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AUTOMATIC FINDING OF GOOD CLASSIFIERSFOLLOWING A BIOLOGICALLY INSPIREDMETAPHORFernando Fern�andez, Pedro IsasiUniversidad Carlos III de MadridAvda de la Universidad 3028911 Legan�esMadrid, Spaine-mail: ffernand�inf.u3m.es, isasi�ia.u3m.esManusript reeived 29 April 2002; revised 10 Otober 2002Communiated by Gheorghe P�aunAbstrat. The design of nearest neighbour prototypes an be seen as the partition-ing of the whole domain in di�erent regions that an be diretly mapped to a lass.The de�nition of the limits of these regions is the goal of any nearest neighbourbased algorithm. These limits an be desribed by the loation and lass of a re-dued set of prototypes and the nearest neighbour rule. The nearest neighbour rulean be de�ned by any distane metri, while the set of prototypes is the matter ofdesign. To ompute this set of prototypes, most of the algorithms in the literaturerequire some ruial parameters as the number of prototypes to use, and a smooth-ing parameter. In this work, an evolutionary approah based on Nearest NeighbourClassi�ers (ENNC) is introdued where no parameters are involved, thus overom-ing all the problems derived from the use of the above mentioned parameters. Thealgorithm follows a biologial metaphor where eah prototype is identi�ed with ananimal, and the regions of the prototypes with the territory of the animals. Theseanimals evolve in a ompetitive environment with a limited set of resoures, emerg-ing a population of animals able to survive in the environment, i.e. emerging a rightset of prototypes for the above lassi�ation objetives. The approah has beentested using di�erent domains, showing suessful results, both in the lassi�ationauray and the distribution and number of the prototypes ahieved.Keywords: Classi�er design, nearest neighbour lassi�ers, evolutionary learning,biologially inspired algorithms
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2 F. Fern�andez, P. Isasi1 INTRODUCTIONNearest Neighbour Classi�ers are de�ned as the sort of lassi�ers that assign to eahnew unlabelled example, v, the label of the nearest prototype, ri, from a set, C, of Ndi�erent prototypes previously lassi�ed [3℄. When the set C is very redued, thiskind of lassi�ers an be alled Nearest Prototype Classi�ers [2℄ (NPC), but, giventhat the limits among them are not de�ned in detail, we will keep using the �rstnomenlature.These lassi�ers are very muh related to vetor quantization tehniques [7℄ sinethe nearest neighbour rule is the ornerstone of its design, and similar tehniquesan be used for both. The design of these lassi�ers is diÆult, and relies in theway of de�ning the number of prototypes needed to ahieve a good auray, as wellas the initial set of prototypes used. Furthermore, most learning algorithms intro-due several di�erent parameters, that are often summarized in a unique learningparameter. This learning parameter de�nes whether the updates over the lassi�erare higher (typially at the beginning of the learning phase) or lower (typially atthe end of the learning phase).Many disussions about what is the right tehnique to use an be found in theliterature [11℄. Some approahes based on lustering tehniques [16, 15, 1℄ are basedon two main steps. The �rst one is to luster a set of unlabelled input data to obtaina redued set of prototypes, for instane, with the LBG algorithm [12℄. The seondstep is to lassify these prototypes on the basis of previously labelled examples andthe nearest neighbour rule. Although this approah produes good results, it isobvious that to introdue information about the lassi�ation performane in theloation of the prototypes it seems to be needed to ahieve a higher performane.Neural networks approahes are also very ommon in the literature, like the LVQalgorithm [10℄ and the works with radial basis funtions [6℄. To �nd the right numberof neurons of the net, two basi approahes an be found. On the one hand, sometehniques try to introdue or to eliminate prototypes (or neurons) while designingthe lassi�er following di�erent heuristis, as the average quantization distortion [18℄or the auray in the lassi�ation [17℄. On the other hand, other approahes try tode�ne the optimal size of the lassi�er �rst, and then to learn it using the previousvalue. Geneti algorithms approahes are typially used to �nd an initial set ofprototypes, as well as its right size, in addition to another tehnique to ahieveloal optimization [14℄. Following this idea, in [19℄, an evolutionary approah anbe found based on the R4 rule (reognition, remembrane, redution and review) toevolve the nearest neighbour multi-layer pereptrons.In this work, an evolutionary approah alled Evolutionary Nearest NeighbourClassi�er (ENNC) [4℄ is introdued to dynamially de�ne the number of prototypesof the lassi�er as well as the loation of these prototypes. The main di�erenefrom the previous works is that this approah is a fully integrated algorithm. Mostalgorithms that solve initialization problems take advantage of a previous knowntehnique and modify it to introdue the new apabilities. For instane, they in-trodue some heuristis for inluding or eliminating prototypes, or they use geneti



Automati Finding of Good Classi�ers Following a Biologially Inspired Metaphor 3algorithms for optimizing the initialization, but typially in a bath mode. However,in this work, both the operations used to modify the size of the lassi�er and thelearning algorithm are fully integrated and annot be used separately from the otherpart.The algorithm is summarized as follows. The lassi�er is de�ned as a populationof animals (prototypes) that must �ght to eat vegetables (training examples) thatallows them to survive and to �nd an equilibrium in the environment (optimumnumber of prototypes). The method allows the animals to exeute several operators,like to introdue new animals (reprodution), to hange their speie (mutation), et.in order to improve their adaptation to the environment (the global auray of thelassi�er). Furthermore, the exeution of these operators is ontrolled by the animalsthemselves, taking into aount their relationship with the rest of the animals in theenvironment. So, the evolution will allow the individuals to loate themselves in theright position, and to be labelled in the right way, ahieving the equilibrium onlywhen the right number of prototypes is ahieved.In the next setion, the main onepts used are presented, showing the eosystemmetaphor; Setion 3 desribes the algorithm in depth. Setion 4 shows prinipal ex-periments performed and a omparison with previous works, while Setion 5 presentssome onlusions and suggests topis for further researh.2 BIOLOGICALLY INSPIRED DESIGN OF NEAREST NEIGHBOURCLASSIFIERS (ENNC)The ENNC algorithm o�ers an evolutionary point of view to the design of near-est neighbour lassi�ers. The main advantage of this method is that neither thenumber of prototypes used, nor an initial set of prototypes are required. The �rstdi�erene among this algorithm and previous evolutionary approahes is the wayof representing the population: in this ase, and following the Mihigan approah,eah hromosome represents only one prototype, and not a whole lassi�er, so thelassi�er is represented by the whole population. The main onepts an be de�nedas follows:Prototype/Animal, ri. Eah prototype/animal is omposed by its loalization inthe environment and its lass/speie.Classi�er/Population, C. A set of N prototypes or animals C = fr1; : : : ; rNg.Region, ri. The environment is divided into a set of N regions de�ned by theloalization of the animals and the nearest neighbour rule. In this sense, there isa diret relationship among the loation of the animals and the regions (regionsare alulated from prototype loalization), so in the rest of this work, we maytalk about regions, prototypes and animals indistintly. Eah animal only eatsvegetables in its own region.Pattern/Vegetable, vr. It is eah of the examples that will be used for trainingor testing the system. They all ompose a set V = fv1; : : : ; vMg, and, as well as



4 F. Fern�andez, P. Isasithe prototypes, they are omposed by its loation and by their lass. They areonsidered as vegetables of the biologial system.Class/Speie, sj. Both animals and vegetables belong to a lass or speie fromthe set S = fs1; : : : ; sLg. The goal of an animal ri of speie sj is to eat asmany vegetables of lass sj as possible and not to eat vegetables of other lassessk 6= sj .Quality/Health of a prototype/animal. This is a measure of the goodness ofthe prototype, taking into aount the number of patterns into its region,apportationri, and whether those patterns belong to the same lass than theprototype or not, aurayri. The �nal value is omputed as follows:qualityri = min(1; aurayri � apportationri), (1)where ri is the prototype we are omputing its health, and a maximum valueof 1 is inluded in order to normalize the measure.The seond main di�erene of this algorithm with previous evolutionary ap-proahes omes from the operators that are used to evolve. In this ase, most ofthe operators are based on heuristis of previous works [1, 15, 6, 13, 18℄, and newones have been inorporated. So the learning phase is an iterative proess that exe-ute several operators over eah individual. Eah of this iteration is alled a yearin the animals life, and the year is divided into four seasons: spring, summer, falland winter. In eah season, di�erent operators are exeuted, and are summarizedin Table 1.Season Operators DesriptionSpring Mutation Eah animal hanges its own speie tothe majority speie of vegetables in itsregionSummer Reprodution The animals reprodue to reate ani-mals that eat what they do not wantto eatFall Fight and Move The animals �ght against other animalsand move to a di�erent position to getmore foodWinter Die Weak animals dieTable 1. Phases of the algorithm and operators used in eah phase3 THE ALGORITHMThe algorithm follows the ow de�ned in Figure 1. The algorithm starts witha single initialization, followed of an iterative proess of evolution, where the di�erent



Automati Finding of Good Classi�ers Following a Biologially Inspired Metaphor 5operations are exeuted. In this setion, all these operations are de�ned from thebiologial point of view. A formal desription of all these operations an be foundin [5℄.
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Fig. 1. ENNC algorithm3.1 InitializingOne relevant feature of our method is the absolute elimination of initial ondi-tions. These initial onditions are usually summarized in three ones: the numberof prototypes, the initial set of prototypes and a smoothing parameter. The ENNCalgorithm allows to learn without those parameters, given that:� The initial number of prototypes is always one. The method is able to generatenew prototypes stabilizing in the most appropriate number in terms of the abovementioned \quality" measure.� The initial loation of the only one prototype is not relevant (it lusters all thedomain, wherever it is loated).� There are no learning parameters. The method automatially adjusts the inten-sity of hange in prototypes taking into aount their qualities in eah iteration.3.2 SpringThe spring season is the time when the vegetables are born. All the animals areplaed in their own region, and will reollet all the vegetables in its region. The



6 F. Fern�andez, P. Isasiway to de�ne whether a vegetable belongs to one animal or to another is based onthe nearest neighbour rule.At the end of spring, eah animal knows the quantity of vegetables of eahspeie that it an eat, so it will beome (modify its state) to the speie of the mostabundant speie of vegetables. This operator orresponds with the labelling phaseof the unsupervised learning approahes [1, 15℄, but in this ase, the supervision isinluded in eah iteration and not only in a posterior phase. This operator is alledmutation operator and it is shown in Figure 2. In the �gure, an animal of speie 1beomes to speie 2, given that vegetables of speie 2 are the most populated in itsregion.
Mutation

Animal of Specie 2 (    )

Animal of Specie 1 (    )Fig. 2. Example of mutation operator exeution3.3 SummerSummer is the season where animals reprodue (seond operator). In this ase thereprodution is not sexual, and an animal only reprodue if it needs another animalthat eats what it does not want to eat, so there is a sel�sh motivation. In a neuralnetwork domain, reprodution is equivalent to the insertion of new neurons in thenet based on the auray of the lassi�er [6℄.So an animal only reprodues if, vegetables of di�erent lasses are found in itsregion. The probability of reprodution is proportional to the di�erene among thenumber of vegetables of eah lass in its region. Newborn animal is loated in orderto inrease the anestor performane, as shown in Figure 3.
Reproduction

Animal of Specie 1 (    )

Animal of Specie 2 (    )

Region 1

Region 1

Region 2Fig. 3. Example of reprodution operator exeution



Automati Finding of Good Classi�ers Following a Biologially Inspired Metaphor 73.4 FallFall is the time where food starts to sare, and the animals deide to look for morefood. In this sense, fall have two phases. In the �rst one, animals an �ght, in orderto steal territory from other animals and to get more food. In the seond phase,animals loate themselves in an optimum plae to spend the winter and to wait forthe next spring.1. Fights: An animal an deide to �ght with other animals in order to get morefood. Fight operator is exeuted for eah animal, and has the following phases:(a) To hoose a rival by assigning all the animals in its neighbourhood a proba-bility proportional to the quality of that animal and using a roulette as theseletion method.(b) One the rival is seleted, the animal has to deide whether to �ght or not.The probability of �ghting is proportional to the di�erene in health of bothrivals.() One the rival has been seleted and the animal deides to �ght, there aretwo possibilities:i The animals do not belong to the same speie. In this ase, there is nosense to �ght, and both animals make an agreement that the seond onegives the vegetables required to the �rst one, as shown in Figure 4.
Fight (Cooperative)

Region 1

Region 2
Region 2

Region 1

Animals of Specie 1 (    )

Animals of Specie 2 (    )Fig. 4. Example of �ght operator exeution with ooperationii Both animals belong to the same speie. Animals �ght, with a probabilityof vitory proportional to the animals health. The winner steals food fromthe loser, as shown in Figure 5. If the winner is allowed to steal all thefood from the loser, the loser dies.2. Move: The move operator implies to reloate eah animal in the best expetedplae to spend the winter and wait until next spring. So eah animal deidesto move to the entroid of the vegetables of the same lass, as shown in Figu-re 6 for animal 2. This operator is based on the Lloyd iteration of the GLAalgorithm [13℄.



8 F. Fern�andez, P. Isasi
Fight (Competitive)

Region 2
Region 1

Region 1

Region 2
Animals of Specie 1 (    )

Animals of Specie 2 (    )Fig. 5. Example of �ght operator exeution with ompetition
Move

Region2Region2

Region 1Region 1

Animal of Specie 2 (    )

Animal of Specie 1 (    )Fig. 6. Example of move operator exeution3.5 WinterIn winter, weak animals (those whih have low quality values) inrease their dyingprobability. This probability is 1 minus the double of the health. Then, healthyanimals will survive, while weak animals with health of less than 0.5 might die. Inthe neural network bibliography, a deeper doumentation about whih neurons toselet in order to simplify the network struture an be found [6, 18℄. At the end ofthis season, all vegetables disappear.3.6 End ConditionEnd ondition is the hardest element to de�ne in this approah. It is supposed thatthe algorithm onversion to an optimal solution is desirable, but: what is an optimalsolution? In this area, an optimal solution is said to be the solution that ahievesthe highest lassi�ation auray with the smallest number of prototypes. However,what is the heaviest parameter? Some people an think that if inreasing the numberof prototypes, we an inrease the auray of the lassi�er; it is better to inreasethis number, but over-�tting problems may our and the generalization apabilitiesmay be redued. On the other hand, if we redue the number of prototypes, we ando it only by dereasing the auray. So, what is the best solution? The approah ofthis work is to let the population to evolve, to store a set of paradigmati lassi�ers



Automati Finding of Good Classi�ers Following a Biologially Inspired Metaphor 9and let the user to hoose the most appropriate ones. Obviously, a lot of di�erentapproahes ould be introdued to deide when to stop. Several of them an befound in [5℄.4 EXPERIMENTSIn this setion, two experiments performed with the ENNC algorithm are shown.The �rst one is a data set of Gaussian-distributed examples. It is a single experimentthat will show how the algorithmworks. The seond experiment in Setion 4.2 allowsto ompare this approah with previous ones in the literature. For both experiments,the end ondition is de�ned by a maximum number of iterations enough to ahievegood solutions in all the ases.4.1 Gaussian-Distributed DataIn this experiment, two di�erent lasses are de�ned following the distributions shownin Figure 7.
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10 F. Fern�andez, P. IsasiIteration Auray (%) Prototypes3 100.000 513 100.000 58 100.000 510 100.000 56 100.000 66 100.000 56 100.000 511 100.000 511 100.000 510 100.000 59 100.000 511 100.000 510 100.000 58 100.000 516 100.000 56 100.000 56 100.000 56 100.000 56 100.000 514 100.000 5Table 2. Results of di�erent exeutions of ENNC algorithm over Gaussian-distributed dataFigure 8 shows the evolution of one of these exeutions. The x-axis shows theiterations of the algorithm, while the y-axis shows the auray of the lassi�er inthat iteration for the training and the test sets, as well as the number of prototypesused. Figure 9 allows to understand this evolution by showing the state of thelassi�er at the end of four of the iterations of the algorithm. Figure 9(a) shows theresult of the �rst iteration, where a new prototype has been introdued to the initialone. Figures (b), () and (d) show the results of iterations 4, 6, and 14, respetively,eah one with one more prototype than in the previous �gure.
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Class 2 Prototype() Iteration 6 (d) Iteration 14Fig. 9. Evolution of the prototypes4.2 Straight Line Class BoundariesThis lassi�ation problem was �rst de�ned by [9℄ and used in [8℄ to show theperformane of the DSM lassi�er. The domain onsists on two di�erent lassesde�ned as shown in Figure 10, with 6400 samples for training and 6400 for test.DSM algorithm belongs to the family of LVQ algorithms and works in the followingway: it selets a small set of training samples and uses them as seed of the learningalgorithm. This algorithm gradually adapts their loation to orretly lassify thewhole data set.In Figure 10 a solution of the problem with only 10 prototypes is shown. As inthe previous experiment, we have exeuted the ENNC algorithm 20 times to verifyits behaviour, eah run of 300 iterations. For eah run, the best lassi�er over thetest set is hosen. Results are summarized in Table 3 and show that the algorithmonverges to solutions in the range of 30{40 prototypes, with approx. 98% auray.The average suess of the 20 results is 98.14 and is the value used for omparisonswith the results reported in [8℄ and shown in Table 4. The table shows how this valueimproves the results of LVQ1, and it is very lose to the results of the net trainedwith the bakpropagation algorithm, while it is not able to ahieve the results of
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Class 1

Class 2

Fig. 10. Straight line lass boundaries domain and a solutionDSM. Anyway, note that our approah automatially de�nes the right number ofprototypes.Figure 11 shows the evolution of one of the exeutions. In the initial iterations,the number of prototypes used is below 10, and the auray of the lassi�er keepsbelow 90%. One the number of prototypes is higher than 10, the lassi�er startsIteration Auray Prototypes248 98.672 30238 98.203 29225 98.484 31276 97.922 32258 98.234 29283 98.078 29196 97.969 30181 98.047 32252 98.375 37206 97.953 31300 98.109 34100 97.859 30213 98.375 35294 97.984 31177 97.922 30253 97.781 3640 97.766 11249 98.547 30139 98.297 28237 98.094 33Table 3. Results of di�erent exeutions of ENNC algorithm over straight line lass boun-daries domain Prototypes DSM LVQ1 Bakpropagation6 92.86 81.00 90.588 96.18 80.45 98.479 98.14 85.36 98.7310 99.57 87.66 98.3420 99.55 95.66 98.4724 99.59 96.94 98.6250 99.51 97.49 98.44250 99.21 98.16 98.45Table 4. Comparative results over straight line lass boundaries domain



Automati Finding of Good Classi�ers Following a Biologially Inspired Metaphor 13to ahieve results of approximately 98%. The number of prototypes is suessivelyinreased in order to improve the auray. This number of prototypes does notstabilize in a spei� value, given that more than one similar solution an be found.In this sense, the system is able to osillate between lose solutions in order to leavethe last deision to the user. Last, note that both training and test sets keep similarvalues while learning.Figure 12 shows the prototypes of the lassi�er obtained in the �rst exeutionof the ENNC algorithm. There are 30 prototypes, ahieving 98.672% auray.
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class 1 class 2Fig. 12. Classi�er of 30 prototypes obtained with ENNC in straight line lass boundariesdomain5 CONCLUSIONS AND FUTURE WORKThis work has presented a biologially inspired approah to the problem of nearestneighbour lassi�ers design. This approah follows an eosystem metaphor in whihthe prototypes are de�ned as animals and the training examples as animal resoures



14 F. Fern�andez, P. Isasi(vegetables). The biologial perspetive allows to de�ne in a very simple way newonepts suh as to steal vegetables, ooperative ations among the di�erent animals,et., while other typial operations suh as introdue new prototypes, or to eliminateuseless ones have been rede�ned.The main advantages of this method are, on the one hand, that it is able toahieve a high auray in the domains where it has been tested, even omparedwith other tehniques from the literature. On the other hand, the ahievement ofthese good results is done without the de�nition by the user of any initial onditionsor other parameters for learning. Furthermore, it is a fully integrated tehniquethat inludes elements from other works, as heuristis to introdue prototypes, toeliminate another ones, labelling phases, et. Previous works typially introduemodi�ations over other tehniques that provide them with the apability of de�ningthe arhiteture. This way, other solutions were geneti algorithms or heuristis tomodify the arhiteture. These tehniques an be split into two steps, de�ning ormodifying the arhiteture and learning the problem with the new arhiteture,sometimes even in an iterative proess. However, in this work, all the mehanismsare fully integrated, so it is not possible to separate the elements that de�ne thearhiteture from those that learn the problem with the arhiteture.Comparisons with other tehniques have shown that the approah is able tosuessfully solve the problem presented without any additional parameter: theuser only has to de�ne the training and test sets, and one end ondition.Even though the algorithm is a stohasti method, it has shown that similarsolutions are ahieved when di�erent runs are exeuted. This property ensures thatthe solutions ahieved in a �rst run of the algorithm are very lose to the optimal,so no more trials are required. Furthermore, given that the algorithm does notintrodue more parameters, only one exeution of the algorithm is enough to obtaina suessful lassi�er.Future work is oriented to the onept of similarity on the data, i.e. the distanemetri used. On the one hand, the use of weighted distane metris for learningwhih attributes are important and whih are not, is an important issue, as well asintroduing some tehniques for automatially normalizing the data without losinginformation. On the other hand, the adaptation of all the ideas presented in thiswork to other not Eulidean domains, where di�erent distane metris to omputesquare error was used in this work, appears as an interesting task.REFERENCES[1℄ Bermejo, S.|Cabestany, J.: A Bath Learning Algorithm Vetor QuantizationAlgorithm for Nearest Neighbour Classi�ation. Neural Proessing Letters, Vol. 11,2000, pp. 173{184.[2℄ Bezdek, J. C.|Kunheva, L. I.: Nearest Neighbour Classi�er Designs: An Ex-perimental Study. International Journal of Intelligent Systems, Vol. 16, 2001,pp. 1445{1473.
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