : Planning],
[ACHIEVE : Integrate — Solutions], and
[ACHIEVE : Validate — Solutions] are in-
serted into the agenda. The first act is selected
because it has been given the highest priority.

— If no solution is found (see Figure 5), i.e. the
act [ACHIEVE : Search— Plan] failed, then
the act [ACHIEVE : Planning] is selected
(because it is the next one in priority).

— Then, it will be expanded into [ACHIEVE :

Obtain—Abstract— Representation], ACHIEVE :

Call—Planner] ,and [ACHIEV E : Cooperate—
WebAgents.

— Once the act [ACHIEV E : Obtain— Abstract—
Representation] has finished, the agent starts
looking for new plans using its planning skill
(i.e. executes [ACHIEV E : Call— Planner]).
When the first possible abstract plan is
found, the act [ACHIEVE : Cooperate —
WebAgents] will be Ready() for execution.
Then, a new act [ACHIEV'E : Cooperate —
WebAgents) will be inserted for every ab-
stract plan found.

— When selected, the act [ACHIEV E : Cooperate—

WebAgents] it is expanded into several acts:

[ACHIEVE : Build—InfoQuery), [ACHIEVE :
Send—InfoQuery|,and [ACHIEV E : Integrate—

WebInfo.

— When the information queries are built ((ACHIEVE :

Build — InfoQuery]) the agent uses its yel-
low pages to select the appropriate We-
bAgents. Then the act [ACHIEVE : Send —
InfoQuery] is executed.

14

Table 1
Travel problem example to go from Salzburg to Segovia by

airplane or train.

Leg Stage Date Transport Restrictions N° Transfers
1 Salzburg — Madrid May 11th Plane or train none Oorl

2 2 nights stay May 11-13th none < 100 euros -

3 Madrid — Segovia May 13th Plane or train none Oorl

4 3 nights stay May 13-16th none < 90 euros -

5 Segovia — Salzburg May 16th Plane or train none Oor1l

— The answers from the WebAgents are inserted
into the PlannerAgent PLN; agenda as acts:
[TELL : W Arperia, information...]), [TELL :
W ARenfe,null], ... Then, an [ACHIEVE :
Integrate — WebInfo] will be inserted into
the agenda.

— Next, if there is an [ACHIEVE : Integrate—
WebInfol] act in the agenda, the appropriate
TELL acts will be extracted from the agenda
and integrated into the abstract plan.

— Finally the acts [ACHIEVE : Integrate —
Solutions], and [ACHIEVE : Validate —
Solutions], will be selected, and the final so-
lutions will be constructed.

— A new act [TELL : Send — Solutions] is in-
serted into the agenda.The execution of this
act sends the solutions found to UA;.

It is important to remark that requests and an-
swers from the agents arrive to the agenda asyn-
chronously. That is, agents do not know when they
will be queried or when the expected information
will be provided. For instance, while the planner is
generating new abstract plans, the PlannerAgent
is able to work on other acts in the agenda, like
completing previously generated abstracts plans.
If one of the acts fails, all the dependent acts will
be automatically removed from the agenda. For
instance, for leg 1 of the example trip: “travel
from Salzburg to Madrid using plane or train”, one
possible (abstract) solution could be travelling by
train directly from the departure city to the ar-
rival city. To achieve this, several acts are inserted
so that the information is requested to the We-
bAgents. At the same time, the planner could find
other abstract solutions, like travelling by train
from Salzburg to Madrid using one transfer, or
travelling directly by plane, etc. Likely, not all the
abstract solutions will be possible. For instance,

in leg 5: “travel from Segovia to Salzburg”, it is
not possible to find a solution which uses a plane
from Segovia, because this city does not have an
airport. On the other hand, the abstract solution
that uses a train to travel from Segovia to Madrid,
and then take an airplane to Salzburg is feasible.

The previous example used a simple configura-
tion of MAPWEB-ETOURISM. However, it is pos-
sible to use many UserAgents, Planner Agents, and
WebAgents in the same team. In that case, a sin-
gle agent could receive many requests and answers
from many different agents at the same time. But
the agenda would still work in exactly the same
way, which shows the flexibility of this architecture
for coordinating agents.

5. Related Work

The aim of this section is to describe the ideas
related to the two main issues of this work: agenda
architectures and WEB information systems. With
respect to agenda-based systems, the most closely
related to our work are the CooperA [48,50] and
ABC? [37,38,39].

The CooperA (cooperating agents) platform is a
software framework that supports the cooperation
of heterogeneous, distributed and semiautonomous
Knowledge-Based (KB) systems. In CooperA the
KB systems are translated into application agents
that are finally be integrated into one system. The
users can interact with all the agents using a user
interface agent. The CooperA architecture is built
by a set of interconnected layers. These layers are:
The CooperA kernel, the message-passing mech-
anism, the collection of CooperA system Agents,
and finally the Community of Application-Specific
Agents. Any agent in the CooperA architecture is a

15

dynamic structure that communicates with other
agents in the system through a message passing
skill.

The ABC? architecture is based on the CooperA
architecture. It uses predefined skills (managed as
reactive components) that each agent composes in
an opportunistic way to achieve the intelligent be-
haviour (this architecture has been implemented
and tested in the RoboSoccer domain and the
Khepera robots). The agenda in ABC? has been
used to keep a list of pending actions, where each
action can require (or not) some of other actions.
These actions can be inserted into the agenda by
other actions, by events from the environment or
by requests received from other agents.

Our work is more closely related to ABC?, al-
though there are several differences. First, our ap-
proach allows to define acts which are composed of
subacts that can be executed in parallel and can
have AND/OR structures. Second, ABC? has only
been used to implement a planning oportunistic
reactive behaviour for agents, which is appropri-
ate in domains like the RoboSoccer. We have ori-
ented our architecture to facilitate integrating Al
solving techniques with IG techniques to work in
WEB domains. Some of these features have already
been tested in other domains like problem solving
through Genetic Programming [1] and WEB News
Gathering [9,10].

Several systems have been designed to deal with
different information sources. Some of those sys-
tems like SIMS [3,4] allow to integrate information
from different sources like databases and knowl-
edge bases. The SIMS approach uses a semantic
model of a problem domain to integrate the in-
formation from several sources, and several algo-
rithms for automatically improving the efficiency
of queries using knowledge about both the domain
and the information sources. These kinds of sys-
tems, usually named mediators, implement several
mechanisms that provide access to heterogeneous
data and knowledge bases. When these techniques
are used to build agents that are able to extract,
query, and integrate data from electronic sources
it is possible to define an information agent. These
information agents have been used to implement
different systems that are able to retrieve and inte-
grate information from the WEB [28,31]. The clos-
est systems to our work are:

— WebPlan [23]: it is a WEB assistant for
domain-specific search on the Internet based

on dynamic planning and plan execution tech-
niques. The existing planning system CA-
Plan [24,53] has been extended in different
ways in order to deal with incomplete infor-
mation, information seeking operators, user
interaction, and interleaving planning and ex-
ecution. WebPlan is specialized in localizing
specific PC software on the Internet. Planning
is used in this system to select the most appro-
priate sources to look for information, whereas
MAPWEB uses planning to select the appro-
priate WEB sources and to build the solution
to a user problem.
Ariadne [30]: This system includes a set of
tools to construct wrappers that make WEB
sources look like relational databases. It also
uses mediation techniques based on SIMS [3,
31]. The main focus of these systems is how to
access the distributed information, so the inte-
gration problem is not a hard problem. How-
ever, besides accessing the appropriate infor-
mation, we are interested in integrating the
different sources and solve complex problems
with the retrieved information.
Heracles [2,29]: This framework is used to de-
velop different information assistant systems
that employ a set of information agents (Ari-
adne, Theseus, Electric Elves). A dynamic
hierarchical constraint propagation network
(CPN) is used to integrate the different infor-
mation sources. Two assistant systems have
been implemented: The Travel Planning As-
sistant (specialized in assisting tourists to
plan their trips) and The WorldInfo Assistant
(for a user-specified location, it integrates in-
formation from different information sources
like weather, news, holidays, maps, airports,

..). In this framework the integration of
the retrieved information is made by a CPN.
Therefore, if the problem changes, the CPN
needs to be rewritten by hand. MAPWEB
is more flexible because it uses a planner to
automatically generate the plans, which are
the structures analogous to the CPN. For in-
stance, if new transport sources like taxi or
buses become available, it is only necessary to
add a new planning operator for every new
source and the PlannerAgent will use them to
access these sources.

16

6. Conclusions

In this paper we have presented SKELETONA-
GENT, an agenda-based flexible architecture for
building agents that can participate in a MAS.
The utilization of an agenda-based architecture
for agents, allows to coordinate multiple agents
with heterogeneous skills in a flexible way. Also,
it is very simple to change the behaviour of the
agents by modifying the policies used to manage
the agenda.

Although our approach is based on work de-
scribed in [37,49], their ideas have been extended
in several ways. First, we allow to define acts which
are composed of subacts that can be executed in
parallel and can have AND/OR structures. This
allows to define alternative ways to achieve a goal
and to mix different high level tasks at the mini-
mum level of granularity. For instance, if there are
two tasks A and B composed of several subtasks
Ay, Ay ...and By, Bs, ..., every subtask will be
processed when they are ready, thus interleaving
the two tasks A and B in the most appropriate
order.

Second, we have oriented our architecture to fa-
cilitate integrating Al solving techniques with IG
techniques to work in WEB domains. To do so,
we have instantiated SKELETONAGENT to build a
MAS, named MAPWEB, that combines Al plan-
ning and WEB information gathering techniques.
MAPWEB is a generic architecture that can be
used by developers in any domain requiring plan-
ning and WEB sources. We have used it to solve
travel assistant problems in the e-tourism do-
main (MAPWEB-ETOURISM). This example has
also been used to illustrate the behaviour of the
agenda-based architecture. Some of SKELETONA-
GENT features have also been tested in other do-
mains like problem solving through Genetic Pro-
gramming [1] and WEB News Gathering [9,10],
which shows that it is a general framework.

In the future we would like to extend MAPWEB-
ETOURISM by adding new Al techniques to the ar-
chitecture, like Machine Learning, so that more
complex problems can be solved by using informa-
tion from the WEB.

Acknowledgements
The research reported here was carried out as

part of the research project funded by CICYT
TIC2002-04146-C05-05.

References

[1] Ricardo Aler, David Camacho, and Alfredo Moscar-
dini. Cooperation Between Agents to Evolve Complete
Programs, chapter In Intelligent Agent Software En-
gineering, pages 213-228. Valentina Plekhanova. Uni-
versity of Sunderland, United Kingdom. Ed. by Idea
Group Publishing, 2003.

[2] José Luis Ambite, Greg Barish, Craig A. Knoblock,
Maria Muslea, Jean Oh, and Steven Minton. Getting
from here to there: Interactive planning and agent ex-
ecution for optimizing travel. In The Fourteenth In-
novative Applications of Artificial Intelligence Confer-
ence (IAAI), Edmonton, Alberta, Canada, 2002.

[3] Yigal Arens, Chin Y. Chee, Chun-Nan Hsu, and
Craig A. Knoblock. Retrieving and integrating data
from multiple information sources. International Jour-
nal of Cooperative Information Systems, 2(2):127-158,
1993.

[4] Yigal Arens, Craig A. Knoblock, and Wei-Min Shen.
Query reformulation for dynamic information inte-
gration. Journal of Intelligent Information Systems,
Special Issue on Intelligent Information Integration,
6(2/3):99-130, 1996.

[6] M. Balabanovic, Y. Shoham, and T. Yun. An adaptive
agent for automated web browsing, 1995.

[6] Ronen I. Brafman and Moshe Tennenholtz. Modeling
agents as qualitative decision makers. Artificial Intel-
ligence, 94(1-2):217-268, 1997.

[7] W. Brenner, R. Zarnekow, and H. Wittig. Intel-
ligent Software Agents. Foundations and Applica-
tions. Springer-Verlag. ISBN: 3-540-63411-8, New
York, 1998.

[8] Rodney A. Brooks. Intelligence without representa-
tion. Number 47 in Artificial Intelligence, pages 139—
159. 1991.

[9] David Camacho, Ricardo Aler, César Castro, and
José M. Molina. Analysis of internet multi-agent based
system for zeus and skeletonagent frameworks. In Sec-
ond WSEAS International Conference on Multime-
dia, Internet and Video Technologies (ICOMIV 2002),
Skiathos, Greece, September 2002. IEEE.

[10] David Camacho, Ricardo Aler, César Castro, and
José M. Molina. Performance evaluation of Zeus,
Jade and SkeletonAgent frameworks. In Proceedings
of the IEEE Systems, Man, and Cybernectics Confer-
ence (SMC-2002), Hammamet, Tunisia, October 2002.
IEEE.

[11] David Camacho, Daniel Borrajo, José Manuel Molina,
and Ricardo Aler. Flexible integration of planning
and information gathering. In Proceedings of the Fu-
ropean Conference on Planning (ECP-01), Toledo,
Spain, September 2001. Springer-Verlag. Series LNAI

[12] David Camacho, José Manuel Molina, Daniel Borrajo,
and Ricardo Aler. Solving travel problems by inte-
grating web information with planning. In XIII. In-
ternational Symposium on Methodologies for Intelli-
gent Systems (ISMIS 2002), Lyon, France, June 2002.
Springer-Verlag. Series LNAI

17

13]

(14]

(15]

[16]

(17]

(18]

(19]

20]

(21]

(22]

23]

[24]

[25]

(26]

Philip R. Cohen, Adam Cheyer, Michelle Wang, and
Soon Cheol Baeg. An open agent architecture. In
In Working Notes of the AAAI Spring Symposium:
Software Agents, pages 1-8. AAAI, Menlo Park, CA,
1994.

Philip R. Cohen and Hector J. Levesque. Performatives
in a rationally based speech act theory. In Meeting of
the Association for Computational Linguistics, pages
79-88, 1990.

Philip R. Cohen and C.R. Perrault.
planbased theory of speech acts. Cognitive Science,
3(3):177-212, 1979.

Kerstin Dautenhahn.

Elements of a

The art of designing socially
intelligent agents: science, fiction and the human in
the loop. Applied Artificial Intelligence Journal, 1(7),
1998.

Keith Decker and Katya Sycara. Intelligent adaptive
information agents. Journal of Intelligent Information
Systems, 9:230-260, 1997.

Yizhong Fan and Susan Gauch. Adaptive agents for
information gathering from multiple, distributed infor-
mation sources. In Proceedings of 1999 AAAI Sym-
posium on Intelligent Agents in Cyberspace. Stanford
University, March 1999.

I. A. Ferguson. Integrated control and coordinated be-
haviour: A case for agent models, chapter In Intelligent
Agents: Teories, Architectures and Languages (LNAI
Volume 890). M. Wooldridge and N.R. Jennings, edi-
tors, pages 203-218. Springer-Verlag: Heidelberg, Ger-
many, January 1995.

Tim Finin and Jay Weber et. al. Draft specification
of the KQML agent communication language. Jun 15
1993.

Tim Finin, R. Fritzson, D. Mackay, and R. McEn-
tire. Kqml as an agent communication language. In
Proceedings of the Third International Conference on
Information and Knowledge Management (CIKM94),
pages 456-463, Gaithersburg, Maryland, 1994. New
York: Association of Computing Machinery, ACM
Press.

Michael R. Genesereth and Steven P. Ketchpel. Soft-
ware agents. Communications of the ACM, 37(7):48—
53, 1994.

J. Hiillen, Ralph Bergmann, and F. Weberskirch. Web-
plan: Dynamic planning for domain-specific search in
the internet. In Workshop Planen und Konfigurieren
(PuK-99), 1999.

J. Hiillen and F. Weberskirch. Extracting goal order-
ings to improve partial-order planning. In Workshop
Planen und Konfigurieren (PuK-99), 1999.

N. R. Jennings, P. Faratin, T. J. Norman, P. O’Brien,
and B. Odgers. Autonomous agents for business pro-
cess management. Int. Journal of Applied Artificial
Intelligence, 14(2):145-189, 2000.

Nicholas R. Jennings, Katia Sycara, and Michael
Wooldridge. A roadmap of agent research and develop-
ment. Journal of Autonomous Agents and Multi-Agent
Systems, 1(1):275-306, 1998.

27)

(28]

29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

37)

(38]

39]

Nicholas R. Jennings and Michael J. Wooldridge.
Agent-Oriented Software Engineering, chapter Hand-
book of Agent Technology. AAAI/MIT Press, 2000.

Craig A. Knoblock and José Luis Ambite. Agents for
Information Gathering, chapter In Software Agents. J.
Bradshaw editor, AAAI/MIT Press, Menlo Park, CA,
1997.

Craig A. Knoblock, Steve Minton, José Luis Am-
bite, Maria Muslea, Jean Oh, and Martin Frank.
Mixed-initiative, multi-source information assistants.
In The Tenth International World Wide Web Confer-
ence (WWW10). ACM, May 1-5 2001.

Craig A. Knoblock, Steven Minton, José Luis Ambite,
and Naveen Ashish. Modeling web sources for informa-
tion integration. In Proceedings of the Fifteenth Na-
tional Conference on Artificial Intelligence. Madison,
WI, 1998.

Craig A. Knoblock, Steven Minton, José Luis Ambite,
Naveen Ashish, Ion Muslea, Andrew G. Philpot, , and
Sheila Tejada. The ariadne approach to web-based in-
formation integration. To appear in the International
the Journal on Cooperative Information Systems (I1J-
CIS) Special Issue on Intelligent Information Agents:
Theory and Applications.

Nickolas Kushmerick, Daniel S. Weld, and Robert B.
Doorenbos. Wrapper induction for information extrac-
tion. In International Joint Conference on Artificial
Intelligence (IJCAI), pages 729-737, 1997.

Eric Lambrecht and Subbarao Kambhampati. Plan-
ning for information gathering: A tutorial survey. Tech-
nical report, Arizona State University, May 1997. ASU
CSE Techincal Report 96-017.

S. Lander and Victor R. Lesser. Understanding the
role of negotiation in distributed search among hetero-
geneous agents. In Proceedings of the Thirteenth In-
ternational Joint Conference on Artificial Intelligence
(IJCAI-93), pages 438-444, 1993.

Victor R. Lesser. Cooperative multiagent systems: A
personal view of the state of the art. Knowledge and
Data Engineering, 11(1):133-142, 1999.

Alon Y. Levy, Anand Rajaraman, and Joann J. Or-
dille. Querying heterogeneous information sources
using source descriptions. In Proceedings of the
Twenty-second International Conference on Very
Large Databases, pages 251-262, Bombay, India, 1996.
VLDB Endowment, Saratoga, California.

Vicente Matelldn and Daniel Borrajo. ABc? an agenda
based multi-agent model for robots control and coop-
eration. Journal of Intelligent and Robotic Systems,
32(1):93-114, October 2001.

Vicente Matellan and Daniel Borrajo. Combining
classical and reactive planning: The abc? model. In
Procceedings of the Integrating Planning, Schedul-
ing and FEzxecution in Dynamic and Uncertain En-
vironments Workshop. Fourth Artificial Intelligence
Planning Systems (AIPS98)., June Pittsburgh (USA),
1998.

Vicente Matellan, Daniel Borrajo, and Camino
Fernédndez. Using abc? in the robocup domain. In

18

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(47]

(48]

[49]

[50]

[51]

[52]

(53]

RoboCup-97: Robot Soccer World Cup I. Hiroaki Ki-
tano, editor. Lecture Notes in Artificial Intelligence,
pages 475483, 1998.

José M. Molina. Técnicas Multiagente de Cooperacion
para la Gestion Coordinada de Multisensores. PhD
thesis, Departamento de Senales, Sistemas y Radio-
comunicaciones. Universidad Politécnica de Madrid,
Julio 1997.

Timothy Norman, Nick Jennings, Peyman Faratin,
and Abe Mamdani. Designing and implementing a
multi-agent architecture for business process manage-
ment. In Jorg P. Miiller, Michael J. Wooldridge,
and Nicholas R. Jennings, editors, Proceedings of the
ECAI’96 Workshop on Agent Theories, Architectures,
and Languages: Intelligent Agents III, volume 1193,
pages 261-276. Springer-Verlag: Heidelberg, Germany,
12-13 1997.

Hyacinth S. Nwana. Software agents: An overview.
Knowledge Engineering Review, 11(3):205-224, Octo-
ber/November 1996.

Hyacinth S. Nwana, L. C. Lee, and Nicholas R. Jen-
nings. Coordination in software agent systems. The
British Telecom Technical Journal, 14(4):79-88, 1996.
Charles Petrie. Agent-based software engineering. In
Proceedings of PAAM 2000. The Practical Application
of Intelligent Agents and Multi- Agents, 2000.

S. Picault. A multi-agent simulation of primate social
concepts. In European Conference on Artificial Intel-
ligence, pages 327-328, 1998.

Arnaud Sahuguet and Fabien Azavant. Building in-
telligent web applications using lightweight wrappers.
Data Knowledge Engineering, 36(3):283-316, 2001.
Erik Selberg and Orentz Etzioni. The metacrawler
architecture for resource aggregation on the web.
In I[EEE Ezxpert, pages pp. 8-14. IEEE, Jan-
uary/February 1997.

Lorenzo Sommaruga, Nikos M. Avouris, and Marc Van
Liedekerke. An environment for experimentation with
interactive cooperating knowledge based systems. In
Proceedings of Expert Systems. Cambridge Press, Lon-
don, 1989.

Lorenzo Sommaruga, Nikos M. Avouris, and Marc Van
Liedekerke. Foundations of Distributed Artificial In-
telligence, chapter The evolution of the CooperA plat-
form, pages 365—400. John Willey. London, 1996.
Lorenzo Sommaruga and N. Shadbolt. The cooperative
heuristics approach for autonomous agents. In Pro-
ceedings of the Cooperative Knowledge Based Systems
Conference, pages 49—61. University of Keele, Keele,
U.K., 1994.

Milind Tambe. Implementing agent teams in dynamic
multi-agent environments. Applied Artificial Intelli-
gence, 12, 1998.

Manuela Veloso. Planning and Learning by Analogical
Reasoning. Springer-Verlag, December 1994.

F. Weberskirch. Combining snlp-like planning and
dependency-maintenance. Technical report, Technical
Report LSA-95-10E, Centre for Learning Systems and
Applications, University of Kaiserslautern, Germany,
1995.

[54] Michael J. Wooldridge. Coherent social action. In In

A. Cohn, editor, Proceedings of the Eleventh European
Conference on Artificial Intelligence (ECAI-9/), pages
15-26. John Wiley & Sons, August 1994.

19

