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ript re
eived 29 April 2002; revised 10 O
tober 2002Communi
ated by Gheorghe P�aunAbstra
t. The design of nearest neighbour prototypes 
an be seen as the partition-ing of the whole domain in di�erent regions that 
an be dire
tly mapped to a 
lass.The de�nition of the limits of these regions is the goal of any nearest neighbourbased algorithm. These limits 
an be des
ribed by the lo
ation and 
lass of a re-du
ed set of prototypes and the nearest neighbour rule. The nearest neighbour rule
an be de�ned by any distan
e metri
, while the set of prototypes is the matter ofdesign. To 
ompute this set of prototypes, most of the algorithms in the literaturerequire some 
ru
ial parameters as the number of prototypes to use, and a smooth-ing parameter. In this work, an evolutionary approa
h based on Nearest NeighbourClassi�ers (ENNC) is introdu
ed where no parameters are involved, thus over
om-ing all the problems derived from the use of the above mentioned parameters. Thealgorithm follows a biologi
al metaphor where ea
h prototype is identi�ed with ananimal, and the regions of the prototypes with the territory of the animals. Theseanimals evolve in a 
ompetitive environment with a limited set of resour
es, emerg-ing a population of animals able to survive in the environment, i.e. emerging a rightset of prototypes for the above 
lassi�
ation obje
tives. The approa
h has beentested using di�erent domains, showing su

essful results, both in the 
lassi�
ationa

ura
y and the distribution and number of the prototypes a
hieved.Keywords: Classi�er design, nearest neighbour 
lassi�ers, evolutionary learning,biologi
ally inspired algorithms
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2 F. Fern�andez, P. Isasi1 INTRODUCTIONNearest Neighbour Classi�ers are de�ned as the sort of 
lassi�ers that assign to ea
hnew unlabelled example, v, the label of the nearest prototype, ri, from a set, C, of Ndi�erent prototypes previously 
lassi�ed [3℄. When the set C is very redu
ed, thiskind of 
lassi�ers 
an be 
alled Nearest Prototype Classi�ers [2℄ (NPC), but, giventhat the limits among them are not de�ned in detail, we will keep using the �rstnomen
lature.These 
lassi�ers are very mu
h related to ve
tor quantization te
hniques [7℄ sin
ethe nearest neighbour rule is the 
ornerstone of its design, and similar te
hniques
an be used for both. The design of these 
lassi�ers is diÆ
ult, and relies in theway of de�ning the number of prototypes needed to a
hieve a good a

ura
y, as wellas the initial set of prototypes used. Furthermore, most learning algorithms intro-du
e several di�erent parameters, that are often summarized in a unique learningparameter. This learning parameter de�nes whether the updates over the 
lassi�erare higher (typi
ally at the beginning of the learning phase) or lower (typi
ally atthe end of the learning phase).Many dis
ussions about what is the right te
hnique to use 
an be found in theliterature [11℄. Some approa
hes based on 
lustering te
hniques [16, 15, 1℄ are basedon two main steps. The �rst one is to 
luster a set of unlabelled input data to obtaina redu
ed set of prototypes, for instan
e, with the LBG algorithm [12℄. The se
ondstep is to 
lassify these prototypes on the basis of previously labelled examples andthe nearest neighbour rule. Although this approa
h produ
es good results, it isobvious that to introdu
e information about the 
lassi�
ation performan
e in thelo
ation of the prototypes it seems to be needed to a
hieve a higher performan
e.Neural networks approa
hes are also very 
ommon in the literature, like the LVQalgorithm [10℄ and the works with radial basis fun
tions [6℄. To �nd the right numberof neurons of the net, two basi
 approa
hes 
an be found. On the one hand, somete
hniques try to introdu
e or to eliminate prototypes (or neurons) while designingthe 
lassi�er following di�erent heuristi
s, as the average quantization distortion [18℄or the a

ura
y in the 
lassi�
ation [17℄. On the other hand, other approa
hes try tode�ne the optimal size of the 
lassi�er �rst, and then to learn it using the previousvalue. Geneti
 algorithms approa
hes are typi
ally used to �nd an initial set ofprototypes, as well as its right size, in addition to another te
hnique to a
hievelo
al optimization [14℄. Following this idea, in [19℄, an evolutionary approa
h 
anbe found based on the R4 rule (re
ognition, remembran
e, redu
tion and review) toevolve the nearest neighbour multi-layer per
eptrons.In this work, an evolutionary approa
h 
alled Evolutionary Nearest NeighbourClassi�er (ENNC) [4℄ is introdu
ed to dynami
ally de�ne the number of prototypesof the 
lassi�er as well as the lo
ation of these prototypes. The main di�eren
efrom the previous works is that this approa
h is a fully integrated algorithm. Mostalgorithms that solve initialization problems take advantage of a previous knownte
hnique and modify it to introdu
e the new 
apabilities. For instan
e, they in-trodu
e some heuristi
s for in
luding or eliminating prototypes, or they use geneti
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 Finding of Good Classi�ers Following a Biologi
ally Inspired Metaphor 3algorithms for optimizing the initialization, but typi
ally in a bat
h mode. However,in this work, both the operations used to modify the size of the 
lassi�er and thelearning algorithm are fully integrated and 
annot be used separately from the otherpart.The algorithm is summarized as follows. The 
lassi�er is de�ned as a populationof animals (prototypes) that must �ght to eat vegetables (training examples) thatallows them to survive and to �nd an equilibrium in the environment (optimumnumber of prototypes). The method allows the animals to exe
ute several operators,like to introdu
e new animals (reprodu
tion), to 
hange their spe
ie (mutation), et
.in order to improve their adaptation to the environment (the global a

ura
y of the
lassi�er). Furthermore, the exe
ution of these operators is 
ontrolled by the animalsthemselves, taking into a

ount their relationship with the rest of the animals in theenvironment. So, the evolution will allow the individuals to lo
ate themselves in theright position, and to be labelled in the right way, a
hieving the equilibrium onlywhen the right number of prototypes is a
hieved.In the next se
tion, the main 
on
epts used are presented, showing the e
osystemmetaphor; Se
tion 3 des
ribes the algorithm in depth. Se
tion 4 shows prin
ipal ex-periments performed and a 
omparison with previous works, while Se
tion 5 presentssome 
on
lusions and suggests topi
s for further resear
h.2 BIOLOGICALLY INSPIRED DESIGN OF NEAREST NEIGHBOURCLASSIFIERS (ENNC)The ENNC algorithm o�ers an evolutionary point of view to the design of near-est neighbour 
lassi�ers. The main advantage of this method is that neither thenumber of prototypes used, nor an initial set of prototypes are required. The �rstdi�eren
e among this algorithm and previous evolutionary approa
hes is the wayof representing the population: in this 
ase, and following the Mi
higan approa
h,ea
h 
hromosome represents only one prototype, and not a whole 
lassi�er, so the
lassi�er is represented by the whole population. The main 
on
epts 
an be de�nedas follows:Prototype/Animal, ri. Ea
h prototype/animal is 
omposed by its lo
alization inthe environment and its 
lass/spe
ie.Classi�er/Population, C. A set of N prototypes or animals C = fr1; : : : ; rNg.Region, ri. The environment is divided into a set of N regions de�ned by thelo
alization of the animals and the nearest neighbour rule. In this sense, there isa dire
t relationship among the lo
ation of the animals and the regions (regionsare 
al
ulated from prototype lo
alization), so in the rest of this work, we maytalk about regions, prototypes and animals indistin
tly. Ea
h animal only eatsvegetables in its own region.Pattern/Vegetable, vr. It is ea
h of the examples that will be used for trainingor testing the system. They all 
ompose a set V = fv1; : : : ; vMg, and, as well as



4 F. Fern�andez, P. Isasithe prototypes, they are 
omposed by its lo
ation and by their 
lass. They are
onsidered as vegetables of the biologi
al system.Class/Spe
ie, sj. Both animals and vegetables belong to a 
lass or spe
ie fromthe set S = fs1; : : : ; sLg. The goal of an animal ri of spe
ie sj is to eat asmany vegetables of 
lass sj as possible and not to eat vegetables of other 
lassessk 6= sj .Quality/Health of a prototype/animal. This is a measure of the goodness ofthe prototype, taking into a

ount the number of patterns into its region,apportationri, and whether those patterns belong to the same 
lass than theprototype or not, a

ura
yri. The �nal value is 
omputed as follows:qualityri = min(1; a

ura
yri � apportationri), (1)where ri is the prototype we are 
omputing its health, and a maximum valueof 1 is in
luded in order to normalize the measure.The se
ond main di�eren
e of this algorithm with previous evolutionary ap-proa
hes 
omes from the operators that are used to evolve. In this 
ase, most ofthe operators are based on heuristi
s of previous works [1, 15, 6, 13, 18℄, and newones have been in
orporated. So the learning phase is an iterative pro
ess that exe-
ute several operators over ea
h individual. Ea
h of this iteration is 
alled a yearin the animals life, and the year is divided into four seasons: spring, summer, falland winter. In ea
h season, di�erent operators are exe
uted, and are summarizedin Table 1.Season Operators Des
riptionSpring Mutation Ea
h animal 
hanges its own spe
ie tothe majority spe
ie of vegetables in itsregionSummer Reprodu
tion The animals reprodu
e to 
reate ani-mals that eat what they do not wantto eatFall Fight and Move The animals �ght against other animalsand move to a di�erent position to getmore foodWinter Die Weak animals dieTable 1. Phases of the algorithm and operators used in ea
h phase3 THE ALGORITHMThe algorithm follows the 
ow de�ned in Figure 1. The algorithm starts witha single initialization, followed of an iterative pro
ess of evolution, where the di�erent
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ally Inspired Metaphor 5operations are exe
uted. In this se
tion, all these operations are de�ned from thebiologi
al point of view. A formal des
ription of all these operations 
an be foundin [5℄.
Initialization

Mutation

Reproduction

Fight

Move

Die

End Condition

End

Spring

Summer

Fall

Winter

False

True

Vegetables Born

Fig. 1. ENNC algorithm3.1 InitializingOne relevant feature of our method is the absolute elimination of initial 
ondi-tions. These initial 
onditions are usually summarized in three ones: the numberof prototypes, the initial set of prototypes and a smoothing parameter. The ENNCalgorithm allows to learn without those parameters, given that:� The initial number of prototypes is always one. The method is able to generatenew prototypes stabilizing in the most appropriate number in terms of the abovementioned \quality" measure.� The initial lo
ation of the only one prototype is not relevant (it 
lusters all thedomain, wherever it is lo
ated).� There are no learning parameters. The method automati
ally adjusts the inten-sity of 
hange in prototypes taking into a

ount their qualities in ea
h iteration.3.2 SpringThe spring season is the time when the vegetables are born. All the animals arepla
ed in their own region, and will re
olle
t all the vegetables in its region. The



6 F. Fern�andez, P. Isasiway to de�ne whether a vegetable belongs to one animal or to another is based onthe nearest neighbour rule.At the end of spring, ea
h animal knows the quantity of vegetables of ea
hspe
ie that it 
an eat, so it will be
ome (modify its state) to the spe
ie of the mostabundant spe
ie of vegetables. This operator 
orresponds with the labelling phaseof the unsupervised learning approa
hes [1, 15℄, but in this 
ase, the supervision isin
luded in ea
h iteration and not only in a posterior phase. This operator is 
alledmutation operator and it is shown in Figure 2. In the �gure, an animal of spe
ie 1be
omes to spe
ie 2, given that vegetables of spe
ie 2 are the most populated in itsregion.
Mutation

Animal of Specie 2 (    )

Animal of Specie 1 (    )Fig. 2. Example of mutation operator exe
ution3.3 SummerSummer is the season where animals reprodu
e (se
ond operator). In this 
ase thereprodu
tion is not sexual, and an animal only reprodu
e if it needs another animalthat eats what it does not want to eat, so there is a sel�sh motivation. In a neuralnetwork domain, reprodu
tion is equivalent to the insertion of new neurons in thenet based on the a

ura
y of the 
lassi�er [6℄.So an animal only reprodu
es if, vegetables of di�erent 
lasses are found in itsregion. The probability of reprodu
tion is proportional to the di�eren
e among thenumber of vegetables of ea
h 
lass in its region. Newborn animal is lo
ated in orderto in
rease the an
estor performan
e, as shown in Figure 3.
Reproduction

Animal of Specie 1 (    )

Animal of Specie 2 (    )

Region 1

Region 1

Region 2Fig. 3. Example of reprodu
tion operator exe
ution
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 Finding of Good Classi�ers Following a Biologi
ally Inspired Metaphor 73.4 FallFall is the time where food starts to s
ar
e, and the animals de
ide to look for morefood. In this sense, fall have two phases. In the �rst one, animals 
an �ght, in orderto steal territory from other animals and to get more food. In the se
ond phase,animals lo
ate themselves in an optimum pla
e to spend the winter and to wait forthe next spring.1. Fights: An animal 
an de
ide to �ght with other animals in order to get morefood. Fight operator is exe
uted for ea
h animal, and has the following phases:(a) To 
hoose a rival by assigning all the animals in its neighbourhood a proba-bility proportional to the quality of that animal and using a roulette as thesele
tion method.(b) On
e the rival is sele
ted, the animal has to de
ide whether to �ght or not.The probability of �ghting is proportional to the di�eren
e in health of bothrivals.(
) On
e the rival has been sele
ted and the animal de
ides to �ght, there aretwo possibilities:i The animals do not belong to the same spe
ie. In this 
ase, there is nosense to �ght, and both animals make an agreement that the se
ond onegives the vegetables required to the �rst one, as shown in Figure 4.
Fight (Cooperative)

Region 1

Region 2
Region 2

Region 1

Animals of Specie 1 (    )

Animals of Specie 2 (    )Fig. 4. Example of �ght operator exe
ution with 
ooperationii Both animals belong to the same spe
ie. Animals �ght, with a probabilityof vi
tory proportional to the animals health. The winner steals food fromthe loser, as shown in Figure 5. If the winner is allowed to steal all thefood from the loser, the loser dies.2. Move: The move operator implies to relo
ate ea
h animal in the best expe
tedpla
e to spend the winter and wait until next spring. So ea
h animal de
idesto move to the 
entroid of the vegetables of the same 
lass, as shown in Figu-re 6 for animal 2. This operator is based on the Lloyd iteration of the GLAalgorithm [13℄.
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Fight (Competitive)

Region 2
Region 1

Region 1

Region 2
Animals of Specie 1 (    )

Animals of Specie 2 (    )Fig. 5. Example of �ght operator exe
ution with 
ompetition
Move

Region2Region2

Region 1Region 1

Animal of Specie 2 (    )

Animal of Specie 1 (    )Fig. 6. Example of move operator exe
ution3.5 WinterIn winter, weak animals (those whi
h have low quality values) in
rease their dyingprobability. This probability is 1 minus the double of the health. Then, healthyanimals will survive, while weak animals with health of less than 0.5 might die. Inthe neural network bibliography, a deeper do
umentation about whi
h neurons tosele
t in order to simplify the network stru
ture 
an be found [6, 18℄. At the end ofthis season, all vegetables disappear.3.6 End ConditionEnd 
ondition is the hardest element to de�ne in this approa
h. It is supposed thatthe algorithm 
onversion to an optimal solution is desirable, but: what is an optimalsolution? In this area, an optimal solution is said to be the solution that a
hievesthe highest 
lassi�
ation a

ura
y with the smallest number of prototypes. However,what is the heaviest parameter? Some people 
an think that if in
reasing the numberof prototypes, we 
an in
rease the a

ura
y of the 
lassi�er; it is better to in
reasethis number, but over-�tting problems may o

ur and the generalization 
apabilitiesmay be redu
ed. On the other hand, if we redu
e the number of prototypes, we 
ando it only by de
reasing the a

ura
y. So, what is the best solution? The approa
h ofthis work is to let the population to evolve, to store a set of paradigmati
 
lassi�ers
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ally Inspired Metaphor 9and let the user to 
hoose the most appropriate ones. Obviously, a lot of di�erentapproa
hes 
ould be introdu
ed to de
ide when to stop. Several of them 
an befound in [5℄.4 EXPERIMENTSIn this se
tion, two experiments performed with the ENNC algorithm are shown.The �rst one is a data set of Gaussian-distributed examples. It is a single experimentthat will show how the algorithmworks. The se
ond experiment in Se
tion 4.2 allowsto 
ompare this approa
h with previous ones in the literature. For both experiments,the end 
ondition is de�ned by a maximum number of iterations enough to a
hievegood solutions in all the 
ases.4.1 Gaussian-Distributed DataIn this experiment, two di�erent 
lasses are de�ned following the distributions shownin Figure 7.
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class 1 class 2Fig. 7. Gaussian-distributed dataThe data set 
onsists of 250 examples, where 200 were used for training and 50 fortest. The ENNC algorithm starts with a population of 1 prototype that is supposedto evolve to �nd a right set of prototypes. The ENNC algorithm is a sto
hasti
method, so di�erent exe
utions may a
hieve di�erent results. To verify whether thesolutions a
hieved are similar, the algorithm is exe
uted 20 times, ea
h of them ofa length of 100 iterations. The results are given in Table 2, where the informationof the best 
lassi�er obtained in ea
h exe
ution is shown: iteration where it wasevolved, a

ura
y over the test set and the number of prototypes.These results show that most of the exe
utions (95% of the 
ases) a
hieve theoptimal solution (5 prototypes and a 100% of su

ess) over the test. One exe
utiona
hieved the same 
lassi�
ation a

ura
y but needs one more prototype.



10 F. Fern�andez, P. IsasiIteration A

ura
y (%) Prototypes3 100.000 513 100.000 58 100.000 510 100.000 56 100.000 66 100.000 56 100.000 511 100.000 511 100.000 510 100.000 59 100.000 511 100.000 510 100.000 58 100.000 516 100.000 56 100.000 56 100.000 56 100.000 56 100.000 514 100.000 5Table 2. Results of di�erent exe
utions of ENNC algorithm over Gaussian-distributed dataFigure 8 shows the evolution of one of these exe
utions. The x-axis shows theiterations of the algorithm, while the y-axis shows the a

ura
y of the 
lassi�er inthat iteration for the training and the test sets, as well as the number of prototypesused. Figure 9 allows to understand this evolution by showing the state of the
lassi�er at the end of four of the iterations of the algorithm. Figure 9(a) shows theresult of the �rst iteration, where a new prototype has been introdu
ed to the initialone. Figures (b), (
) and (d) show the results of iterations 4, 6, and 14, respe
tively,ea
h one with one more prototype than in the previous �gure.
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) Iteration 6 (d) Iteration 14Fig. 9. Evolution of the prototypes4.2 Straight Line Class BoundariesThis 
lassi�
ation problem was �rst de�ned by [9℄ and used in [8℄ to show theperforman
e of the DSM 
lassi�er. The domain 
onsists on two di�erent 
lassesde�ned as shown in Figure 10, with 6400 samples for training and 6400 for test.DSM algorithm belongs to the family of LVQ algorithms and works in the followingway: it sele
ts a small set of training samples and uses them as seed of the learningalgorithm. This algorithm gradually adapts their lo
ation to 
orre
tly 
lassify thewhole data set.In Figure 10 a solution of the problem with only 10 prototypes is shown. As inthe previous experiment, we have exe
uted the ENNC algorithm 20 times to verifyits behaviour, ea
h run of 300 iterations. For ea
h run, the best 
lassi�er over thetest set is 
hosen. Results are summarized in Table 3 and show that the algorithm
onverges to solutions in the range of 30{40 prototypes, with approx. 98% a

ura
y.The average su

ess of the 20 results is 98.14 and is the value used for 
omparisonswith the results reported in [8℄ and shown in Table 4. The table shows how this valueimproves the results of LVQ1, and it is very 
lose to the results of the net trainedwith the ba
kpropagation algorithm, while it is not able to a
hieve the results of
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Class 1

Class 2

Fig. 10. Straight line 
lass boundaries domain and a solutionDSM. Anyway, note that our approa
h automati
ally de�nes the right number ofprototypes.Figure 11 shows the evolution of one of the exe
utions. In the initial iterations,the number of prototypes used is below 10, and the a

ura
y of the 
lassi�er keepsbelow 90%. On
e the number of prototypes is higher than 10, the 
lassi�er startsIteration A

ura
y Prototypes248 98.672 30238 98.203 29225 98.484 31276 97.922 32258 98.234 29283 98.078 29196 97.969 30181 98.047 32252 98.375 37206 97.953 31300 98.109 34100 97.859 30213 98.375 35294 97.984 31177 97.922 30253 97.781 3640 97.766 11249 98.547 30139 98.297 28237 98.094 33Table 3. Results of di�erent exe
utions of ENNC algorithm over straight line 
lass boun-daries domain Prototypes DSM LVQ1 Ba
kpropagation6 92.86 81.00 90.588 96.18 80.45 98.479 98.14 85.36 98.7310 99.57 87.66 98.3420 99.55 95.66 98.4724 99.59 96.94 98.6250 99.51 97.49 98.44250 99.21 98.16 98.45Table 4. Comparative results over straight line 
lass boundaries domain
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ally Inspired Metaphor 13to a
hieve results of approximately 98%. The number of prototypes is su

essivelyin
reased in order to improve the a

ura
y. This number of prototypes does notstabilize in a spe
i�
 value, given that more than one similar solution 
an be found.In this sense, the system is able to os
illate between 
lose solutions in order to leavethe last de
ision to the user. Last, note that both training and test sets keep similarvalues while learning.Figure 12 shows the prototypes of the 
lassi�er obtained in the �rst exe
utionof the ENNC algorithm. There are 30 prototypes, a
hieving 98.672% a

ura
y.
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class 1 class 2Fig. 12. Classi�er of 30 prototypes obtained with ENNC in straight line 
lass boundariesdomain5 CONCLUSIONS AND FUTURE WORKThis work has presented a biologi
ally inspired approa
h to the problem of nearestneighbour 
lassi�ers design. This approa
h follows an e
osystem metaphor in whi
hthe prototypes are de�ned as animals and the training examples as animal resour
es



14 F. Fern�andez, P. Isasi(vegetables). The biologi
al perspe
tive allows to de�ne in a very simple way new
on
epts su
h as to steal vegetables, 
ooperative a
tions among the di�erent animals,et
., while other typi
al operations su
h as introdu
e new prototypes, or to eliminateuseless ones have been rede�ned.The main advantages of this method are, on the one hand, that it is able toa
hieve a high a

ura
y in the domains where it has been tested, even 
omparedwith other te
hniques from the literature. On the other hand, the a
hievement ofthese good results is done without the de�nition by the user of any initial 
onditionsor other parameters for learning. Furthermore, it is a fully integrated te
hniquethat in
ludes elements from other works, as heuristi
s to introdu
e prototypes, toeliminate another ones, labelling phases, et
. Previous works typi
ally introdu
emodi�
ations over other te
hniques that provide them with the 
apability of de�ningthe ar
hite
ture. This way, other solutions were geneti
 algorithms or heuristi
s tomodify the ar
hite
ture. These te
hniques 
an be split into two steps, de�ning ormodifying the ar
hite
ture and learning the problem with the new ar
hite
ture,sometimes even in an iterative pro
ess. However, in this work, all the me
hanismsare fully integrated, so it is not possible to separate the elements that de�ne thear
hite
ture from those that learn the problem with the ar
hite
ture.Comparisons with other te
hniques have shown that the approa
h is able tosu

essfully solve the problem presented without any additional parameter: theuser only has to de�ne the training and test sets, and one end 
ondition.Even though the algorithm is a sto
hasti
 method, it has shown that similarsolutions are a
hieved when di�erent runs are exe
uted. This property ensures thatthe solutions a
hieved in a �rst run of the algorithm are very 
lose to the optimal,so no more trials are required. Furthermore, given that the algorithm does notintrodu
e more parameters, only one exe
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essful 
lassi�er.Future work is oriented to the 
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ept of similarity on the data, i.e. the distan
emetri
 used. On the one hand, the use of weighted distan
e metri
s for learningwhi
h attributes are important and whi
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e metri
s to 
omputesquare error was used in this work, appears as an interesting task.REFERENCES[1℄ Bermejo, S.|Cabestany, J.: A Bat
h Learning Algorithm Ve
tor QuantizationAlgorithm for Nearest Neighbour Classi�
ation. Neural Pro
essing Letters, Vol. 11,2000, pp. 173{184.[2℄ Bezdek, J. C.|Kun
heva, L. I.: Nearest Neighbour Classi�er Designs: An Ex-perimental Study. International Journal of Intelligent Systems, Vol. 16, 2001,pp. 1445{1473.



Automati
 Finding of Good Classi�ers Following a Biologi
ally Inspired Metaphor 15[3℄ Duda, R. O.|Hart, P. E.: Pattern Classi�
ation and S
ene Analysis. John Wileyand Sons, 1973.[4℄ Fern�andez, F.|Isasi, P.: Designing Nearest Neighbour Classi�ers by the Evolu-tion of a Population of Prototypes. In Pro
eedings of the European Symposium onArti�
ial Neural Networks (ESANN'01), pp. 172{180, 2001.[5℄ Fern�andez, F.|Isasi, P.: Evolutionary Design of Nearest Neighbour Classi�ers.Te
hni
al Report UC3M-TR-CS-2001-08, Universidad Carlos III de Madrid, 2001.[6℄ Fritzke, B.: Growing Cell Stru
tures | a Self-Organizing Network for Unsuper-vised and Supervised Learning. Neural Networks, Vol. 9, 1994, No. 7, pp. 1441{1460.[7℄ Gersho, A.|Gray, R. M.: Ve
tor Quantization and Signal Compression. KluwerA
ademi
 Publishers, 1992.[8℄ Geva, S.|Sitte, J.: Adaptive Nearest Neighbour Pattern Classi�
ation. IEEETransa
tions on Neural Networks, Vol. 2, 1991, No. 2, pp. 318{322.[9℄ Hart, P. E.: The Condensed Nearest Neighbour Rule. IEEE Transa
tions on Infor-mation Theory, Vol. 14, 1968, pp 515{516.[10℄ Kohonen, T.: Self-Organization and Asso
iative Memory (3rd ed. 1989). Springer,Berlin, Heidelberg, 1984.[11℄ Kun
heva, L. I.|Bezdek, J. C.: Nearest Prototype Classi�
ation: Clustering,Geneti
 Algorithms, or Random Sear
h? IEEE Transa
tions on Systems, Man andCyberneti
s, Vol. 28, 1998, No. 1, pp. 160{164.[12℄ Linde, Y.|Buzo, A.|Gray, R. M.: An Algorithm for Ve
tor Quantizer Design.IEEE Transa
tions on Communi
ations, Vol. 1, 1980, No. 1, pp. 84{95.[13℄ Lloyd, S. P.: Least Squares Quantization in PCM. In IEEE Transa
tions on Infor-mation Theory, 1982, No. 28, pp. 127{135.[14℄ Merelo, J. J.|Prieto, A.|Mor�an, F.: Optimization of Classi�ers Using Ge-neti
 Algorithms. In Patel Honavar, editor, Advan
es in Evolutionary Synthesis ofNeural Systems, MIT press, 1998.[15℄ Pal, N. R.|Bezdek, J. C.|Tsao, E. C. K.: Generalized Clustering Networksand Kohonen's Self-Organizing S
heme. IEEE Transa
tions on Neural Networks,Vol. 4, 1993.[16℄ Patan�e, G.|Russo, M.: The Enhan
ed LBG Algorithm. Neural Networks, Vol. 14,2001, pp. 1219{1237.[17℄ P�erez, J. C.|Vidal, E.: Constru
tive Design of LVQ and DSM Classi�ers. InJ. Mira, J. Cabestany, and A. Prieto, editors, New Trends in Neural Computation,Vol. 686 of Le
ture Notes in Computer S
ien
e. Springer Verlag, 1993.[18℄ Russo, M.|Patan�e, G.: ELBG Implementation. International Journal of Know-ledge Based Intelligent Engineering Systems, Vol. 2, 2000, No. 4, pp. 94{109.[19℄ Zhao, Q.|Higu
hi, T.: Evolutionary Learning of Nearest Neighbour MLP. IEEETransa
tions on Neural Networks, Vol. 7, 1996, No. 3, pp. 762{767.



16 F. Fern�andez, P. IsasiFernando Fern�andez is 
urrently Ph.D. 
andidate in 
om-puter s
ien
e at Universidad Carlos III de Madrid (UC3M).He re
eived his B.S
. in 1996 from Universidad Complutensede Madrid and his Masters in 1999 from UC3M, both in Com-puter S
ien
e. His do
toral dissertation 
on
erns �nding eÆ
ientstate spa
e representations in reinfor
ement learning problems,and their appli
ation to roboti
 domains in whi
h informationre
eived from sensors is 
ontinuous. In the summer and fall of2000, he was a visiting student at the Center for EngineeringS
ien
e Advan
ed Resear
h at Oak Ridge National Laboratory(Tennessee) and from 1998 to 2000 he parti
ipated in a European funded resear
h anddevelopment proje
t. His resear
h interests in
lude reinfor
ement learning, autonomousroboti
s, neural networks and nearest neighboour approa
hes for supervised and unsuper-vised learning. Pedro Isasi is 
urrently full professor in the Department ofComputer S
ien
e at Universidad Carlos III de Madrid (UC3M).He re
eived his B.S
. in 1991 and his PhD. in 1994, both in
omputer s
ien
e at Universidad Polite
ni
a de Madrid. He isin 
harge of the S
aLab laboratory of the Computer S
ien
eDepartment of UC3M from 1993, his main resear
h �elds areadaptive 
omplex systems. He is author of many works in ma-
hine learning (theoreti
al | 
lassi�
ation methods, 
oevolu-tion, learning 
ontrol knowledge, and pra
ti
al | roboti
s 
on-trol, 
hemi
al and hydroele
tri
 Al power plant, sto
k market,et
.). His resear
h interests in
lude evolutionary 
omputation, 
oevolution, unsupervisedneural networks and radial basis fun
tions.


