-

View metadata, citation and similar papers at core.ac.uk brought to you byj‘: CORE

provided by Universidad Carlos Il de Madrid e-Archivo

Computing and Informatics, Vol. 21, 2002, 1-16, V 7. 11.

AUTOMATIC FINDING OF GOOD CLASSIFIERS
FOLLOWING A BIOLOGICALLY INSPIRED
METAPHOR

Fernando FERNANDEZ, Pedro ISASI

Universidad Carlos III de Madrid

Avda de la Universidad 30

28911 Leganés

Madrid, Spain

e-mail: ffernand@inf.uc3m.es, isasi@ia.uc3m.es

Manuscript received 29 April 2002; revised 10 October 2002
Communicated by Gheorghe Paun

Abstract. The design of nearest neighbour prototypes can be seen as the partition-
ing of the whole domain in different regions that can be directly mapped to a class.
The definition of the limits of these regions is the goal of any nearest neighbour
based algorithm. These limits can be described by the location and class of a re-
duced set of prototypes and the nearest neighbour rule. The nearest neighbour rule
can be defined by any distance metric, while the set of prototypes is the matter of
design. To compute this set of prototypes, most of the algorithms in the literature
require some crucial parameters as the number of prototypes to use, and a smooth-
ing parameter. In this work, an evolutionary approach based on Nearest Neighbour
Classifiers (ENNC) is introduced where no parameters are involved, thus overcom-
ing all the problems derived from the use of the above mentioned parameters. The
algorithm follows a biological metaphor where each prototype is identified with an
animal, and the regions of the prototypes with the territory of the animals. These
animals evolve in a competitive environment with a limited set of resources, emerg-
ing a population of animals able to survive in the environment, i.e. emerging a right
set of prototypes for the above classification objectives. The approach has been
tested using different domains, showing successful results, both in the classification
accuracy and the distribution and number of the prototypes achieved.

Keywords: Classifier design, nearest neighbour classifiers, evolutionary learning,
biologically inspired algorithms

https://core.ac.uk/display/30041574?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 F. Ferndndez, P. Isasi

1 INTRODUCTION

Nearest Neighbour Classifiers are defined as the sort of classifiers that assign to each
new unlabelled example, v, the label of the nearest prototype, r;, from a set, C, of N
different prototypes previously classified [3]. When the set C' is very reduced, this
kind of classifiers can be called Nearest Prototype Classifiers [2] (NPC), but, given
that the limits among them are not defined in detail, we will keep using the first
nomenclature.

These classifiers are very much related to vector quantization techniques [7] since
the nearest neighbour rule is the cornerstone of its design, and similar techniques
can be used for both. The design of these classifiers is difficult, and relies in the
way of defining the number of prototypes needed to achieve a good accuracy, as well
as the initial set of prototypes used. Furthermore, most learning algorithms intro-
duce several different parameters, that are often summarized in a unique learning
parameter. This learning parameter defines whether the updates over the classifier
are higher (typically at the beginning of the learning phase) or lower (typically at
the end of the learning phase).

Many discussions about what is the right technique to use can be found in the
literature [11]. Some approaches based on clustering techniques [16, 15, 1] are based
on two main steps. The first one is to cluster a set of unlabelled input data to obtain
a reduced set of prototypes, for instance, with the LBG algorithm [12]. The second
step is to classify these prototypes on the basis of previously labelled examples and
the nearest neighbour rule. Although this approach produces good results, it is
obvious that to introduce information about the classification performance in the
location of the prototypes it seems to be needed to achieve a higher performance.

Neural networks approaches are also very common in the literature, like the LVQ
algorithm [10] and the works with radial basis functions [6]. To find the right number
of neurons of the net, two basic approaches can be found. On the one hand, some
techniques try to introduce or to eliminate prototypes (or neurons) while designing
the classifier following different heuristics, as the average quantization distortion [18]
or the accuracy in the classification [17]. On the other hand, other approaches try to
define the optimal size of the classifier first, and then to learn it using the previous
value. Genetic algorithms approaches are typically used to find an initial set of
prototypes, as well as its right size, in addition to another technique to achieve
local optimization [14]. Following this idea, in [19], an evolutionary approach can
be found based on the R* rule (recognition, remembrance, reduction and review) to
evolve the nearest neighbour multi-layer perceptrons.

In this work, an evolutionary approach called Evolutionary Nearest Neighbour
Classifier (ENNC) [4] is introduced to dynamically define the number of prototypes
of the classifier as well as the location of these prototypes. The main difference
from the previous works is that this approach is a fully integrated algorithm. Most
algorithms that solve initialization problems take advantage of a previous known
technique and modify it to introduce the new capabilities. For instance, they in-
troduce some heuristics for including or eliminating prototypes, or they use genetic

Automatic Finding of Good Classifiers Following a Biologically Inspired Metaphor 3

algorithms for optimizing the initialization, but typically in a batch mode. However,
in this work, both the operations used to modify the size of the classifier and the
learning algorithm are fully integrated and cannot be used separately from the other
part.

The algorithm is summarized as follows. The classifier is defined as a population
of animals (prototypes) that must fight to eat vegetables (training examples) that
allows them to survive and to find an equilibrium in the environment (optimum
number of prototypes). The method allows the animals to execute several operators,
like to introduce new animals (reproduction), to change their specie (mutation), etc.
in order to improve their adaptation to the environment (the global accuracy of the
classifier). Furthermore, the execution of these operators is controlled by the animals
themselves, taking into account their relationship with the rest of the animals in the
environment. So, the evolution will allow the individuals to locate themselves in the
right position, and to be labelled in the right way, achieving the equilibrium only
when the right number of prototypes is achieved.

In the next section, the main concepts used are presented, showing the ecosystem
metaphor; Section 3 describes the algorithm in depth. Section 4 shows principal ex-
periments performed and a comparison with previous works, while Section 5 presents
some conclusions and suggests topics for further research.

2 BIOLOGICALLY INSPIRED DESIGN OF NEAREST NEIGHBOUR
CLASSIFIERS (ENNC)

The ENNC algorithm offers an evolutionary point of view to the design of near-
est neighbour classifiers. The main advantage of this method is that neither the
number of prototypes used, nor an initial set of prototypes are required. The first
difference among this algorithm and previous evolutionary approaches is the way
of representing the population: in this case, and following the Michigan approach,
each chromosome represents only one prototype, and not a whole classifier, so the
classifier is represented by the whole population. The main concepts can be defined
as follows:

Prototype/Animal, r;. Each prototype/animal is composed by its localization in
the environment and its class/specie.

Classifier /Population, C. A set of N prototypes or animals C' = {ry,...,rx}.

Region, r;. The environment is divided into a set of N regions defined by the
localization of the animals and the nearest neighbour rule. In this sense, there is
a direct relationship among the location of the animals and the regions (regions
are calculated from prototype localization), so in the rest of this work, we may
talk about regions, prototypes and animals indistinctly. Each animal only eats
vegetables in its own region.

Pattern/Vegetable, v,. It is each of the examples that will be used for training
or testing the system. They all compose a set V = {vy,..., vy}, and, as well as

4 F. Ferndndez, P. Isasi

the prototypes, they are composed by its location and by their class. They are
considered as vegetables of the biological system.

Class/Specie, s;. Both animals and vegetables belong to a class or specie from
the set S = {s1,...,s.}. The goal of an animal r; of specie s; is to eat as
many vegetables of class s; as possible and not to eat vegetables of other classes
Sk # 8j.

Quality /Health of a prototype/animal. This is a measure of the goodness of
the prototype, taking into account the number of patterns into its region,
apportation,;, and whether those patterns belong to the same class than the
prototype or not, accuracy,,. The final value is computed as follows:

quality,, = min(1, accuracy,, * apportation,,), (1)

where r; is the prototype we are computing its health, and a maximum value
of 1 is included in order to normalize the measure.

The second main difference of this algorithm with previous evolutionary ap-
proaches comes from the operators that are used to evolve. In this case, most of
the operators are based on heuristics of previous works [1, 15, 6, 13, 18], and new
ones have been incorporated. So the learning phase is an iterative process that exe-
cute several operators over each individual. Each of this iteration is called a year
in the animals life, and the year is divided into four seasons: spring, summer, fall
and winter. In each season, different operators are executed, and are summarized
in Table 1.

Season Operators Description

Spring Mutation Each animal changes its own specie to
the majority specie of vegetables in its
region

Summer | Reproduction The animals reproduce to create ani-
mals that eat what they do not want
to eat

Fall Fight and Move | The animals fight against other animals
and move to a different position to get
more food

Winter | Die Weak animals die

Table 1. Phases of the algorithm and operators used in each phase

3 THE ALGORITHM

The algorithm follows the flow defined in Figure 1. The algorithm starts with
a single initialization, followed of an iterative process of evolution, where the different

Automatic Finding of Good Classifiers Following a Biologically Inspired Metaphor 5

operations are executed. In this section, all these operations are defined from the
biological point of view. A formal description of all these operations can be found
in [5].

Initialization

End Condition

True

Fig. 1. ENNC algorithm

3.1 Initializing

One relevant feature of our method is the absolute elimination of initial condi-
tions. These initial conditions are usually summarized in three ones: the number
of prototypes, the initial set of prototypes and a smoothing parameter. The ENNC
algorithm allows to learn without those parameters, given that:

e The initial number of prototypes is always one. The method is able to generate
new prototypes stabilizing in the most appropriate number in terms of the above
mentioned “quality” measure.

e The initial location of the only one prototype is not relevant (it clusters all the
domain, wherever it is located).

e There are no learning parameters. The method automatically adjusts the inten-
sity of change in prototypes taking into account their qualities in each iteration.

3.2 Spring

The spring season is the time when the vegetables are born. All the animals are
placed in their own region, and will recollect all the vegetables in its region. The

6 F. Ferndndez, P. Isasi

way to define whether a vegetable belongs to one animal or to another is based on
the nearest neighbour rule.

At the end of spring, each animal knows the quantity of vegetables of each
specie that it can eat, so it will become (modify its state) to the specie of the most
abundant specie of vegetables. This operator corresponds with the labelling phase
of the unsupervised learning approaches [1, 15], but in this case, the supervision is
included in each iteration and not only in a posterior phase. This operator is called
mutation operator and it is shown in Figure 2. In the figure, an animal of specie 1
becomes to specie 2, given that vegetables of specie 2 are the most populated in its
region.

+ t +
+++++ 00 +, Ty
+ B+ 0O @) X + +><++ OOO
tﬂi O~ Mutation +++++ OO
+7 O 0O > +++ 00

X Animal of Speciel (+)
] Animal of Specie2 (Q)

Fig. 2. Example of mutation operator execution

3.3 Summer

Summer is the season where animals reproduce (second operator). In this case the
reproduction is not sexual, and an animal only reproduce if it needs another animal
that eats what it does not want to eat, so there is a selfish motivation. In a neural
network domain, reproduction is equivalent to the insertion of new neurons in the
net based on the accuracy of the classifier [6].

So an animal only reproduces if, vegetables of different classes are found in its
region. The probability of reproduction is proportional to the difference among the
number of vegetables of each class in its region. Newborn animal is located in order
to increase the ancestor performance, as shown in Figure 3.

o N
£aif 0o fit00
A ++ 0 O Reproduction 5 ++/ 00

" o PR AN o
"% 000%0 A oqP o

0o,P0 Regonl70°6 ;00

Regionl O O /RegionZO O

X Animal of Specie1 (+)
[J Animal of Specie2 ()

Fig. 3. Example of reproduction operator execution

Automatic Finding of Good Classifiers Following a Biologically Inspired Metaphor 7
3.4 Fall

Fall is the time where food starts to scarce, and the animals decide to look for more
food. In this sense, fall have two phases. In the first one, animals can fight, in order
to steal territory from other animals and to get more food. In the second phase,
animals locate themselves in an optimum place to spend the winter and to wait for
the next spring.

1. Fights: An animal can decide to fight with other animals in order to get more
food. Fight operator is executed for each animal, and has the following phases:

(a) To choose a rival by assigning all the animals in its neighbourhood a proba-
bility proportional to the quality of that animal and using a roulette as the
selection method.

(b) Once the rival is selected, the animal has to decide whether to fight or not.
The probability of fighting is proportional to the difference in health of both
rivals.

(c¢) Once the rival has been selected and the animal decides to fight, there are
two possibilities:

i The animals do not belong to the same specie. In this case, there is no
sense to fight, and both animals make an agreement that the second one
gives the vegetables required to the first one, as shown in Figure 4.

+++ + // + + + //
Foot+ 00/ +. 40 4
+ X r.,00
+<:—3>< ++ 0/ /O Fight (Cooperative) +2<++ ‘ O
T LO > T o
T 0900 00090
O Region 1
Region 10/000 o sdionL 075 0 0
,/ Sl /" Region® 7

Region 2 X Animals of Specie 1 (+)
[J Animalsof Specie2 (O)

Fig. 4. Example of fight operator execution with cooperation

ii Both animals belong to the same specie. Animals fight, with a probability
of victory proportional to the animals health. The winner steals food from
the loser, as shown in Figure 5. If the winner is allowed to steal all the
food from the loser, the loser dies.

2. Move: The move operator implies to relocate each animal in the best expected
place to spend the winter and wait until next spring. So each animal decides
to move to the centroid of the vegetables of the same class, as shown in Figu-
re 6 for animal 2. This operator is based on the Lloyd iteration of the GLA
algorithm [13].

8 F. Ferndndez, P. Isasi

+ L, + ’
++++;’ +++++ .
+ e+t +o4
+:i<,f + 4+ Fight (Competitive) X T,y
+ + +T T O+
R s ++ J?ﬂ ¥
Region1 7" o+
; R+'+ ; Region1#
egion i) / i
X Animals of Specie 1 (+) Region 2

] Animals of Specie2 (O)

Fig. 5. Example of fight operator execution with competition

Region 1 Region 1
eg|+++ / egl+++ /
7/ + 7/
Fif 00 Fit 00
++++ +/// OQ Move +++++/// OOO
"%, 0000 T o o
//OOOOO ,/OOOOO
.’ Region2© . Region2© ©

X Animal of Specie 1 (+)
[J Animal of Specie2 (0)

Fig. 6. Example of move operator execution

3.5 Winter

In winter, weak animals (those which have low quality values) increase their dying
probability. This probability is 1 minus the double of the health. Then, healthy
animals will survive, while weak animals with health of less than 0.5 might die. In
the neural network bibliography, a deeper documentation about which neurons to
select in order to simplify the network structure can be found [6, 18]. At the end of
this season, all vegetables disappear.

3.6 End Condition

End condition is the hardest element to define in this approach. It is supposed that
the algorithm conversion to an optimal solution is desirable, but: what is an optimal
solution? In this area, an optimal solution is said to be the solution that achieves
the highest classification accuracy with the smallest number of prototypes. However,
what is the heaviest parameter? Some people can think that if increasing the number
of prototypes, we can increase the accuracy of the classifier; it is better to increase
this number, but over-fitting problems may occur and the generalization capabilities
may be reduced. On the other hand, if we reduce the number of prototypes, we can
do it only by decreasing the accuracy. So, what is the best solution? The approach of
this work is to let the population to evolve, to store a set of paradigmatic classifiers

Automatic Finding of Good Classifiers Following a Biologically Inspired Metaphor 9

and let the user to choose the most appropriate ones. Obviously, a lot of different
approaches could be introduced to decide when to stop. Several of them can be
found in [5].

4 EXPERIMENTS

In this section, two experiments performed with the ENNC algorithm are shown.
The first one is a data set of Gaussian-distributed examples. It is a single experiment
that will show how the algorithm works. The second experiment in Section 4.2 allows
to compare this approach with previous ones in the literature. For both experiments,
the end condition is defined by a maximum number of iterations enough to achieve
good solutions in all the cases.

4.1 Gaussian-Distributed Data

In this experiment, two different classes are defined following the distributions shown
in Figure 7.

1.6
x
14t . . 1
X + + +
% x
X x X x x ot T x B
1t X k. x [X o x
xR I
X XX e e % x xR
0.8 M |
x x + + + X X
0.6 x x f
0.4 r ok b
02| o b FE g
U SR
e P >< B
0 R, > x
et X
020 T X xx X]
-04 * x b
x
0.6
-0.5 0 0.5 1 15 2 25
class1 class2 x

Fig. 7. Gaussian-distributed data

The data set consists of 250 examples, where 200 were used for training and 50 for
test. The ENNC algorithm starts with a population of 1 prototype that is supposed
to evolve to find a right set of prototypes. The ENNC algorithm is a stochastic
method, so different executions may achieve different results. To verify whether the
solutions achieved are similar, the algorithm is executed 20 times, each of them of
a length of 100 iterations. The results are given in Table 2, where the information
of the best classifier obtained in each execution is shown: iteration where it was
evolved, accuracy over the test set and the number of prototypes.

These results show that most of the executions (95 % of the cases) achieve the
optimal solution (5 prototypes and a 100 % of success) over the test. One execution
achieved the same classification accuracy but needs one more prototype.

10

F. Ferndndez, P. Isasi

Iteration | Accuracy (%) | Prototypes
3 100.000 5
13 100.000 5
8 100.000 5
10 100.000 5
6 100.000 6
6 100.000 5
6 100.000 5
11 100.000 5
11 100.000 5
10 100.000 5
9 100.000 5
11 100.000 5
10 100.000 5
8 100.000 5
16 100.000 5
6 100.000 5
6 100.000 5
6 100.000 5
6 100.000 5
14 100.000 5

Table 2. Results of different executions of ENNC algorithm over Gaussian-distributed data

Figure 8 shows the evolution of one of these executions. The z-axis shows the
iterations of the algorithm, while the y-axis shows the accuracy of the classifier in
that iteration for the training and the test sets, as well as the number of prototypes
used. Figure 9 allows to understand this evolution by showing the state of the
classifier at the end of four of the iterations of the algorithm. Figure 9(a) shows the
result of the first iteration, where a new prototype has been introduced to the initial
one. Figures (b), (c) and (d) show the results of iterations 4, 6, and 14, respectively,
each one with one more prototype than in the previous figure.

0 10 2

Accuracy and Number of Centroids Used

0 30 40 50 60 70 80 90 100
Iterations

Trainning Set Accuracy ———
Test Set Accuracy -
Prototypes -

Fig. 8. Evolution of the ENNC algorithm over Gaussian-distributed data

Automatic Finding of Good Classifiers Following a Biologically Inspired Metaphor 11
16 ! ! ! ! ! 16 ! ! ! ! !
14 o R . 1 14 < . .]
L2 g%, % ARt odng o 120 27% % ey ol s
F N A AT ‘X%;’f'& “ RIS e Y N S
bl S Poada s wok * Faogs PoaHA A wock
08 f* < x] 0.8 x <]
06 x X - N P 06 x X ° <«
04 ok 1 0.4 o x 1
02 F i % T] 02 f .t H T]
of wEFLE b] of EELs RjnEE]
02 W . R 1 02 . . R 1
0.4 | - ; 1 0.4 | - ; 1
06 06
0.5 0 0.5 1 15 2 25 0.5 0 0.5 1 15 2 25
Class1 + Class1 +
Class2 Class2 x
Class 1 Prototype ®m Class 1 Prototype =
Class 2 Prototype @ Class 2 Prototype @
(a) Iteration 1 (b) Iteration 4
16 ! ! ! ! ! 16 ! ! ! ! !
14 | . . . 4 14 | . . . 4
120 g% % B - 120 g% % DR A
ol R : j! s i L p Rs L AR s
06 < ’ . e 06 < ’ e
0.4 ok 1 0.4 o x 1
02 L .v i i g 02 L .v i E
of »Hm d ik] 0 ELs pmbd]
02 ol M 1 0.2 . bl 1
04 - <] 04 - < —
06 06
-0.5 0 0.5 1 15 2 25 0.5 0 0.5 1 15 2 25
Class1 + Class1 +
Class2 Class2 x
Class 1 Prototype ®m Class 1 Prototype =
Class 2 Prototype @ Class 2 Prototype @

(c) Iteration 6

(d) Iteration 14

Fig. 9. Evolution of the prototypes

4.2 Straight Line Class Boundaries

This classification problem was first defined by [9] and used in [8] to show the
performance of the DSM classifier. The domain consists on two different classes
defined as shown in Figure 10, with 6400 samples for training and 6400 for test.
DSM algorithm belongs to the family of LVQ algorithms and works in the following
way: it selects a small set of training samples and uses them as seed of the learning
algorithm. This algorithm gradually adapts their location to correctly classify the
whole data set.

In Figure 10 a solution of the problem with only 10 prototypes is shown. As in
the previous experiment, we have executed the ENNC algorithm 20 times to verify
its behaviour, each run of 300 iterations. For each run, the best classifier over the
test set is chosen. Results are summarized in Table 3 and show that the algorithm
converges to solutions in the range of 30-40 prototypes, with approx. 98 % accuracy.
The average success of the 20 results is 98.14 and is the value used for comparisons
with the results reported in [8] and shown in Table 4. The table shows how this value
improves the results of LVQ1, and it is very close to the results of the net trained
with the backpropagation algorithm, while it is not able to achieve the results of

12

Class

Class 2

F. Ferndndez, P. Isasi

Fig. 10. Straight line class boundaries domain and a solution

DSM. Anyway, note that our approach automatically defines the right number of

prototypes.

Figure 11 shows the evolution of one of the executions. In the initial iterations,
the number of prototypes used is below 10, and the accuracy of the classifier keeps
below 90 %. Once the number of prototypes is higher than 10, the classifier starts

Iteration Accuracy Prototypes
248 98.672 30
238 98.203 29
225 98.484 31
276 97.922 32
258 98.234 29
283 98.078 29
196 97.969 30
181 98.047 32
252 98.375 37
206 97.953 31
300 98.109 34
100 97.859 30
213 98.375 35
294 97.984 31
177 97.922 30
253 97.781 36

40 97.766 11
249 98.547 30
139 98.297 28
237 98.094 33

Table 3. Results of different executions of ENNC algorithm over straight line class boun-

daries domain

Prototypes DSM LvQl Backpropagation
6 92.86 81.00 90.58

8 96.18 80.45 98.47

9 98.14 85.36 98.73

10 99.57 87.66 98.34

20 99.55 95.66 98.47

24 99.59 96.94 98.62

50 99.51 97.49 98.44

250 99.21 98.16 98.45

Table 4. Comparative results over straight line class boundaries domain

Automatic Finding of Good Classifiers Following a Biologically Inspired Metaphor 13

to achieve results of approximately 98 %. The number of prototypes is successively
increased in order to improve the accuracy. This number of prototypes does not
stabilize in a specific value, given that more than one similar solution can be found.
In this sense, the system is able to oscillate between close solutions in order to leave
the last decision to the user. Last, note that both training and test sets keep similar
values while learning.

Figure 12 shows the prototypes of the classifier obtained in the first execution
of the ENNC algorithm. There are 30 prototypes, achieving 98.672 % accuracy.

0 L)
0 50 100 150 200 250 300

Iterations

Accuracy and Number of Centroids Used

Trainning Set Accuracy
Test Set Accuracy -~
Centroids -

Fig. 11. Execution of the ENNC algorithm over straight line class boundaries domain

100
90
80
70
60
50
40
30
20
10

0 10 20 30 40 50 60 70 80 90 100
class1 - class 2

Fig. 12. Classifier of 30 prototypes obtained with ENNC in straight line class boundaries
domain

5 CONCLUSIONS AND FUTURE WORK

This work has presented a biologically inspired approach to the problem of nearest
neighbour classifiers design. This approach follows an ecosystem metaphor in which
the prototypes are defined as animals and the training examples as animal resources

14 F. Ferndndez, P. Isasi

(vegetables). The biological perspective allows to define in a very simple way new
concepts such as to steal vegetables, cooperative actions among the different animals,
etc., while other typical operations such as introduce new prototypes, or to eliminate
useless ones have been redefined.

The main advantages of this method are, on the one hand, that it is able to
achieve a high accuracy in the domains where it has been tested, even compared
with other techniques from the literature. On the other hand, the achievement of
these good results is done without the definition by the user of any initial conditions
or other parameters for learning. Furthermore, it is a fully integrated technique
that includes elements from other works, as heuristics to introduce prototypes, to
eliminate another ones, labelling phases, etc. Previous works typically introduce
modifications over other techniques that provide them with the capability of defining
the architecture. This way, other solutions were genetic algorithms or heuristics to
modify the architecture. These techniques can be split into two steps, defining or
modifying the architecture and learning the problem with the new architecture,
sometimes even in an iterative process. However, in this work, all the mechanisms
are fully integrated, so it is not possible to separate the elements that define the
architecture from those that learn the problem with the architecture.

Comparisons with other techniques have shown that the approach is able to
successfully solve the problem presented without any additional parameter: the
user only has to define the training and test sets, and one end condition.

Even though the algorithm is a stochastic method, it has shown that similar
solutions are achieved when different runs are executed. This property ensures that
the solutions achieved in a first run of the algorithm are very close to the optimal,
so no more trials are required. Furthermore, given that the algorithm does not
introduce more parameters, only one execution of the algorithm is enough to obtain
a successful classifier.

Future work is oriented to the concept of similarity on the data, i.e. the distance
metric used. On the one hand, the use of weighted distance metrics for learning
which attributes are important and which are not, is an important issue, as well as
introducing some techniques for automatically normalizing the data without losing
information. On the other hand, the adaptation of all the ideas presented in this
work to other not Euclidean domains, where different distance metrics to compute
square error was used in this work, appears as an interesting task.

REFERENCES

[1] BERMEJO, S.—CABESTANY, J.: A Batch Learning Algorithm Vector Quantization
Algorithm for Nearest Neighbour Classification. Neural Processing Letters, Vol. 11,
2000, pp. 173-184.

[2] BEzDEK, J. C.—KUNCHEVA, L. I.: Nearest Neighbour Classifier Designs: An Ex-
perimental Study. International Journal of Intelligent Systems, Vol. 16, 2001,
pp. 1445-1473.

Automatic Finding of Good Classifiers Following a Biologically Inspired Metaphor 15

[3]

[4]

[5]

[6]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Dupa, R. O.—HART, P. E.: Pattern Classification and Scene Analysis. John Wiley
and Sons, 1973.

FERNANDEZ, F.—Isasi1, P.: Designing Nearest Neighbour Classifiers by the Evolu-
tion of a Population of Prototypes. In Proceedings of the European Symposium on
Artificial Neural Networks (ESANN’01), pp. 172-180, 2001.

FERNANDEZ, F.—Isas1, P.: Evolutionary Design of Nearest Neighbour Classifiers.
Technical Report UC3M-TR-CS-2001-08, Universidad Carlos III de Madrid, 2001.

FriTzKE, B.: Growing Cell Structures — a Self-Organizing Network for Unsuper-
vised and Supervised Learning. Neural Networks, Vol. 9, 1994, No. 7, pp. 1441-1460.

GERSHO, A.—GRAY, R. M.: Vector Quantization and Signal Compression. Kluwer
Academic Publishers, 1992.

GEVA, S.—SITTE, J.: Adaptive Nearest Neighbour Pattern Classification. IEEE
Transactions on Neural Networks, Vol. 2, 1991, No. 2, pp. 318-322.

HART, P. E.: The Condensed Nearest Neighbour Rule. IEEE Transactions on Infor-
mation Theory, Vol. 14, 1968, pp 515-516.

KoHONEN, T.: Self-Organization and Associative Memory (3rd ed. 1989). Springer,
Berlin, Heidelberg, 1984.

KuncHEVA, L. I.—BEZDEK, J. C.: Nearest Prototype Classification: Clustering,
Genetic Algorithms, or Random Search? IEEE Transactions on Systems, Man and
Cybernetics, Vol. 28, 1998, No. 1, pp. 160-164.

LiNDE, Y.—Buzo, A.—GRAY, R. M.: An Algorithm for Vector Quantizer Design.
TIEEE Transactions on Communications, Vol. 1, 1980, No. 1, pp. 84-95.

Lroyp, S. P.: Least Squares Quantization in PCM. In IEEE Transactions on Infor-
mation Theory, 1982, No. 28, pp. 127-135.

MERELO, J. J.—PRIETO, A.—MORAN, F.: Optimization of Classifiers Using Ge-
netic Algorithms. In Patel Honavar, editor, Advances in Evolutionary Synthesis of
Neural Systems, MIT press, 1998.

ParL, N. R.—BEzDEK, J. C.—Tsa0, E. C. K.: Generalized Clustering Networks
and Kohonen’s Self-Organizing Scheme. IEEE Transactions on Neural Networks,
Vol. 4, 1993.

PATANE, G.—RuUSs0, M.: The Enhanced LBG Algorithm. Neural Networks, Vol. 14,
2001, pp. 1219-1237.

PERrEZ, J. C.—VipArL, E.: Constructive Design of LVQ and DSM Classifiers. In
J. Mira, J. Cabestany, and A. Prieto, editors, New Trends in Neural Computation,
Vol. 686 of Lecture Notes in Computer Science. Springer Verlag, 1993.

Russo, M.—PATANE, G.: ELBG Implementation. International Journal of Know-
ledge Based Intelligent Engineering Systems, Vol. 2, 2000, No. 4, pp. 94-109.

ZuAo, Q.—HicucHi, T.: Evolutionary Learning of Nearest Neighbour MLP. IEEE
Transactions on Neural Networks, Vol. 7, 1996, No. 3, pp. 762-767.

16 F. Ferndndez, P. Isasi

Fernando FERNANDEZ is currently Ph.D. candidate in com-
puter science at Universidad Carlos III de Madrid (UC3M).
He received his B.Sc. in 1996 from Universidad Complutense
de Madrid and his Masters in 1999 from UC3M, both in Com-
puter Science. His doctoral dissertation concerns finding efficient
state space representations in reinforcement learning problems,
and their application to robotic domains in which information
received from sensors is continuous. In the summer and fall of
2000, he was a visiting student at the Center for Engineering
Science Advanced Research at Oak Ridge National Laboratory
(Tennessee) and from 1998 to 2000 he participated in a European funded research and
development project. His research interests include reinforcement learning, autonomous
robotics, neural networks and nearest neighboour approaches for supervised and unsuper-
vised learning.

Pedro Isasr is currently full professor in the Department of
Computer Science at Universidad Carlos III de Madrid (UC3M).
He received his B.Sc. in 1991 and his PhD. in 1994, both in
computer science at Universidad Politecnica de Madrid. He is
in charge of the ScaLab laboratory of the Computer Science
Department of UC3M from 1993, his main research fields are
adaptive complex systems. He is author of many works in ma-
chine learning (theoretical — classification methods, coevolu-
tion, learning control knowledge, and practical — robotics con-
trol, chemical and hydroelectric Al power plant, stock market,
etc.). His research interests include evolutionary computation, coevolution, unsupervised
neural networks and radial basis functions.

