
A MATLAB-BASED LOW-COST AUTOPILOT

FOR AUTONOMOUS HELICOPTER

DEPLOYMENT

Ismaila B. Tijani, Rini Akmeliawati, Ari Legowo,

 Intelligent Mechatronics System Research Units,

Faculty of Engineering, IIUM,Malaysia

Kuala Lumpur, Malaysia

Tun Muzamil L.A

MISA sdn Bhd Shah Alam,

Selangor Darul Ehsan, Malaysia

Abstract— The challenges associated with the software and

hardware integration activities in development of flight autopilot

system for autonomous helicopter have called for a change of

tactics. The resulting effect is for example, a long time delay in

autopilot system design, testing and deployment coupled with the

fact that several other autonomous helicopter development tasks

depend largely on availability of the autopilot system. Though,

the use of off-the-shelf autopilot for a flight control system may

ease these challenges, they are generally characterized with

limited functionalities, and restrict the user’s design authority. As

alternative approach, this paper presents the development of a

MATLAB-based autopilot system for autonomous helicopter

development. This approach provides an integrated design

environment for rapid-prototyping of a low-cost autopilot system.

The results of real-time application of the autopilot for flight data

logging are presented. The performance shows the effectiveness

of the developed autopilot system in small scale autonomous

helicopter design and implementation. This is hope to reduce the

design cycle time involves in the deployment of small scale

autonomous helicopter in various civil low-cost, small payload

applications.

Keywords-MATLAB-SIMULINK, dsPIC blcoksets, autopilot,

autonomous helicopter, embedded programming

I. INTRODUCTION

The need for simple, cost effective, and reliable autopilot
system represents a core requirement in low-cost flight control
system for autonomous helicopter deployment for several
potential civil applications [1]. Two major approaches are
available in the FCS development: (i) development of custom
system and (ii) procurement of off-the-shelf autopilot. The
design and development of customized autopilot for FCS has
been reported alongside research activities in autonomous
helicopter or sometimes as a standalone research study. Among
the prominent achievements in this regards are the
development of custom FCS using PIC104 processor board
with QNX Neutrino real-time operating system (RTOS) for the
MIT Xcell-60 [2], and for the NUS autonomous helicopter [3].
Carnegie Mellon (CMU) autonomous helicopter (based on
Yamaha R-50) was developed with Motorola 68060 processor
board and programmed with VxWorks RTOS. The use of
MP555 PowerPC board together with a standard PC board
(VIA

TM
) for autonomous helicopter platform development is

reported in [4]. Here the MPC555 was used for sensors and

actuator interface while the PC board handled the
computations. The challenges in this design approach have
been anchored on the difficulties involve in software and
hardware integrations for the real-time embedded platform.
The resulting effect is for example, a long time delay in
autopilot system design, testing and deployment coupled with
the fact that several other autonomous helicopter development
tasks depend largely on availability of the autopilot system.

A possible way out of this is to go for off-the-shelf
(commercial) autopilots. These commercial autopilots are
available either with proprietary software such as Piccolo [5],
Micropilot [6], Kersel [7], or with open-source software among
which are ArduPilot [8] and Paparazzi [9]. The use of any of
these autopilots for flight control system design (FCS) provides
a simplified solution to the customized based FCS design. . A
comparative study of these autopilots is reported by [10]. Apart
from the software options, all of them share similar
characteristics and functionalities. Though they simplified the
FCS design, there are many drawbacks in the adoption of this
approach. First, they are difficult to modify [11], and hence,
user are constraint within available functionalities provided
even with open-source based autopilot option. Second, they
have limited computational capacities, and presently most of
them are equipped with classical PID controller [10]. These
have responsible for the limitation of these autopilots to either
preliminary autonomous aerial vehicle design cycle or for a
micro aerial vehicle applications especially fixed wing based
autonomous aerial vehicles.

Alternatively, the use of user-friendly programming
environment like National Instrument (NI) Labview [12] and
MATLAB-based real-time embedded programming ([13] has
been proposed. Konku university reported recently successful
completion of rotary wing autopilot using NI single board
computer [12] with NI virtual instrument real-time
programming tools. The simplicity of the graphical
programming tool is major benefit of this design approach.
This is obtained at a relative high cost in order of four digits
US dollars, also it requires suitable amount of payload to carry
the computing target which could weigh up to 4Kg with power
supply module.

Exploration of MATLAB Simulink’s Real Time Workshop
(RTW) for embedded code generation is reported in [13].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The International Islamic University Malaysia Repository

https://core.ac.uk/display/300416081?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Considering the fact that, most of the autonomous helicopter
design activities are commonly carried out using MATLAB
tools, this embedded design approach promises an integrated
design environment for rapid-prototyping of FCS design and
deployment. In addition, the general believe that the
automatically code generated through this process is neither
reliable nor as efficient as handwritten codes has been noted to
be an outdated views in embedded programming [11]. It has
been demonstrated that the code generated is only 5% larger
and 15% slower than the handwritten code, and this approach
has been successfully employed in several applications such as
industrial PLC programming, navigation and flight control
system and hypersonic scrampjets [11]. Moreso, the use of this
automatic code generation has benn shown to reduce the design
cycle by around 75% [14]. Meanwhile, the generic code
generated by MATLAB RTW is currently limited to specific
features of a given processor via Simulink Embedded target
(ET). There may be need to do few code verification prior to
compilation into the target hardware. Recently, alternative ET
has been proposed targeting dedicated microcontroller such as
Microchip PIC24 upwards [15]. The integration of this third
party ET tools provides automatic generation of ready-to-
deploy code for microchip PIC24, dsPIC33 and PIC32 series.
The application of this integrated design approach is reported
in [11].

Hence, as part of an ongoing research on autonomous
helicopter, this study presents the development of a MATLAB-
based autopilot for flight control system deployment. Though,
the overall goal of the FCS is to fully provide essential
functionalities for autonomous helicopter deployment as shown
in Fig. 1, the present study focuses on the flight data
acquisition stage. The rapid-prototyping of low-cost 16-bits
digital signal processor (dsPIC33) is facilitated using the
integrated design environment involving MATLAB-
SIMULINK-RTW, a third party dsPIC-MATLAB blocksets [2]
and microchip design tools. The performance of the developed
autopilot is evaluated in real-flight test on a small scale
helicopter platform.

The rest of the paper is as follows. Section II gives brief
overview of the helicopter platform adopted in this study. The
hardware selection and description followed by the MATLAB-
based embedded programme are presented in section II and IV
respectively. The hardware-software integration is presented in
section V, while the results of both static and field tests are
provided in section VI. The paper is concluded in section VII
with future study.

Fig. 1 Blcok diagram of Flight control system components

II. HARDWARE COMPONENTS: SELECTIONS AND

DESCRIPTION

The selection of hardware components for the system
development is majorly affected by first by the intending
application, cost, performance expectation and required
development tools (software). The major hardware employed
are: RC helicopter platform, inertial measurement units (IMU),
global positioning system (GPS), ultrasonic based altimeter,
servo switching multiplexer.

A. Helicopter Platform

A 50 class Hirobo RC helicopter (Hirobo SDX50) is
selected as the autonomous helicopter platform with a
FUTABA ten channels RC transmitter and receiver. Hirobo 50
class SDX is a single rotor hobby helicopter with stabilizer bar
capable of both basic and 3D aerobatic flight. The helicopter is
shown in Fig. 1, and its general specifications are given in
Table 1.

Fig. 2 Hirobo SDX 50

Table 1

General specifications of Hirobo SDX50 Helicopter

Components Specifications

Full length of fuselage 1220mm

Full width of fuselage 186mm

Height 395mm

Main rotor diameter 1348mm

Tail rotor diameter 258mm

Skid ration 8.7:1:4.71

Dry Weight 3400g

Engine 50 ize,1.9s/17000RPM

payload 2500g

B. Onboard Processor

Selection of this device depends partly on the computing
specifications (processing speed, program and data memory),
power consumption, weight, and on the required programming
development tools. Considering all these factors, a 16-bits
dsPIC33fj256g710 (40MHz CPU, 256Kb flash memory, 30Kb
SRAM memory) together with a 32-bits,
PIC32MMX460F512L (80MHz CPU, 512Kb flash memory,
32Kb SRAM memory) microcontroller boards are selected.
The dsPIC is to provide sensors interface and data acquisition
while the PIC32 is meant for control algorithm
implementation. Both are to be interconnected for full FCS.
They are equipped with several peripherals interface for SPI,
UART, I

2
C, PWM, analog and digital ports communication.

Moreover, this device is readily programmable with the

proposed MATLAB-based embedded design tools in this
study.

C. Inertial Measurement Unit (IMU)

A MEMs based VN-100 by Vectornav is selected to
provide attitude and heading measurement of the RUAV states.
The device is small (24x22x2.5mm), light weight (3g), low
power consumption (65mA/5volts). Also, it combines 3-axis
accelerometer, 3-axis gyros, and 3-axis magnetic sensors as
well as a 32-bit processor on a single module with an inbuilt
quaternion based drift compensation Kalman filter to produce
system states (attitude and heading) at a rate up to 200Hz. The
filter can be tuned to meet a specific application and operating
condition. Lastly, the device comes with a C-library that
facilitates timely interfacing of the device with onboard
processor.

D. Global Positioning System (GPS)

A 20 channel EM406A GPS smart antenna receiver is
selected to provide position information. The GPS is capable of
data output up every 1 second (1Hz). It provides TTL serial
interface 4800bps, and operates at 5.0V/44mA. The detailed
specification can be obtained in the device datasheet (Globasat,
2007).

E. Wireless Device

Considering the cost, the ease of configuration and the need
to operate the system within 1Km distance for research
purposes, a very popular member of Zigbee family of wireless
devices, 2.4GHz X-bee pro module with wire-antenna is
selected to provide bi-directional communication between the
ground computer and onboard avionics system up to 1500m
outdoor operation. More so, compatibility of several Zigbee
devices allows for easy future upgrade to higher distance
transmission.

F.Others

Other supporting hardware are ultrasonic sensor by
Maxbotic (Maxbotic,) for low altitude measurement, and
Cytron servo switching multiplexer (SCM) for manual-auto
operation.

III. MATLAB BASED EMBEDDED SOFTWARE

DESIGN

The operation of the onboard microcontroller unit (MCU) is
guided by the software developed to carry out the necessary
tasks for autonomous flight. The major three functional
components of the onboard MCU are shown in Fig. 3.

Fig. 3 Functional Block diagram of the MCU

Operationally, the software algorithm is expected to
conFig. the MCU, and its peripherals to establish the
communication with the sensors through the appropriate
interface.. Then, process and transform the acquired data into
appropriate format for onward transmission to ground station
and to the flight control algorithm as feedback states. Among
the data processing tasks to be performed are: (i) filtering,
especially the accelerometer and rates gyro data, and (ii) GPS
data processing which majorly involves transformation from
Latitude, Longitude, and Altitude (LLA) format to Earth
Centered, Earth Fixed (ECEF) format and finally to North East
Down (NED). The flight algorithm is responsible for the
execution of the flight control law designed to autonomously
guide the helicopter for the intended mission. The overall
mission execution and coordination are handled by the
supervisory algorithm unit. This brief operational sequence
serves as backbone for the software development task. To this
end, the programming task is modularized into: (i) Target
MCU configuration, (ii) data acquisition, processing and
transmission, (iii) ground station interface and data logging (iv)
flight control execution, and (v) mission coordination
algorithm. The first three modules are detailed in this study
while the last two modules constitute part of the ongoing
research activities towards full autonomous helicopter system
development.

The integrated embedded design environment comprises of
four programming tools: MATLAB toolboxes/SIMULINK, a
MATLAB dsPIC blocksets (provides SIMULINK blocks for
PIC peripherals interface), C-language, and microchip MPLAB
tools. These four tools are integrated within MATLAB
environment to achieve a single environment based rapid
prototyping of the 16 bits core data acquisition MCU (DAQ-
MCU). A single click is required to compile the developed
MATLAB SIMULINK based algorithm that is downloadable
into the embedded target using microchip 16/32 bits compiler
and In-circuit Programming and Debugging (ICD3).

Fig. 4 shows the core embedded SIMULINK blocks employed
in the programming. The essential programming sequence is
presented here, while the detailed description of these building
blocks can be obtained in [15].

MCU configuration: this is achieved with dsPIC master block
of Fig. 4a. The target MCU is conFig.d to operate 40MIPS by
activating Phase Lock Loop (PLL). The sampling rate is set at
50Hz.

Fig. 4 MATLAB SIMULINK dsPIC/PIC blocksets

Sensor Interfacing: this involves configuration of the MCU
peripherals for the sensors’ interface, and data transformation

and processing using appropriate custom MATLAB/C custom
programmes. The UART ports 1 and 2 are configured using the
blocksets of Fig. 4c for GPS (at 4800Kbs) and wireless module
(57600Kbs) respectively. The transmission rate of the GPS is
specified based on the device default rate of 4800Kbs while
that of the wireless device is computed based on total expected
data size per sample time. Total of 26 state data comprises of 3
accelerometer, 3 gyro, 3 rates, 3 attitudes/heading, 3 position
data, 3 velocity data, 3 GPS raw data, 4 PWM servo control
data and 1 altitude are expected to be transmitted. This gives a
total of 20800bits data/sample time with each data been sent at
16bits data size. The SPI port is configured to communicate
with VN100 IMU sensor using the block of Fig. 4d with
10MHz SPI clock frequency. A custom C-codes is written to
communicate with the device library. The codes are integrated
into the SIMULINK environment using the blocksets of Fig.
4h. The ultrasonic sensor data is captured using one of the
external interrupt ports of the MCU, while the four PWM
control signals (cyclic, collective and pedal) are captured with
four output compare ports (OC1-OC4). Necessary data
transformation and conversion are done using a custom m-files
function implemented using MATLAB embedded target
SIMULINK block.

GPS position/velocity filter: the GPS position information in
Latitude Longitude and Altitude (LLA) in Geodetic
coordinates is converted to position in north east down (NED)
suitable for navigation system. The transformation involves
three levels: LLA to Earth Center Earth Fixed (ECEF)
coordinate; ECEF to NED. The conversion from LLA,

]h,,[to ECEF]Z,Y,X[is achieved using the

relationship [16]:

coscos)hN(X (1)

 sincos)hN(Y (2)

sin)hN
a

b
(Z

2

2

 (3)

where N is the Radius of curvature (meters) defined as:

221 sine

a
N

 (4)

 and parameters a, b and e are the WGS84 parameters
given as:

6378137a

)f(ab 1

257223563298

1

.
f

(5)

The transformation from the ECEF to NEU is
accomplished with respect to a local reference point, which is
taken to be the location of the Ground Station (GS) system.
NEU is formed from a plane tangent to the earth’s surface and
fixed to the CG of the helicopter, hence it is termed a local
tangent or local geodetic plane. By convention, the north is
labeled x-axis, the east as y-axis and up as the z-axis.

Defined]ZYX[
ppp

 as location of the helicopter system

with center coincided approximately to the CG of the system,

and]ZYX[
rrr

 as the location of the GS, then the vector

point]zyx[of the helicopter from the GS location is

computed using:

rp

rp

rp

rrrrr

rr

rrrrr

ZZ

YY

XX

sinsincoscoscos

cossin

cossinsincossin

z

y

x

0

 (6)

where
r

 and
r

 are latitude and longitude angles

respectively of the GS location.

Considering the off-set of the GPS device from the location
of the IMU which is approximately at the CG of the RUAV,
the final position estimation is computed by:

offset_z

offset_y

offset_x

ĥ

ŷ

x̂

p

p

p

z

y

x

 (7)

where the offset vector

 10050offset_zoffset_yoffset_x

Also, the velocity vector in NED coordinates
eastnorth
vv ,

is computed from the GPS reported heading (degree)
information otherwise refer to as course of the ground (COG),
and speed over the ground (m/s), (SOG) using the expression:

)COGcos(SOGv
north

 (8)

)COGsin(SOGv
east

 (9)

The final output velocity vector
yx
vv is computed

using the velocity rate filter that updates the velocity
information using:

s

oldnew

ii
T*)v.v.(vv

5050

1
 (10)

where
s
T is the application sampling time and, velocity rate

is v is given by

s

ii

T

vv
v 1

 (11)

Heading computation: the heading angle as a measured of
angle measured clockwise from a true North (earth’s polar
axis) direction is computed from the measured magnetometer
readings by the IMU sensor (VN100). The heading is
calculated using the relationship:

)XY(tanHeading
mm
 1 (12)

where
m

X and
m

Y are x-axis an y-axis magnetic reading

respectively.

To account for the orientation of the system,
m

X and
m

Y

are computed from actual three axis magnetic readings

(
m

X ,
m

Y ,
m

Z) using the mathematical expression

 sincosZsinsinYcosXX
mmmm

 (13)

 sinZcosYY
mmm

 (14)

where and are the roll and pitch angles describing the

orientation of the system. Note that where is system is

horizontally flat,
mm

XX and
mm

YY .

The sign of heading computation is determined using the
logical expression as follows [17]:

)Y,X(if

)Y,X(if

)Y,X(if)XY(tan

)Y,X(if)XY(tan

X(if)XY(tan

Heading

mm

mm

mmmm

mmmm

mmm

00270

0090

00360

00

0180

1

1

1

 (15)

The effect of magnetic declination angle was considered by
subtracting the country declination angle. The angle of
declination of the country magnetic field was obtained from the
National Geophysical Center (NOAA) [NOAA] as -0.1075
degree. This was accounted for in the final heading
computation using:

 Heading_final = heading_computed - (-0.1075) (16)

A MATLAB m-file functions and relevant SIMULINK
blocks were used to compute both the position/velocity filters
and heading computation using the expression (1-15). This was
then implemented using MATLAB embedded function
Simulink block.

IV. SYSTEM INTEGRATION

The overall system integration components is shown in Fig. 5

and comprises mainly of hardware set-up, embedded

MATLAB based programming, and integration of hardware

and software for deployment on the autonomous helicopter

platform.

 The overview of the cost, weight and current rating (where

applicable) for the hardware components are given in Table 2.

The cost is without the shipping cost which is relative to

location. The overall cost of the system is approximately

estimated at 1500 US dollars, which is quite within low cost

system. The total weight estimated at 1010g shows that only

around 40% total payload has been utilized by the current set-

up leaving the rest 60% for future upgrade. However, during

the flight test, dummy loads were added to balance the system,

and also as provision for other items (camera, control MCU,

extra battery) to be added in the nearest future.

I. PERFORMANCE EVALUATION AND RESULTS

Series of tests were carried out to evaluate the performance of

the developed autopilot on the autonomous helicopter system.

Fig. 5 Complete system integration stages

Table 2: Estimated cost, weight and current rating

These include static test (on ground test), and flight test.
The attitudes, heading, acceleration and rates reading of the
IMU sensor are logged for up to 4minutes (200s) at rate of
20ms. This was repeated five times, then the mean and
standard deviation of the static readings are computed. The
results obtained were within the accuracy of the sensor
performance specification. By starting from a direction
approximately closed to true North using a compass device, the
helicopter system was rotated clock-wisely and back to the
original point. The heading information computed by the
onboard system is shown in Fig. 6.

The reliability and accuracy of the GPS module position

information logging were evaluated. This was achieved by

mounting the system on a ground vehicle, and drove around

the university campus while the position information in LLA

format is been logged into the accomplished ground computer

station. The reported position information was processed and

compared with Google map using a free software package

(GPS visualizer) available online [18]. Fig. 7 shows the

comparative view of the reported GPS information and

Google map. As shown in Fig. 7, the GPS accurately tracked

the Google Earth way-points

0 5 10 15 20 25
0

50

100

150

200

250

300

350

400

Time (s)

H
ea

d
in

g
fr

o
m

 t
ru

e
N

or
th

 (
d

eg
re

e)

Fig. 6 Sample test result of Heading from true North

Hardware

set-up

Matlab-based

programming

Deployment

in

autonomous

helicopter

 Fig. 7 Comparison of GPS and Google map position information

Field test: The system is commanded manually to perform
various flight operations such as take-off and landing,
hovering, and cruise flight at varying speed. For a complete
flight operation test, the pilot takes-off the helicopter off the
ground effect, hovering, then climb vertically, perform
hovering and excite the attitudes and heading with sweep input
signal, then navigate around the flight field. The objective of
this test is to evaluate the ability and reliability of the
developed system and its onboard electronics to perform the
intended operation and withstanding severe operation
condition. Fig. 8-Fig.11 show samples of control inputs and
state responses of the system for various flight modes. These
flight data constituted the information required for system
modeling and analysis in other various autonomous helicopter
system developments. The sample of position information in
NED coordinate is shown in Fig. 12 while the Google map
view of a flight pattern is shown in Fig. 13.

The results of both ground and field tests show the
effectiveness of the developed autopilot to provide necessary
flight data acquisition and state estimation for the helicopter
system analysis.

0 10 20 30 40 50 60 70 80 90 100
-1

0

1
servo command (units)

la
t

0 10 20 30 40 50 60 70 80 90 100
-1

0

1

2

lo
n

0 10 20 30 40 50 60 70 80 90 100
-0.5

0

0.5

1

co
l

0 10 20 30 40 50 60 70 80 90 100
-1

0

1

Time (s)

pe
d

Fig. 8 servo command signal

0 10 20 30 40 50 60 70 80 90 100
-100

-50

0

50

100
rates (degree/s)

p
(d

eg
./s

)

0 10 20 30 40 50 60 70 80 90 100
-50

0

50

100

q
(d

eg
./s

)

0 10 20 30 40 50 60 70 80 90 100
-100

0

100

200

Time (s)

r
(d

eg
./s

)

Fig. 9 measured angular rates responses

VI CONCLUSION

The development of a MATLAB-based autopilot system
for autonomous helicopter system has been reported in this
paper. The deployment is presentedbased on an integrated
MATLAB environment (MATLAB-IDE) have been presented

in this chapter. Performance evaluation results for both static
and in-flight tests of the developed system show the success
and ability of the autopilot system to provide effective flight
data estimation and acquisition required in the autonomous
helicopter system design and deployment. This proposed
integrated design enviroment is expected to simplified the
future upgrade and reconfiguration of system functionalities.
Future study involves upgrade of the flight control system for
flight control algorithm implementation.

0 10 20 30 40 50 60 70 80 90 100
-6

-4

-2

0
acceleration (m/s)

ax
 (

m
/s

2)

0 10 20 30 40 50 60 70 80 90 100
-4

-2

0

2

ay
 (

m
/s

2)

0 10 20 30 40 50 60 70 80 90 100
-15

-10

-5

0

Time (s)

az
 (

m
/s

2)

Fig. 10 measured acceleration

0 10 20 30 40 50 60 70 80 90 100
-100

-50

0

50

100
attitudes(deg)

ro
ll

 (
d

eg
.)

0 10 20 30 40 50 60 70 80 90 100
-40

-20

0

20

40

60

80

Time (s)

p
it

ch
 (

d
eg

.)

Fig. 11 measured attitudes

190
200

210
220

230
240

250
260

270
280

290

-48
-47

-46
-45

-44
-43

-42
-41

-40
-20

-10

0

10

20

30

x (m)

y (m)

z
 (

m
)

Fig. 12 Sample position estimation

Fig. 13 Sample flight test route within the campus flying field

ACKNOWLEDGMENT

This research was supported by the RMGS (Research
Matching Grant Scheme), Research Management Center,
IIUM, Malaysia.RMGS-09-02

REFERENCES

[1] Timothy H. Cox, Christopher J. Nagy,Mark A. Skoog, and Ivan A.
Somers, “ Civil UAV Capability Assessment”, prepared for Lawrence
Camacho UAV Vehicle Sector Manager, Vehicle Systems Program,
NASA Aeronautics Research Mission Directorate 2004..

[2] Gavrilets V., A. Shterenberg, M. A. Dahleh, E. Feron, ‘Avionics System
For A Small Unmanned Helicopter Performing Agressive Maneuvers”,
Digital Avionics Systems Conference, 2000. Proceedings. DASC. The
19th

[3] Guowei Cai, Lin Feng, Ben M. Chen, Tong H. Lee, ‘Systematic design
methodology and construction of UAV helicopters’, Mechatronics 18
(2008) 545–558, Elsevier, 2008

[4] David Vissiere, Pierre-Jean B., Alain Pierre and Nicolas Petit,
“Experimental autonomous flight of a small-scaled helicopter using
accurate dynamics model and low-cost sensors”, in proceeding of the
17th World congress, IFAC, Seoul, Korea, July 6-11,2008

[5] B. Vaglienti, R. Hoag, and M. Niculescu, “Piccolo System User’s
Guide”. Cloud Cap Technology, Hood River Oregon, 2005.

[6] MicroPilot, “Micropilot: World leader in miniature uav autopilots.”
http://www.micropilot.com, 2009.

[7] Procerus Technologies, “Kestrel autopilot.”
http://www.procerusuav.com/productsKestrelAutopilot.php, 2009.

[8] Chris Anderson, “ArduPilot”,
http://diydrones.ning.com/profiles/blog/show?id=705844%3ABlogPost
%3A35640, 2008

[9] P. Brisset, A. Drouin, M. Gorraz, P. Huard, and J. Tyler, “The Paparazzi
Solution,” 2nd US-European Competition and Workshop on Micro Air
Vehicles, November 2006.

[10] HaiYang Chao, YongCan Cao, and YangQuan Chen. “Autopilots for
Small Unmanned Aerial Vehicles: A Survey”, International Journal of
Control, Automation, and Systems (2010) 8(1):36-44,Springer.

[11] M. I. Lizarraga, “Autonomous landing system for a UAV,” Master’s
thesis, Naval Postgraduate School, Monterey, CA, USA., March 2004.

[12] Byoung-Jin_Lee, Seung-Jun_Lee and Prof. Sangkyung Sung Rotary
UAV Autopilot - Navigation and Autopilot System Development of
RUAV based on Virtual Instrumentation Platform (Onboard Avionics
with Labview + NI Devices)” available online at
https://decibel.ni.com/content/docs/DOC-16504 accessed date June 27,
2012

[13] Daniel Ernst & Kimon Valavanis & Richard Garcia & Jeff Craighead,
“Unmanned Vehicle Controller Design, Evaluation and Implementation:
From MATLAB to Printed Circuit Board”, J Intell Robot Syst (2007)
49:85–108

[14] The Mathworks, Inc., “NASA’s X-43A Scramjet Achieves Record-
Breaking Mach 10 Speed Using MathWorks Tools for Model-Based
Design.” User Story, 2005.

[15] L. Kerhuel, “Matlab-simulink device driver blockset for PIC/dsPIC
microcontrollers.” http://www.kerhuel.eu/wiki/index.php5.

[16] Micro-blox, “Dum Transformations of GPS positions”, application note,
www.u-blox.ch

[17] Honeywell,“Compass heading using magnetometers”
http://www51.honeywell.com/aero/common/documents/myaerospacecat
alog-documents/Defense_Brochures-
documents/Magnetic__Literature_Application_notes-
documents/AN203_Compass_Heading_Using_Magnetometers.pdf

[18] Adam Schneider, “GPS visualizer”, http://www.gpsvisualizer.com/

[19] [9] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, “Electron
spectroscopy studies on magneto-optical media and plastic substrate
interface,”

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7093
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7093
http://www.procerusuav.com/productsKestrelAutopilot.php
http://diydrones.ning.com/profiles/blog/show?id=705844%3ABlogPost%3A35640
http://diydrones.ning.com/profiles/blog/show?id=705844%3ABlogPost%3A35640
https://decibel.ni.com/content/docs/DOC-16504%20accessed%20date%20June%2027
http://www.kerhuel.eu/wiki/index.php5
http://www51.honeywell.com/aero/common/documents/myaerospacecatalog-documents/Defense_Brochures-documents/Magnetic__Literature_Application_notes-documents/AN203_Compass_Heading_Using_Magnetometers.pdf
http://www51.honeywell.com/aero/common/documents/myaerospacecatalog-documents/Defense_Brochures-documents/Magnetic__Literature_Application_notes-documents/AN203_Compass_Heading_Using_Magnetometers.pdf
http://www51.honeywell.com/aero/common/documents/myaerospacecatalog-documents/Defense_Brochures-documents/Magnetic__Literature_Application_notes-documents/AN203_Compass_Heading_Using_Magnetometers.pdf
http://www51.honeywell.com/aero/common/documents/myaerospacecatalog-documents/Defense_Brochures-documents/Magnetic__Literature_Application_notes-documents/AN203_Compass_Heading_Using_Magnetometers.pdf
http://adamschneider.net/
http://www.gpsvisualizer.com/

