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Abstract— The challenges associated with the software and 

hardware integration activities in development of flight autopilot 

system for autonomous helicopter have called for a change of 

tactics. The resulting effect is for example, a long time delay in 

autopilot system design, testing and deployment coupled with the 

fact that several other autonomous helicopter development tasks 

depend largely on availability of the autopilot system. Though, 

the use of off-the-shelf autopilot for a flight control system may 

ease these challenges, they are generally characterized with 

limited functionalities, and restrict the user’s design authority. As 

alternative approach, this paper presents the development of a 

MATLAB-based autopilot system for autonomous helicopter 

development. This approach provides an integrated design 

environment for rapid-prototyping of a low-cost autopilot system. 

The results of real-time application of the autopilot for flight data 

logging are presented. The performance shows the effectiveness 

of the developed autopilot system in small scale autonomous 

helicopter design and implementation. This is hope to reduce the 

design cycle time involves in the deployment of small scale 

autonomous helicopter in various civil low-cost, small payload 

applications.  

Keywords-MATLAB-SIMULINK, dsPIC blcoksets, autopilot, 

autonomous helicopter, embedded programming 

I.  INTRODUCTION  

The need for simple, cost effective, and reliable autopilot 
system represents a core requirement in low-cost flight control 
system for autonomous helicopter deployment for several 
potential civil applications [1]. Two major approaches are 
available in the FCS development: (i) development of custom 
system and (ii) procurement of off-the-shelf autopilot. The 
design and development of customized autopilot for FCS has 
been reported alongside research activities in autonomous 
helicopter or sometimes as a standalone research study. Among 
the prominent achievements in this regards are the 
development of custom FCS using PIC104 processor board 
with QNX Neutrino real-time operating system (RTOS) for the 
MIT Xcell-60 [2], and for the NUS autonomous helicopter [3].  
Carnegie Mellon (CMU) autonomous helicopter (based on 
Yamaha R-50) was developed with Motorola 68060 processor 
board and programmed with VxWorks RTOS. The use of 
MP555 PowerPC board together with a standard PC board 
(VIA

TM
) for autonomous helicopter platform development is 

reported in [4]. Here the MPC555 was used for sensors and 

actuator interface while the PC board handled the 
computations. The challenges in this design approach have 
been anchored on the difficulties involve in software and 
hardware integrations for the real-time embedded platform. 
The resulting effect is for example, a long time delay in 
autopilot system design, testing and deployment coupled with 
the fact that several other autonomous helicopter development 
tasks depend largely on availability of the autopilot system.  

A possible way out of this is to go for off-the-shelf 
(commercial) autopilots. These commercial autopilots are 
available either with proprietary software such as Piccolo [5], 
Micropilot [6], Kersel [7], or with open-source software among 
which are ArduPilot [8] and Paparazzi [9]. The use of any of 
these autopilots for flight control system design (FCS) provides 
a simplified solution to the customized based FCS design. .  A 
comparative study of these autopilots is reported by [10]. Apart 
from the software options, all of them share similar 
characteristics and functionalities. Though they simplified the 
FCS design, there are many drawbacks in the adoption of this 
approach. First, they are difficult to modify [11], and hence, 
user are constraint within available functionalities provided 
even with open-source based autopilot option. Second, they 
have   limited computational capacities, and presently most of 
them are equipped with classical PID controller [10]. These 
have responsible for the limitation of these autopilots to either 
preliminary autonomous aerial vehicle design cycle or for a 
micro aerial vehicle applications especially fixed wing based 
autonomous aerial vehicles. 

Alternatively, the use of user-friendly programming 
environment like National Instrument (NI) Labview [12] and 
MATLAB-based real-time embedded programming ([13] has 
been proposed.  Konku university reported recently successful 
completion of rotary wing autopilot using NI single board 
computer [12] with NI virtual instrument real-time 
programming tools. The simplicity of the graphical 
programming tool is major benefit of this design approach. 
This is obtained at a relative high cost in order of four digits 
US dollars, also it requires suitable amount of payload to carry 
the computing target which could weigh up to 4Kg with power 
supply module.    

Exploration of MATLAB Simulink’s Real Time Workshop 
(RTW) for embedded code generation is reported in [13]. 
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Considering the fact that, most of the autonomous helicopter 
design activities are commonly carried out using MATLAB 
tools, this embedded design approach promises an integrated 
design environment for rapid-prototyping of FCS design and 
deployment. In addition, the general believe that the 
automatically code generated through this process is neither 
reliable nor as efficient as handwritten codes has been noted to 
be an outdated views in embedded programming [11]. It has 
been demonstrated that the code generated is only 5% larger 
and 15% slower than the handwritten code, and this approach 
has been successfully employed in several applications such as 
industrial PLC programming, navigation and flight control 
system  and hypersonic scrampjets [11]. Moreso, the use of this 
automatic code generation has benn shown to reduce the design 
cycle by around 75% [14]. Meanwhile, the generic code 
generated by MATLAB RTW is currently limited to specific 
features of a given processor via Simulink Embedded target 
(ET). There may be need to do few code verification prior to 
compilation into the target hardware. Recently, alternative ET 
has been proposed targeting dedicated microcontroller such as 
Microchip PIC24 upwards [15]. The integration of this third 
party ET tools provides automatic generation of ready-to-
deploy code for microchip PIC24, dsPIC33 and PIC32 series. 
The application of this integrated design approach is reported 
in [11]. 

Hence, as part of an ongoing research on autonomous 
helicopter, this study presents the development of a MATLAB-
based autopilot for flight control system deployment. Though, 
the overall goal of the FCS is to fully provide essential 
functionalities for autonomous helicopter deployment as shown 
in Fig. 1, the present study focuses on the flight data 
acquisition stage. The rapid-prototyping of low-cost 16-bits 
digital signal processor (dsPIC33) is facilitated using the 
integrated design environment involving MATLAB-
SIMULINK-RTW, a third party dsPIC-MATLAB blocksets [2] 
and microchip design tools. The performance of the developed 
autopilot is evaluated in real-flight test on a small scale 
helicopter platform. 

The rest of the paper is as follows. Section II gives brief 
overview of the helicopter platform adopted in this study. The 
hardware selection and description followed by the MATLAB-
based embedded programme are presented in section II and IV 
respectively. The hardware-software integration is presented in 
section V, while the results of both static and field tests are 
provided in section VI. The paper is concluded in section VII 
with future study.  

 

Fig. 1 Blcok diagram of Flight control system components 

II. HARDWARE COMPONENTS: SELECTIONS AND 

DESCRIPTION 

The selection of hardware components for the system 
development is majorly affected by first by the intending 
application, cost, performance expectation and required 
development tools (software). The major hardware employed 
are: RC helicopter platform, inertial measurement units (IMU), 
global positioning system (GPS), ultrasonic based altimeter, 
servo switching multiplexer.   

A. Helicopter Platform 

A 50 class Hirobo RC helicopter (Hirobo SDX50) is 
selected as the autonomous helicopter platform with a 
FUTABA ten channels RC transmitter and receiver. Hirobo 50 
class SDX is a single rotor hobby helicopter with stabilizer bar 
capable of both basic and 3D aerobatic flight. The helicopter is 
shown in Fig. 1, and its general specifications are given in 
Table 1.   

 
Fig. 2  Hirobo SDX 50 

 

Table 1 

General specifications of Hirobo SDX50 Helicopter 

Components          Specifications 

Full length of fuselage             1220mm 

Full width of fuselage             186mm 

Height               395mm 

Main rotor diameter              1348mm 

Tail rotor diameter              258mm 

Skid ration              8.7:1:4.71 

Dry Weight               3400g 

Engine   50 ize,1.9s/17000RPM 

payload               2500g 

 

B. Onboard Processor  

Selection of this device depends partly on the computing 
specifications (processing speed, program and data memory), 
power consumption, weight, and on the required programming 
development tools.  Considering all these factors, a 16-bits 
dsPIC33fj256g710 (40MHz CPU, 256Kb flash memory, 30Kb 
SRAM memory) together with a 32-bits, 
PIC32MMX460F512L (80MHz CPU, 512Kb flash memory, 
32Kb SRAM memory) microcontroller boards are selected. 
The dsPIC is to provide sensors interface and data acquisition 
while the PIC32 is meant for control algorithm 
implementation. Both are to be interconnected for full FCS. 
They are equipped with several peripherals interface for SPI, 
UART, I

2
C, PWM, analog and digital ports communication.  

Moreover, this device is readily programmable with the 



proposed MATLAB-based embedded design tools in this 
study. 

C. Inertial Measurement Unit (IMU) 

A MEMs based VN-100 by Vectornav is selected to 
provide attitude and heading measurement of the RUAV states. 
The device is small (24x22x2.5mm), light weight (3g), low 
power consumption (65mA/5volts). Also, it combines 3-axis 
accelerometer, 3-axis gyros, and 3-axis magnetic sensors as 
well as a 32-bit processor on a single module with an inbuilt 
quaternion based drift compensation Kalman filter to produce 
system states (attitude and heading) at a rate up to 200Hz.  The 
filter can be tuned to meet a specific application and operating 
condition. Lastly, the device comes with a C-library that 
facilitates timely interfacing of the device with onboard 
processor.   

D. Global Positioning System (GPS) 

A 20 channel EM406A GPS smart antenna receiver is 
selected to provide position information. The GPS is capable of 
data output up every 1 second (1Hz).  It provides TTL serial 
interface 4800bps, and operates at 5.0V/44mA. The detailed 
specification can be obtained in the device datasheet (Globasat, 
2007). 

E. Wireless Device 

Considering the cost, the ease of configuration and the need 
to operate the system within 1Km distance for research 
purposes, a very popular member of Zigbee family of wireless 
devices, 2.4GHz X-bee pro module with wire-antenna  is 
selected to provide bi-directional communication between the 
ground computer and onboard avionics system up to 1500m 
outdoor operation. More so, compatibility of several Zigbee 
devices allows for easy future upgrade to higher distance 
transmission. 

F.Others 

Other supporting hardware are ultrasonic sensor by 
Maxbotic (Maxbotic,) for low altitude measurement, and 
Cytron servo switching multiplexer (SCM) for manual-auto 
operation.  

III. MATLAB BASED EMBEDDED SOFTWARE 

DESIGN 

The operation of the onboard microcontroller unit (MCU) is 
guided by the software developed to carry out the necessary 
tasks for autonomous flight. The major three functional 
components of the onboard MCU are shown in Fig. 3.  

 

Fig. 3 Functional Block diagram of the MCU 

Operationally, the software algorithm is expected to 
conFig. the MCU, and its peripherals to establish the 
communication with the sensors through the appropriate 
interface.. Then, process and transform the acquired data into 
appropriate format for onward transmission to ground station 
and to the flight control algorithm as feedback states. Among 
the data processing tasks to be performed are: (i) filtering, 
especially the accelerometer and rates gyro data, and (ii) GPS 
data processing which majorly involves transformation from 
Latitude, Longitude, and Altitude (LLA)  format to Earth 
Centered, Earth Fixed (ECEF) format and finally to North East 
Down (NED). The flight algorithm is responsible for the 
execution of the flight control law designed to autonomously 
guide the helicopter for the intended mission. The overall 
mission execution and coordination are handled by the 
supervisory algorithm unit. This brief operational sequence 
serves as backbone for the software development task. To this 
end, the programming task is modularized into: (i) Target 
MCU configuration, (ii) data acquisition, processing and 
transmission, (iii) ground station interface and data logging (iv) 
flight control execution, and (v) mission coordination 
algorithm.  The first three modules are detailed in this study 
while the last two modules constitute part of the ongoing 
research activities towards full autonomous helicopter system 
development.  

The integrated embedded design environment comprises of 
four programming tools: MATLAB toolboxes/SIMULINK, a 
MATLAB dsPIC blocksets (provides SIMULINK blocks for 
PIC peripherals interface), C-language, and microchip MPLAB 
tools. These four tools are integrated within MATLAB 
environment to achieve a single environment based rapid 
prototyping of the 16 bits core data acquisition MCU (DAQ-
MCU).  A single click is required to compile the developed 
MATLAB SIMULINK based algorithm that is downloadable 
into the embedded target using microchip 16/32 bits compiler 
and In-circuit Programming and Debugging (ICD3). 

Fig. 4 shows the core embedded SIMULINK blocks employed 
in the programming.  The essential programming sequence is 
presented here, while the detailed description of these building 
blocks can be obtained in [15].  

MCU configuration: this is achieved with dsPIC master block 
of Fig. 4a. The target MCU is conFig.d to operate 40MIPS by 
activating Phase Lock Loop (PLL). The sampling rate is set at 
50Hz. 

 

Fig. 4 MATLAB SIMULINK dsPIC/PIC blocksets 

 

Sensor Interfacing: this involves configuration of the MCU 
peripherals for the sensors’ interface, and data transformation 



and processing using appropriate custom MATLAB/C custom 
programmes. The UART ports 1 and 2 are configured using the 
blocksets of Fig. 4c for GPS (at 4800Kbs) and wireless module 
(57600Kbs) respectively. The transmission rate of the GPS is 
specified based on the device default rate of 4800Kbs while 
that of the wireless device is computed based on total expected 
data size per sample time. Total of 26 state data comprises of 3 
accelerometer, 3 gyro, 3 rates, 3 attitudes/heading, 3 position 
data, 3 velocity data, 3 GPS raw data, 4 PWM servo control 
data and 1 altitude are expected to be transmitted. This gives a 
total of 20800bits data/sample time with each data been sent at 
16bits data size. The SPI port is configured to communicate 
with VN100 IMU sensor using the block of Fig. 4d with 
10MHz SPI clock frequency. A custom C-codes is written to 
communicate with the device library. The codes are integrated 
into the SIMULINK environment using the blocksets of Fig. 
4h. The ultrasonic sensor data is captured using one of the 
external interrupt ports of the MCU, while the four PWM 
control signals (cyclic, collective and pedal) are captured with 
four output compare ports (OC1-OC4). Necessary data 
transformation and conversion are done using a custom m-files 
function implemented using MATLAB embedded target 
SIMULINK block.   

GPS position/velocity filter: the GPS position information in 
Latitude Longitude and Altitude (LLA) in Geodetic 
coordinates is converted to position in north east down (NED) 
suitable for navigation system. The transformation involves 
three levels: LLA to Earth Center Earth Fixed (ECEF) 
coordinate; ECEF to NED. The conversion from LLA, 

]h,,[   to ECEF ]Z,Y,X[  is achieved using the 

relationship [16]: 

coscos)hN(X             (1) 
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where N is the Radius of curvature (meters) defined as: 
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 and parameters a, b and e are  the WGS84 parameters 
given as: 
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The transformation from the ECEF to NEU is 
accomplished with respect to a local reference point, which is 
taken to be the location of the Ground Station (GS) system. 
NEU is formed from a plane tangent to the earth’s surface and 
fixed to the CG of the helicopter, hence it is termed a local 
tangent or local geodetic plane. By convention, the north is 
labeled x-axis, the east as y-axis and up as the z-axis.   

Defined ]ZYX[
ppp

 as location of the helicopter system 

with center coincided approximately to the CG of the system, 

and ]ZYX[
rrr

 as the location of the GS, then the vector 

point ]zyx[  of the helicopter from the GS location is 

computed using: 
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where  
r

  and  
r

  are latitude and longitude angles 

respectively of the GS location. 

Considering the off-set of the GPS device from the location 
of the IMU which is approximately at the CG of the RUAV, 
the final position estimation is computed by: 
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where the offset vector  

    10050offset_zoffset_yoffset_x  

Also, the velocity vector in NED coordinates  
eastnorth
vv , 

is computed from the GPS reported heading (degree) 
information otherwise refer to as course of the ground (COG), 
and speed over the ground (m/s), (SOG) using the expression: 

          )COGcos(SOGv
north

            (8)  

                              )COGsin(SOGv
east

            (9) 

The final output velocity vector  
yx
vv  is computed 

using the velocity rate filter that updates the velocity 
information using: 

      
s

oldnew
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where 
s
T is the application sampling time and, velocity rate 

is  v  is given by  

                   
s
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T
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Heading computation: the heading angle as a measured of 
angle measured clockwise from a true North (earth’s polar 
axis) direction is computed from the measured magnetometer 
readings by the IMU sensor (VN100). The heading is 
calculated using the relationship: 

                           )XY(tanHeading
mm
 1          (12) 

where 
m

X   and 
m

Y   are x-axis an y-axis magnetic reading 

respectively.  



To account for the orientation of the system, 
m

X   and 
m

Y    

are computed from actual three axis magnetic readings 

(
m

X ,
m

Y ,
m

Z ) using the mathematical expression 

 sincosZsinsinYcosXX
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where   and   are the roll and pitch angles describing the 

orientation of the system. Note that where is system is 

horizontally flat, 
mm

XX   and   
mm

YY   . 

The sign of heading computation is determined using the 
logical expression as follows [17]: 
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The effect of magnetic declination angle was considered by 
subtracting the country declination angle. The angle of 
declination of the country magnetic field was obtained from the 
National Geophysical Center (NOAA) [NOAA] as -0.1075 
degree. This was accounted for in the final heading 
computation using: 

          Heading_final = heading_computed - (-0.1075)         (16) 

A MATLAB m-file functions and relevant SIMULINK 
blocks were used to compute both the position/velocity filters 
and heading computation using the expression (1-15). This was 
then implemented using MATLAB embedded function 
Simulink block. 

IV. SYSTEM INTEGRATION 

The overall system integration components is shown in Fig. 5 

and comprises mainly of hardware set-up, embedded 

MATLAB based programming, and integration of hardware 

and software for deployment on the autonomous helicopter 

platform. 

 The overview of the cost, weight and current rating (where 

applicable) for the hardware components are given in Table 2. 

The cost is without the shipping cost which is relative to 

location. The overall cost of the system is approximately 

estimated at 1500 US dollars, which is quite within low cost 

system. The total weight estimated at 1010g shows that only 

around 40% total payload has been utilized by the current set-

up leaving the rest 60% for future upgrade. However, during 

the flight test, dummy loads were added to balance the system, 

and also as provision for other items (camera, control MCU, 

extra battery) to be added in the nearest future. 

 

I. PERFORMANCE EVALUATION AND RESULTS 

Series of tests were carried out to evaluate the performance of 

the developed autopilot on the autonomous helicopter system.  

 

 

 

 

 

 

Fig. 5 Complete system  integration stages 

Table 2: Estimated cost, weight and current rating 

 
 

These include static test (on ground test), and flight test. 
The attitudes, heading, acceleration and rates reading of the 
IMU sensor are logged for up to 4minutes (200s) at rate of 
20ms. This was repeated five times, then the mean and 
standard deviation of the static readings are computed. The 
results obtained were within the accuracy of the sensor 
performance specification. By starting from a direction 
approximately closed to true North using a compass device, the 
helicopter system was rotated clock-wisely and back to the 
original point. The heading information computed by the 
onboard system is shown in Fig. 6. 

The reliability and accuracy of the GPS module position 

information logging were evaluated. This was achieved by 

mounting the system on a ground vehicle, and drove around 

the university campus while the position information in LLA 

format is been logged into the accomplished ground computer 

station. The reported position information was processed and 

compared with Google map using a free software package 

(GPS visualizer) available online [18]. Fig. 7 shows the 

comparative view of the reported GPS information and 

Google map. As shown in Fig. 7, the GPS accurately tracked 

the Google Earth way-points 
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Fig. 6 Sample test result of Heading from true North  
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 Fig. 7    Comparison of GPS and Google map position information 

 

Field test: The system is commanded manually to perform 
various flight operations such as take-off and landing, 
hovering, and cruise flight at varying speed. For a  complete 
flight operation test, the pilot takes-off the helicopter off the 
ground effect, hovering, then climb vertically, perform 
hovering and excite the attitudes and heading  with sweep input 
signal,  then navigate around the flight field. The objective of 
this test is to evaluate the ability and reliability of the 
developed system and its onboard electronics to perform the 
intended operation and withstanding severe operation 
condition. Fig. 8-Fig.11 show samples of control inputs and 
state responses of the system for various flight modes. These 
flight data constituted the information required for system 
modeling and analysis in other various autonomous helicopter 
system developments. The sample of position information in 
NED coordinate is shown in Fig. 12 while the Google map 
view of a flight pattern is shown in Fig. 13. 

The results of both ground and field tests show the 
effectiveness of the developed autopilot to provide necessary 
flight data acquisition and state estimation for the helicopter 
system analysis. 
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Fig.  8  servo command signal  
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Fig. 9 measured angular rates responses  

 

VI CONCLUSION 

The development of a MATLAB-based autopilot system 
for autonomous helicopter system has been reported in this 
paper. The  deployment is presentedbased on an integrated 
MATLAB environment (MATLAB-IDE) have been presented 

in this chapter. Performance evaluation results for both static 
and in-flight tests of the developed system show the success 
and ability of the autopilot system to provide effective flight 
data estimation and acquisition required in the autonomous 
helicopter system design and deployment. This proposed 
integrated design enviroment is expected to simplified  the 
future upgrade and reconfiguration of system functionalities. 
Future study involves upgrade of the flight control system for 
flight control algorithm implementation.  
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Fig. 10 measured acceleration 
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Fig. 11 measured attitudes 
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Fig. 12 Sample position estimation  

 

Fig. 13 Sample flight test route within the campus flying field 
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