
Multi-agent plan based information gathering
David Camacho · Ricardo Aler · Daniel Borrajo ·
José M. Molina

C©+

Abstract The evolution of the Web has encouraged the de-

velopment of new Information Gathering techniques. Artifi-

cial Intelligence techniques, such as Planning, have also been

used for Information Gathering in order to go beyond merely

retrieving Web data. Planning has been used traditionally to

generate a sequence of actions that specify how information

sources should be accessed. In this paper, planning is used

mainly for integrating information found in heterogeneous

sources. For instance, two different Web sources about flight

and train travels, can be represented by two different plan-

ning operators, which will be subsequently combined and in-

tegrated by a single plan. We have found that a Multi-Agent

framework is very appropriate to implement our technique. In

order to evaluate our approach empirically, it has been applied

to a tourism domain (MAPWEB-ETOURISM), whose purpose

is to help a customer to plan his/her trips. In this domain, sev-

eral specialized Web agents have been used to query travel

Web sources, whose results are subsequently integrated by

a planning agent to build complete travel solutions. Experi-

mental results show that, by means of integration, more solu-

tions can be found than by using single information sources

or even travel meta-searchers. Also, MAPWEB-ETOURISM

can find new types of solutions by integrating information

gathered from heterogeneous Web sources (i.e. flights and

trains).

D. Camacho (�)
Universidad Autónoma de Madrid, Computer Science
Department, C/Francisco Tomás y Valiente, n◦ 11, CP 28049,
Madrid, Spain
e-mail: David.camacho@uam.es

R. Aler · D. Borrajo · J. M. Molina
Universidad Carlos III de Madrid, Computer Science Department,
Avenida de la Universidad n◦ 30, CP 28911, Leganés, Madrid,
Spain

Keywords Information gathering . Multi-agent systems .

Planning . Web agents

1. Introduction

The evolution of the Web has originated new possibilities that

go beyond what traditional Information Retrieval (IR) [26]

and searching techniques provide. These possibilities arise

because many complex problems can be solved using the in-

formation available in many electronic sources. Information

Gathering [8, 14, 20, 21] (IG) intends to integrate a set of

different information sources with the aim of querying them

as if they were a single information source.

Many different kinds of systems, named mediators, have

been developed. They try to integrate information from mul-

tiple distributed and heterogeneous information sources, like

database systems, knowledge bases, web servers, electronic

repositories . . . (an example is the SIMS [4] architecture). In

order that these systems are practical, they must be able to

optimize the query process by selecting the most appropriate

WEB sources and ordering the queries. For this purpose, dif-

ferent algorithms and paradigms have been developed. For

instance, Planning by Rewriting (PbR) [1] builds queries by

using planning techniques. These approaches use planning

techniques to select the appropriate WEB sources and order

the queries to answer generic user queries. That is, they use

planning as a tool for selecting and sequencing the queries.

In this paper we describe MAPWEB, a multi-agent infor-

mation gathering system that also uses planning, but with a

different purpose. MAPWEB uses planning for both deter-

mining the appropriate generic sources to query and solv-

ing actual planning problems. For instance, in this paper, the

MAPWEB framework is applied to a travel planning assistant

domain, where the user needs to find a plan to travel between

1

Rectángulo

Cita bibliográfica
Published in: Applied Intelligence 2006, vol. 25, n. 1, p. 59-71

several places. Each plan not only determines what steps the

user must perform, but which information sources should be

accessed. For instance, if a step is to go from A to B by plane,

the system provides the user the information of what airplane

companies should be consulted for further information. Us-

ing planning has the advantage that, if it is desired to add a

new information source to the system, it is only necessary to

change the planning domain. For instance, if taxi fares were

made suddenly available in the WEB, it would only be neces-

sary to add a move-by-taxi operator along with the associated

WebAgent.

RETSINA [23, 29] is a multi-agent architecture with

3-layers (interface, task, and information layers) where

agents have planning capabilities. Our multi-agent system

follows a similar architecture. However, in our case planning

is not just a skill for agents to achieve their goals. Planning is

mainly used to determine which information is to be queried

and to integrate heterogeneous gathered data into a detailed

solution.

The main contribution of this paper is to show empiri-

cally how our planning-based approach can be used to co-

ordinate different Web (information) agents by using a plan

as a template to decide which agent and which information

source will be queried. And then, this plan will be used to

integrate the data gathered from the Web. In particular, our

results show that by integrating data from heterogeneous web

sources, more travel problems can be solved that cannot be

solved without information integration.

This paper is structured as follows. In Section 2, the

Multi-Agent architecture (MAPWEB) used to integrate our

Plan-based IG technique is briefly described. Section 3 de-

scribes the Information Gathering process performed by

MAPWEB, three main points will be addressed; how plan-

ning is used by MAPWEB to gather information and to solve

problems; the role of the specialized WebAgents; and finally,

how all the retrieved information are integrated to build new

solutions. Section 4 provides the experimental results about

the behaviour of the Plan-based IG technique implemented.

Section 5 describes the related work. Finally, Section 6 sum-

marizes the conclusions of the paper.

2. MAPWEB system architecture

In this Section, only a summary of the architecture is pre-

sented. A detailed description can be found in [5]. Our ar-

chitecture, called MAPWEB (Multi-Agent Planning in the

Web), is a generic MAS information gathering architec-

ture that integrates planning and Web information gathering

agents. This architecture provides a reusable code to help

with the development of new Web gathering systems. The

main goal of this framework is to easily allow the integration

of AI solving problem techniques (like planning or machine

learning) in Web domains. There are three main roles in the

system: users, solvers, and information agents. Therefore, our

system follows a 3-layer architecture, as other approaches

like RETSINA [23]. As we also want to implement teams

of agents, a new kind of agents has been included (control

agents). Figure 1 shows one possible MAPWEB topology, or

configuration. This configuration is built by two operative

teams managed by a Manager agent, and every team is lo-

cally managed by a Coach agent. Team1 has the minimun set

of agents to be operative, whereas Team2 is built by several

UserAgents, PlannerAgents and WebAgents. In addition, it

is possible to use the following agents:

User

Agent1,1

Planner
Agent1,1

WebAgent1,1

User

Agent2,K

User

Agent2,1
Agent2,1

Planner

Planner
Agent2,P

WebAgent2,J

WebAgent2,3

WebAgent2,2

WebAgent2,1

Manager
Agent

Team 1

Coach
Agent 1

Communication

between agents

.

.

.
.
.

.

Coach
Agent 2

.

.

.

Team 2

Fig. 1 MAPWEB IG
architecture

2

Information Integration

Process

Information

Queries

Solutions

(Plans)

Web

Information

Records
Process

Information Gathering
User

Problem

Process

Query Generation

Fig. 2 Plan-based information
gathering processes in
MAPWEB-ETOURISM

� UserAgents are the bridge between the users and the sys-

tem. They only implement basic input/output skills to ac-

quire problem descriptions from users and to show the

solutions found to them, and to acquire the problem infor-

mation.� PlannerAgents are able to solve planning problems using

the information gathered from the Web.� WebAgents are able to provide the requested Web informa-

tion like a set of relational records to the PlannerAgents us-

ing wrapping techniques. These agents have implemented

learning skills (caching) that are used to stored useful in-

formation in their own local data base to reduce the number

of access to the WEB.� ControlAgents (Manager and Coach Agents) that are re-

sponsible to manage and coordinate the previous of agents.

These agents implement several control tasks like register

or unregister agents. These agents have similar skills to the

Agent Manager System (AMS) or the Facilitator agents in

the FIPA architecture (http://www.fipa.org).

Agents in MAPWEB use a common representation (on-

tology) for their knowledge. This characteristic allows to

simplify the processes of sharing and reasoning with the

knowledge. The coordination among the agents is carried out

using a standard communication language (KQML [9, 10]) to

perform actions over their environment. A message in KQML

is called performative (this term is taken from the speech

act theory [6]) and can be understood like a request for an

specific action to be carried out.

3. MAPWEB information gathering process

The MAPWEB framework is a general agent-based approach

that could be applied in different WEB domains. To imple-

ment a specfic version of this architecture (that we named

MAPWEB-ETOURISM) a travel planning assistant domain has

been selected. This domain is a modified version of the Logis-

tics domain [31], where the user needs to find a plan to travel

between several places. Each plan not only determines what

steps the user should perform, but also which information

sources should be accessed. For instance, if a step is to go

from A to B by a plane of a given airline, then it is also

known that the WEB server of that airline has to be accessed

for further flight information.

MAPWEB-ETOURISM agents solve planning problems

by means of cooperation and knowledge integration be-

tween PlannerAgents and WebAgents. Interactions between

MAPWEB-ETOURISM agents allow to find solutions from the

retrieved information. This whole process can be seen like an

Information Gathering process that uses planning techniques

to decide both, which information sources will be access and

how the specific information found will be integrated to build

new solutions. This plan-based information gathering tech-

nique achieved by MAPWEB-ETOURISM can be summarized

in three main subtasks:

1. Query generation process. The specific information pro-

vided by the user is properly translated into an abstract

representation of the problem.

2. Information gathering process. Once the PlannerAgent

has found a set of possible abstract solutions for the given

problem, a set of information queries (partially instan-

tiated) are built and sent to the appropriate WebAgents

that will retrieve the specific information to complete and

validate those abstract solutions.

3. Integration process. With the specific information, each

PlannerAgent builds new solutions sharing and combining

the specific records retrieved from the WEB.

Figure 2 shows the previous processes; the first process

inputs the definition of the problem given by the user, and

outputs a set of information queries that will be used by sec-

ond process to retrieve specific information from the WEB.

Finally the last process will use the WEB information re-

trieved to build a set of solutions that will be given to the

user.

3.1. Query generation process

This process is achieved by the cooperation between two

kind of agents, the UserAgents and the PlannerAgents. The

user can fill in the details for every step in the travel problem

through a set of Graphical User Interfaces (GUI). To illustrate

this process, let us suppose that a user wants to travel from

Madrid (MAD) to Barcelona (BCN) (using 0 or 1 transfers),

staying three nights in Barcelona and finally returning to

Madrid. Besides the information shown in Table 1, the user

can also specify the locations inside the city where s/he wants

to start or end the trip (like an airport, a train station, or a

Table 1 Travel example from Madrid to Barcelona by airplane or train

Leg Stage Date Restrictions Transfers

1 MAD → BCN June 11th 2004 plane/train 0 or 1

2 3 nights stay June 11th 2004 <90 ε –

3 BCN → MAD June 14th 2004 plan/train 0 or 1

3

Records

Retrieved

Complete

/ Validate
Solutions

Abstract

Solution1

Abstract

Solution2

Abstract

SolutionN
.....

D
o

m
ai

n
–

d
ep

en
d

en
t

H
eu

ri
st

ic
s

Information

Queries

Hierarchy
Agents

Abstract

Problems
T

ra
n

sl
at

io
n

U
se

r
q

u
er

y

ab
st

ra
ct

 p
ro

b
le

m

U
se

rA
g

en
t

Complete Plans

Abstract Plans

e–Tourism
Domain

(3)

(6)

WebAgents

(1/2)

(4)

(5)

PRODIGY4.0

PlannerAgent

Fig. 3 High level description of the planning process carried out by PlannerAgents

bus station). Using the previous information a user problem
is generated by the UserAgent and sent to a PlannerAgent.

Using this information a user problem is generated by the

UserAgent and sent to a PlannerAgent. Table 1, shows the

user problem built from previous example. This problem will

be received and analyzed by a PlannerAgent.

When a planner agent receives the user problem, it per-

forms the following steps (see Fig. 3):

1. The PlannerAgent receives a query from UserAgent. This

query is analyzed and translated into an abstract planning

problem.

2. The planning problem is divided into a set of subprob-

lems. Any planning problem can be divided if it has more

than one goal. Therefore, the PlannerAgent splits it into

one-goal subproblems.

3. The PlannerAgent uses its own skills and knowledge

about the problem and tries to solve it. The abstract

representation of the problem, and the description of

the problem-domain (e-tourism) are given to a planner

(Prodigy4.0 [30]) that tries to obtain a set of abstract so-

lutions for the subproblem.

4. These solutions are too general and only have the essen-

tial information for the planning process, so they need

specific information to be completed and validated. The

PlannerAgent builds a set of information queries for the

WebAgents.

5. It is important to try to optimize the number of queries

due to the large number of possible instantiations. So

several domain-dependent heuristics are used by the

PlannerAgents. When the queries have been built using

these heuristics, the PlannerAgent selects from its yellow

pages the set of WebAgents that will be queried.

6. Finally, when the WebAgents answer with the information

found in the Web (if the WebAgents are successful) the

PlannerAgent integrates all the specific information with

the abstract solutions to generate the final solutions that

will be sent to the UserAgent (see Section 3.3).

PRODIGY4.0 is a nonlinear problem solver derived from the

PRODIGY architecture. PRODIGY4.0, follows a means-ends

analysis backward chaining search procedure reasoning

about multiple goals and multiple alternative operators rel-

evant to the goals [30]. The inputs to the problem solver

algorithm are: a domain theory, D, that includes a set of gen-

eralized operators (similar concept to rules in KBS) and an

object hierarchy; a problem to be solved specified in terms

of an initial state (starting knowledge) and a set of goals; and

control knowledge (heuristics), described as a set of control

rules, that guide the search process. PRODIGY4.0 follows a

cycle where first a goal is selected from the set of open goals

at a given moment), then an operator is chosen, and finally

the bindings (values to be assigned to variables of the op-

erator) are determined. PRODIGY4.0 is used as a skill of the

PlannerAgents as Fig. 3 shows.

After removing unnecessary details, the PlannerAgent

tranforms the user query into an abstract problem. First, it

defines an abstract city (city0). That includes all possible

local transports, but only the long range transport terminals

that the user wishes to use are included, like airports or train

stations. Then, this abstract city is copied as many times as

the maximum number of transfers supplied by the user. It

is important to remark that the cities are abstract cities (i.e.

they have no attached names, so they are present in the ab-

stract plan to represent the initial, intermediate, and final

travel points). The rest of details provided by the user are

ignored at this stage. The abstract problem represents the

initial state and the goals of the problem that are the inputs

to PRODIGY4.0.

In this case, from the first leg of the trip (travel from Madrid

to Barcelona), with only one transfer, the PlannerAgent

would generate an abstract problem, where The user wants

4

Fig. 4 Abstract solutions
generated by PRODIGY4.0 for
Leg 1 with 0-Transfer and
1-Transfers

to begin her/his travel from an airport and wants to arrive to

a train station inside the arrival city. Both characteristics are

included in the abstract problem (initial state/goal) and are

used in the planning process.

The abstract problem would be given to the PlannerAgent

planner which would obtain several possible abstract solu-

tions. In this case, the planner would generate the abstract

plans. Some of them appear on Fig. 4. They represent generic

solutions for the given problem (solutions with 0 and 1 trans-

fers).

This is a set of abstract plans that contain no details. Some

of the plan steps might not even be possible because, for

instance, there are no train-companies linking two specific

cities. For instance, Solution 1, describes that it is necessary

only to take a plane to the destination city and then the user

needs to take a local transport (bus) to arrive to the desired

train station. Solution 2 provides another possible solution,

where the user goes first to a train station inside the departure

city, and then takes a train to the destination city. Therefore,

those plans need to be completed and validated. The abstract

steps in the solution contain unbound variables that relate to

transfer cities. They need to be bound before the WebAgents

are queried. The PlannerAgent restricts the number of bind-

ings by applying two simple heuristics; a geographic heuris-
tic and a population/distance heuristic. The first heuristic is

used to select a set of possible cities that could be used for

a transfer. The second one is used to order (by means of a

relative importance value) the initial list of cities. Finally a

threshold is used so that only some of the cities are selected.

The Geographic Heuristic performs the following three steps:� If the origin and arrival cities belong to the same country,

only the cities in that country are considered as possible

transfer cities.� Else, if the origin and arrival cities belong to the same

continent, only the cities of that continent are considered.� Otherwise, all cities are considered.

The Population/distance Heuristic is a combination of two

values, the first one related to the population of the city and

the second one related to its distance to the origin and desti-

nation cities. This heuristic is used to order the list of cities

returned by the Geographic Heuristic. The population heuris-

tic supposes that those cities with larger population (relative

to the largest city in the country) are usually better connected

by some transports. It uses Eq. (1) to obtain the relative

importance of a city in its country. f p is a value between

0 and 1 (values near to 0 represent smaller populations),

PX represents the population of the considered city and fi-

nally Pmax represents the population of the biggest city in the

country.

f p = PX/Pmax (1)

The Distance heuristic uses Eqs. (2) to (5) to obtain the

distance between two cities (a and b), where (lat1, long1),

(lat2, long2) represents the longitude and latitude of two

5

Fig. 5 Agents hierarchy. It
describes all the available agents
in MAPWEB-ETOURISM and
their information gathering
skills

cities, and R is the radius of earth.

a = sin(lat1) ∗ sin(lat2) (2)

b = cos(lat1) ∗ cos(lat2) ∗ cos(long2 − long1) (3)

c = arccos(a + b) (4)

d(a, b) = R ∗ c (5)

The Eq. (6) is used by the PlannerAgents to calculate how

close a possible transfer city is from the straight way between

the departure and arrival cities. da→b represents the distance

between departure and arrival cities, da→X and dX→b repre-

sent the distance between departure, arrival and the selected

transfer city, respectively. The result is also a value between

0 and 1.

fd = da→b/(da→X + dX→b) (6)

Both parameters, fd and f p, are combined by Eq. (7),

to obtain the goodness of the considered city to be used as a

transfer. The δ and ρ parameters have values between 0 and 1

and satisfy: [δ + ρ = 1]. Several empirical tests were made

and finally the values δ = 0.75, ρ = 0.25 were selected for

the heuristic.

F = δ fd + ρ f p (7)

Finally, the value F obtained for each city is used to order

the list of cities given by the Geographic Heuristic. From

the ordered list only a subset of the cities will be used (to

minimize the number of information queries that will be

requested to the WebAgents). Only the top 10% of the list

will be used. Several empirical test were made to estimate

this threshold. Finally, 10% was selected because the exper-

imental test showed that this was the minimum number of

cities necessary to find information for most of the requested

problems.

For instance, in the previous example the first leg of the

trip, as Madrid and Barcelona belong to the same country,

the Geographic Heuristic provides an initial list of possible

transfer cities that belong to Spain (currently, about thirty).

Then these cities are ordered using the Population/Distance

Heuristic to finally (using the threshold) restrict this number

of cities to the most promising candidates (three cities) to

bind the unbound variables in the abstract plans. For instance,

in the previous example the selected cities were: Valencia,

Zaragoza, and Alicante. These heuristics are used only to

minimize the number of Web accesses and to allow a better

performance (in time response) of the system.

Once the unbound variables have been instantiated, the

PlannerAgents need to select the appropiate WebAgents to

ask for the information. Planning operators of the abstract so-

lutions and Web sources are related by means of a WebAgent

hierarchy. This hierarchy allows each PlannerAgent to know

which WebAgents know how to retrieve the required infor-

mation. The specific hierarchy that we built for this domain

is represented in Fig. 5.

If a planning operator is repeated in different abstract solu-

tions, it is only considered once, to avoid repeating queries.

For instance, in the solutions for 1-transfer problems, the

operators <travel-by-airplane ...> and <travel-
by-train ...> would be finally translated as shown in

Table 2.

6

Table 2 Queries partially instantiated to the appropriate WebAgents

Query sent to the WebAgents WebAgent

(travel-by-plane user1 plane0? Mad Barcelona) Iberia,

Amadeus-Flight

(travel-by-train user1 train0? Mad Barcelona) Renfe,

RailEurope

(travel-by-plane user1 plane0? Mad Alicante) Iberia,

Amadeus-Flight

(travel-by-plane user1 plane0? Mad Valencia) Iberia,

Amadeus-Flight

(travel-by-train user1 train0? Mad Zaragoza) Renfe,

RailEurope

.

Those queries (and all the additional information given

by the UserAgent) are sent to WebAgents that know about

airplane and train travel information, respectively. Thus, the

variables plane0? and train0? will be instantiated as well

(if the gathering process in the WebAgents is successful).

3.2. The information gathering process

This process is achieved by WebAgents in MAPWEB-

ETOURISM. These agents receive the information queries from

the PlannerAgents, transform them into actual Web queries,

access to its known Web source, and return the gathered infor-

mation to the PlannerAgent in a standard format. The trans-

lation of the information is performed by Wrappers [25, 27].

Figure 6 displays the WebAgent architecture. A WebAgent is

made of three main components: a control module, a record

database, and one Wrapper.

Any WebAgent implements several processes that can be

summarized as:

1. Retrieve stored information. When a WebAgent receives

a query from a PlannerAgent, its control module tries

to fulfill the query by retrieving the appropriate stored

records from its local database.

2. Build a Web query. If the the local database fails, the agent

builds a query to search for the requested information

in the Web source. If the user does not provide all the

necessary information to access the source, the WebAgent

will fill in the necessary fields with predefined values.

3. Wrapping process. Once the query is built, the agent uses

its automatic Web access skill to gather the information.

The following tasks are performed in this process:

(a) Retrieving a Web document. This task simply emulates

the action of a human fetching the page from his/her

Web browser.

(b) Extracting information. Given that the electronic

source returns is in HTML format, it is necessary to

filter the page to extract the specific information. To

simplify the gathering process, we are using semi-

structured Web sources (these sources can be charac-

terized because the relevant information is stored in

tables or lists in the HTML page).

(c) Mapping information. The information extracted is

translated into a common internal structure (or record)

for all agents in the system.

(d) Storing information. The gathered records are stored

into a relational database. This will avoid repeated

accesses to the Web for the same information.

4. Answer to the PlannerAgent. Finally, from the database or

the Web, the gathered records are sent to the PlannerAgent.

From the previous example, the following queries would

be answered by several WebAgents (WebAgent-Iberia,

WebAgent-Amadeus-Flight, and WebAgent-Renfe) with the

records shown in Table 3:� (travel-by-plane user 1 plane 0? Madrid Barcelona)� (travel-by-train user 1 train 0? Madrid Barcelona)

Control Module

Wrapper

Iberia

Web

Source

Iberia.Airlines

Query

HTML

Retrieving

PlannerAgent

WebAgent

Records

Queries

Storing

Field1:

Field2:

FieldN:

Field1:

Field2:

FieldN:

RECORD RECORD

BASE

RECORD

Fig. 6 WebAgent architecture

7

Table 3 Information retrieved
by WebAgents from airfligths
and train companies

Inf-FLIGHTS record1 record2 record3 Inf-TRAINS record1 record2

WebAgent Iberia Amadeus Amadeus WebAgent Renfe Renfe

air-company Iberia Iberia Portugalia train-company RENFE RENFE

http-address w3.iberia.es http-address w3.renfe.es w3.renfe.es

flight-id IB8797 IB8819 NI711 train-id 07054 07056

ticket-fare 424.5 ticket-fare 4.7 4.7

currency EUR EUR EUR currency EUR EUR

flight-duration 3 h 45 min 2 h 00 min 2 h 10 min departure-city MAD MAD

airp-depart-city MAD MAD MAD departure-date 11-09-01 11-09-01

departure-date 11-09-01 11-09-01 11-09-01 departure-time 6:30 8:30

airp-arrival-city BCN BCN BCN arrival-city BCN BCN

return-date null null null arrival-date 11-09-01 11-09-01

class Tourist null null arrival-time 7:53 9:47

num. passengers 1 1 1 class Tourist Tourist

round-trip one-way one-way one-way

Here, we use a simple extraction process from the html

page. It is known that the information is stored in the html

page in a table. Therefore, the html code before and after

the table is removed. Then, the table is parsed to extract

the desired raws and columns. Finally, this information is

translated into a relational format that can be used by other

agents in the system. In the future, we would like to autom-

atize this process by using automatic Wrapper generation

techniques [18].

3.3. The integration process

This last process is performed by a PlannerAgent that in-

tegrates the retrieved information (records) into a set of

instantiated solutions, or plans, that finally are sent to the

appropriate UserAgent. The abstract plans produced in the

first phase are used by the PlannerAgent as a template to in-

tegrate heterogeneous data. Figure 7 shows two successful

plans that are completed by the PlannerAgent. The opera-

tors are instantiated with specific information (records) that

could be shared between different plans. Successful plans are

stored in a relational Plan Base. It is possible to retrieve plans

at two different levels of generality; either abstract plans or

specific plans can be retrieved through indexes. The former

are located by using the Abstract-Goal-index, and the

latter by means of the Goal-index. Those plans in which

one or several steps failed are rejected.

All the PlannerAgents in MAPWEB-ETOURISM use a

scheduling module to avoid sequencing two records that can

not be scheduled. Therefore, for any record gathered by the

WebAgents, if this information relates to a travel step and the

time is known (for instance, a flight from Madrid to Barcelona

arriving at 10:00 am), it will only be possible to use this record

with other travel records in the same plan if the new trans-

port departures after an elapsed time. For instance, it will

not be possible to take a train which leaves from Barcelona

to Valencia before 11:00 am because the user needs to go

from the airport to the train station. Any PlannerAgent uses

a parameter named elapsed-time to schedule two (travel)

records. Therefore, only fulfillable plans are sent back to

Operator 1,1

Operator 1,2

Operator 1,J

*
*

*
*
*

*

record1,1

record1,2

record1,3

record1,4

record1,n–1

record1,n

*
*

*

record2,1

record2,2

record2,p–1

record2,p

*
*

*

Abstract PLAN_2

(Goal–Abstract–Index)

Abstract PLAN_1

(Goal–Abstract–Index)

Operator 2,1

Operator 2,2

Operator 2,K

(Goal–Index) (Goal–Index)
Instantiated PLAN_1 Instantiated PLAN_2Fig. 7 Relationship between

abstract and specific information
instantiated in the
PlannerAgents

8

Fig. 8 New agents hierarchy
with a new specialized Web
agent

the UserAgent. Every abstract plan will be instantiated into

many different actual plans.

3.4. Adding new information sources

To show the flexibility of our Plan-based IG approach, let

us suppose that we wish to add a new information source in

MAPWEB-ETOURISM. This new source allows to consult the

city subway system to travel between two places inside the

city. How will this new type information affect the whole sys-

tem? On the one hand, it is necessary to build a specialized

WebAgent capable to extract information from the corre-

sponding Web source. This new agent will be inserted in the

hierarchy of the PlannerAgents to allow both, the commu-

nication between planning and Web agents and to integrate

the gathered information into the new solutions. Figure 8

displays the new hierarchy that will be used by MAPWEB-

ETOURISM agents.

On the other hand, the planning domain needs to include

a new operator that is able to look for solutions taking into

account that it is possible to take the subway inside the city.

The new planning operator is shown in Fig. 9.

The description of the problem can now use two types of

local transports (bus and subway) because there are two oper-

ators that are able to reason about this information. These new

solutions integrate within the plan the information provided

by the new WebAgent-subway. The new (abstract) solutions

found by the PlannerAgent will be able to use the subway to

achieve the user goals. Some of them are shown in Fig. 10.

Finally, the previous skeletal plans and the specific infor-

mation provided by the Web specialized agent will be used

to build the complete solutions.

4. Experimental evaluation

The aim of the experiment carried out in this section is to

evaluate how the IG technique is able to find new solutions

that cannot be found without information integration. The

experimental setup is as follows:� Three categories of problems have been considered:

National trips (within Spain), European trips, and

International trips. A set of 30 test problems was used. Ten

planning problems were randomly generated for each cat-

egory. To generate those problems, we selected randomly

pairs of cities from a set containing 100 cities. 40 of them

were national (Spanish) cities, 30 additional European

Fig. 9 Travel-by-subway operator

9

Fig. 10 Some simple solutions
when a new operator is added to
the planning domain

cities, and 30 additional extra European cities. Finally,

several travel characteristics, like departure date, number

of passengers, type of transport to be used, etc. . . were also

generated randomly.� Then, several configurations (or Topologies) were im-

plemented in MAPWEB-ETOURISM. Only one UserAgent

and one PlannerAgent were used in the configurations.

Only the number and type of WebAgents is variable.

Three different WebAgents were used to build the topolo-

gies: Amadeus-Flights (AMF, http://www.amadeus.net),

Iberia (IBE, http://www.iberia.com), and Renfe (RNF,

http://www.renfe.es). Amadeus-Flights is a metasearcher;

it can search information from many airplane companies.

Iberia and Renfe can only search information about their

own knowledge sources (flights and trains respectively).� MAPWEB-ETOURISM was then tested using the previous

problems. Both 0 and 1 transfers were allowed in the trip.

Table 4 shows the number of problems solved and the

average number of solutions per problem. These quanti-

ties are shown for every topology (1, 2, and 3 WebAgents)

and have been broken down for every type of trip:

National/European/International.

Two points deserve to be highlighted. With respect to the

two homogeneous sources (AMF and IBE), AMF is better

in terms of problems solved, because it is a metasearcher

engine which is able to retrieve information from different

companies. It solves 15/21 problems (0/1 transfers, respec-

tively). With respect to combinations of more than one Web

agent, the three agent configuration (AMF-IBE-RNF) man-

ages to solve 19/29 (0/1 transfers) out of the 30 problems.

However, the integration of only two of them (AMF-IBE) al-

lows to find many more solutions per problem because even

though AMF is a metasearcher, it does not consider all solu-

tions. This is specially true when 1 transfer is allowed. For

instance, for 1 transfer, AMF-IBE obtains 195.4/122.6/78.3

solutions per problem for national, european, and interna-

tional problems, respectively. On the other hand, the stan-

dalone WebAgents AMF and IBE obtain 28.4/41.3/19.2 and

40.1/25.8/14.2 solutions per problem, respectively.

In addition to showing that more solutions can be found,

this experiment shows how the integration of heterogeneous

sources allows to solve more problems as well, because new

heterogeneous solutions (train + plane) are found that could

not be retrieved from the homogeneous WebAgents alone.

For instance, for 0 transfers, the AMF-IBE-RNF configura-

tion solves 8/7/5 problems (National/European/International,

respectively) whereas the best homogeneous configuration

(AMF-IBE) solves only 5/6/4. For 1 transfer, results are even

better: 10/10/9 vs. 5/10/6. Additionally, there is a high in-

crease in the number of solutions returned.

In this paper, we have considered the number of solved

problems and the number of solutions per problems. There

can be two possible reasons for having unsolved problems:

Table 4 Number of solved
problems (out of 30) using
different topologies in
MAPWEB-ETOURISM

N◦ of problems solved N◦ of solutions

0 Transfers 1 Transfer 0 Transfers 1 Transfer

Topology type Selected topology N/E/I N/E/I N/E/I N/E/I

1 WebAgent AMF 5/6/4 5/10/6 9.6/6.8/1.5 28.4/41.3/19.2

IBE 5/4/3 5/9/5 13.8/9.1/5.7 40.1/25.8/14.2

RNF 8/2/0 10/3/0 10.8/1/0 36.5/8.4/0

2 WebAgents AMF-IBE 5/6/4 5/10/6 18.4/11.9/6.1 195.4/122.6/78.3

3 WebAgents AMF-IBE-RNF 8/7/5 10/10/9 29.2/12.9/6.1 830.8/540.5/398.7

10

on the one hand, there can be no possible solution within the

information provided by the Web sources. On the other hand,

and more unlikely, the heuristics used may filter out some

possible solutions (this is not the case of the experiments

reported here). Once the solutions have been obtained, they

can be sorted by a user chosen criteria, like price or time.

The only way to find the best quality solution is to obtain all

possible solutions by trying all possibilities. However, due

to the large number of data registers, we have decided to

limit the number of solutions analyzed by means of special

purpose heuristics, as described in Section 3.1. The heuristics

have been carefully designed so that best quality solutions

are not filtered out.

With respect to the on-line time required to obtain the

total number of solutions, for all the 0-transfer problems,

this time is smaller than 3 minutes. The reason is that when

only 0 transfers are considered, the number of queries and

the number of retrieved solutions is small. On the other

hand, 1-transfer problems require at least 5 minutes to re-

trieve all the solutions. This is because many more solutions

are found. Also, this time increases from the national prob-

lems (5 minutes) and the European problems (10 minutes),

to the international problems (15 minutes). In this case, the

cause is not the higher number of solutions (there are fewer

solutions for international problems) but the high number

of WEB queries. WebAgents send more queries for inter-

national problems because many more cities are involved.

Fewer solutions for international flights are found because

some queries return no solution, or redundant solutions are

found. In any case, the system returns a solution as soon

as it is found, and in all cases, this time is smaller than

1 minute. Therefore, the approach is feasible as an on-line

system.

5. Related work

Several systems, and techniques, have been designed to deal

with heterogeneous information sources. These kinds of sys-

tems (SIMS [3, 4]), usually named mediators, implement

several mechanisms that provide access to heterogeneous

data and knowledge bases. These techniques can be used to

build information agents, that are able to extract, query, and

integrate data from electronic sources. Information agents

have been used to implement different systems that are able

to retrieve and integrate information from the WEB [14, 17].

The most important systems closer to our work are:� Ariadne [16]: This system includes a set of tools to con-

struct wrappers that make WEB sources look like relational

databases. It also uses mediation techniques based on

SIMS [3, 17]. The main focus of these systems is how to

access the distributed information, so the integration prob-

lem is not a hard problem. However, besides accessing the

appropriate information, we are interested in integrating

the different sources and solve complex problems with the

retrieved information.� Heracles [2, 15]: This framework is used to develop

different information assistant systems that employ a

set of information agents (Ariadne, Theseus, Electric

Elves). A dynamic hierarchical constraint propagation net-

work (CPN) is used to integrate the different information

sources. Two assistant systems have been implemented:

The Travel Planning Assistant (specialized in assisting

tourists to plan their trips) and The WorldInfo Assistant
(for a user-specified location, it integrates information from

different information sources like weather, news, holidays,

maps, or airports). In this framework the integration of the

retrieved information is made by a CPN. Therefore, if the

problem changes, the CPN needs to be rewritten by hand.

MAPWEB is more flexible because it uses a planner to auto-

matically generate the plans, which are the structures anal-

ogous to the CPN. For instance, if new transport sources

like taxi or buses become available, it is only necessary to

add a new planning operator for every new source and the

PlannerAgent will use them to access these sources.� Retsina [7, 23, 29]. Retsina is a well known multi-agent

architecture that supports communities of heterogeneous

agents. In this architecture coordination structures emerge

from the relations between agents, rather than as a result of

the imposed constraints of the infrastructure itself. Retsina

does not employ centralized control within the MAS. This

architecture implements distributed services that facilitate

the interactions between agents, as opposed to managing

them. This architecture has been successfully used to im-

plement several MAS like MokSAF (logistics planning in

military operations), or MOCHA (wireless, mobile com-

munications) [19]. This architecture has been widely used

in several domains like the WEB or for military applica-

tions. Our system parallels some of Retsina’s ideas, but

our agents can also use planning mainly in the Informa-

tion Gathering framework, to determine which information

agents would be queried and to integrate the heterogeneous

gathered data into a detailed solution. Therefore, in our ap-

proach plans can be used as a template to coordinate the

information agents and to guide the integration process.

WebPlan [12] is a WEB assistant for domain-specific

search on the Internet based on dynamic planning and

plan execution techniques. The existing planning system

CAPlan [13, 32] has been extended in different ways in or-

der to deal with incomplete information, information seek-

ing operators, user interaction, and interleaving planning and

execution. WebPlan is specialized in locating specific PC

software on the Internet. Planning is used in this system to

select the most appropriate sources to look for information,

11

whereas MAPWEB uses planning to select the appropriate

WEB sources and to build the solution to a user problem.

Finally, the travel assistant domain used as a testbed in

this paper, has been widely used in the literature [2, 11, 22,

24, 28, 33].

6. Conclusions

In this paper, we have proposed to use planning for infor-

mation gathering, to select and integrate information from

heterogeneous Internet sources. From the experimental

results of this paper, it can be shown how MAPWEB allows

not only to gather information from different sources. but to

solve more user problemas, and to find more solutions for

them, by using sequences of planning operators (plans) to

integrate data from heterogeneous sources.

The paper also shows that planning techniques make it

easier to flexibly work with heterogeneous sources, because

it is straightforward to relate a source with an specialized

planning operator. New operators allow to find new types of

solutions. In order to handle more complex problems, all that

is required is to add new abstract planning operators and the

appropriate WebAgents that provide the specific information.

Currently, we assume that the different sources contain all

the information required to build a complete solution. But this

is not always the case. For instance, not all travel informa-

tion sources provide data about time and/or cost, and some

assumptions will have to be made. Machine learning and

statisticial techniques could be used to derive plausible values

for missing data. Also, the Web is a dynamic environment and

information sources can fail temporarily. We intend to treat

this problem by means of local databases in the Web agents,

that can store records retrieved at other times. This will also

increase the uncertainty of plans provided to the user, as some

plan steps will be based on old, possibly false, information. In

the future, we intend to handle this and other types of uncer-

tainty, so that possible plans can still be displayed to the user.

Also, although the system allows to add new information

sources by extending the operator set and including new

information agents, this process has to be carried out

manually. In the future, we intend to automatically discover

new information sources by taking advantage of new

technologies related to the Semantic Web and Web Services.

Currently, we are defining an ontology so that new Web

sources can be more easily introduced in the system and to

facilitate the exchange of information among agents.

References

1. Ambite JL, Knoblock CA (1997) Planning by rewriting: Efficiently
generating high-quality plans. In: Proceedings of the 4’th National
Conference on Artificial Intelligence

2. Ambite JL, Barish G, Knoblock CA, Muslea M, Oh J,
Minton S (2002) Getting from here to there: Interactive
planning and agent execution for optimizing travel. In: The
4’th Innovative Applications of Artificial Intelligence Conference
(IAAI)

3. Arens Y, Chee CY, Hsu C-N, Knoblock CA (1993) Retrieving
and integrating data from multiple information sources. Inter-
national Journal of Cooperative Information Systems 2(2):127–
158

4. Arens Y, Knoblock CA, Shen W-M (1996) Query reformulation for
dynamic information integration. Journal of Intelligent Informa-
tion Systems, Special Issue on Intelligent Information Integration
6(2/3):99–130

5. Camacho D, Aler R, Borrajo D, Molina JM (2005) A multi-agent
architecture for intelligent gathering systems. AI Communications.
The European Journal on Artificial Intelligence. (Ed. by IOS Press)
To appear in Vol. 18(1)

6. Cohen PR, Perrault CR (1979) Elements of a planbased theory of
speech acts. Cognitive Science 3(3):177–212

7. Decker K, Sycara K (1997) Intelligent adaptive informa-
tion agents. Journal of Intelligent Information Systems 9:230–
260

8. Fan Y, Gauch S (1999) Adaptive agents for information gather-
ing from multiple, distributed information sources. In: Proceedings
of 1999 AAAI Symposium on Intelligent Agents in Cyberspace.
Stanford University

9. Finin T, Weber J, et al (1993) Draft specification of the KQML
agent communication language 15 Jun

10. Finin T, Fritzson R, Mackay D, McEntire R (1994) Kqml
as an agent communication language. In: Proceedings of the
3’rd International Conference on Information and Knowledge
Management (CIKM94), Gaithersburg, Maryland, Association
of Computing Machinery, ACM Press, New York pp 456–
463

11. Fipa Foundation For. Fipa 97 draft specification part 4 personal
travel assistance

12. Hüllen J, Bergmann R, Weberskirch F (1999) Webplan: Dynamic
planning for domain-specific search in the internet. In: Workshop
Planen und Konfigurieren (PuK-99)

13. Hüllen J, Weberskirch F (1999) Extracting goal orderings to im-
prove partial-order planning. In: Workshop Planen und Konfiguri-
eren (PuK-99)

14. Knoblock CA, Ambite JL (1997) In: Bradshaw J (ed), Agents for
Information Gathering, chapter In Software Agents, AAAI/MIT
Press, Menlo Park, CA

15. Knoblock CA, Minton S, Ambite JL, Muslea M, Oh J, Frank M
(2001) Mixed-initiative, multi-source information assistants. In:
The Tenth International World Wide Web Conference (WWW10).
ACM, 1–5 May

16. Knoblock CA, Minton S, Ambite JL, Ashish N (1998) Modeling
web sources for information integration. In: Proceedings of the
Fifteenth National Conference on Artificial Intelligence, Madison,
WI

17. Knoblock CA, Minton S, Ambite JL, Ashish N, Muslea I, Philpot
A, Tejada S (2001) The ariadne approach to web-based informa-
tion integration. International Journal of Cooperative Information
Systems 10(1/2):145–169

18. Kushmerick N (2000) Wrapper induction: Efficiency and expres-
siveness. Artificial Intelligence 118(1–2):15–68

19. Lenox T, Hahn S, Lewis M, Payne T, Sycara K (2000) Task char-
acteristics and intelligent aiding. In: Proceedings of the 2000 IEEE
International Conference on Systems, Man, and Cybernetics IEEE
pp 1123–1127

20. Levy AY, Rajaraman A, Ordille JJ (1996) Querying heterogeneous
information sources using source descriptions. In: Proceedings

12

of the Twenty-second International Conference on Very Large
Databases, Bombay, India. VLDB Endowment, Saratoga, Califor-
nia, pp 251–262

21. Oates T, Nagendra Prasad MV, Lesser VR (1994) Cooperative infor-
mation gathering: A distributed problem solving approach. Tech-
nical Report 94-66, University of Massachusetts

22. Donie O’Sullivan et al. Experiences in the use of fipa agent tech-
nologies for the development of a personal travel application

23. Paolucci M, Kalp D, Pannu AS, Shehory O, Sycara K (1999) A
planning component for retsina agents. In: Lecture Notes in Artifi-
cial Intelligence, Intelligent Agents VI

24. Ricci F, Werthner H (2002) Case base querying for travel plan-
ning recommendation. Information Technology and Tourism Jour-
nal 4(3/4):215–226

25. Sahuguet A, Azavant F (2001) Building intelligent web applica-
tions using lightweight wrappers. Data Knowledge Engineering
36(3):283–316

26. Salton G, McGrill MJ (1983) Introduction to modern information
retrieval, McGraw Hill, Computer Science Series

27. Srinivasan P, Mitchell J, Bodenreider O, Pant G, Menczer F (2002)
Web crawling agents for retrieving biomedical[-9pt] information.
Available from http://dollar.biz.uiowa.edu/fil/Papers/bixmas.pdf

28. Staab S, Werthner H (2002) Intelligent systems for tourism. IEEE
Intelligent Systems pp 53–66

29. Sycara K, Decker K (1996) Distributed intelligent agents. IEEE
Expert 11(6):36–46

30. Veloso M, Carbonell J, Perez A, Borrajo D, Fink E, Blythe J (1995)
Integrating planning and learning: The prodigy architecture. Jour-
nal of Experimental and Theoretical AI 7:81–120

31. Veloso M (1994) Planning and learning by analogical reasoning,
Springer-Verlag

32. Weberskirch F (1995) Combining snlp-like planning and
dependency-maintenance. Technical report, Technical Report LSA-
95-10E, Centre for Learning Systems and Applications, University
of Kaiserslautern, Germany

33. Yim HS, Ahn HJ, Kim JW, Park SJ (2004) Agent-based adaptive
travel planning system in peak seasons. Expert Systems with Ap-
plications 27(2):211–222

13

