
 
 

Working Paper 09-71 

Statistics and Econometrics Series 21 

November 2009 

Departamento de Estadística  

Universidad Carlos III de Madrid 

Calle Madrid, 126 

28903 Getafe (Spain) 

Fax (34) 91 624-98-49 

 

NON-IDENTIFIABILITY OF THE TWO STATE MARKOVIAN 

ARRIVAL PROCESS 
 

Pepa Ramírez
1
, Rosa E. Lillo

2
 and Michael P. Wiper

3
 

 

 

 

 
 

Abstract 

 

In this paper we consider the problem of identifiability of the two-state Markovian 

Arrival process (MAP2). In particular, we show that the MAP2 is not identifiable and 

conditions are given under which two different sets of parameters, induce identical 

stationary laws for the observable process. 
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1. Introduction

The Markovian arrival process (MAP) was defined in [10] and [9] as a generalization

of the Poisson arrival process allowing for both dependence between arrivals and non-

exponentially distributed interarrival times. The MAP is defined by two Markov

processes: the first counts the number of arrivals and the second, an underlying Markov

process, governs the state changes. At the end of a transition in a MAP an arrival

may or may not occur and although the transition holding times are exponentially

distributed, the interarrival times do not follow an exponential distribution. Special

cases of the MAP are the phase type renewal processes (which include both Erlang

and hyperexponential renewal process) and non-renewal processes such as the Markov

modulated Poisson process (MMPP). Stationary MAPs are dense in the family of all

stationary point processes; see [1]. Another important property of MAPs is that the

superposition of independent MAPs is again a MAP.

The MAP is an challenging process from both a theoretical and applied points of

view. From a theoretical perspective, the queueing system where the MAP governs the

arrival process has been widely studied in the literature, combined with matrix analytic

methods (see for example [8]). On the other hand, the MAP has been proposed in the

literature as a suitable process for modeling teletraffic data, see e.g. [4], [5], [11], [6],

and [17]. In this case, the MAP is used to fit data where only the interarrival times

are observed and neither the underlying Markov chain nor the individual exponential

holding times are available and thus, the observed arrival process is a hidden Markov

process.

When dealing with inference for hidden Markov processes, it is very common to

encounter identifiability problems which imply that the likelihood function does not

possess a unique maximum. Identifiability conditions for general, hidden Markov

processes are studied in [7] and [13]. Identifiability of the MMPP, was undertaken in

[15]. However, for the MAP, to the best of our knowledge, the identifiability problem

is still essentially unsolved.

In this paper we address the problem of identifiability of the two-state MAP, or

MAP2. We conclude that, on the contrary to the MMPP, which is identifiable (see

[15]), the MAP2 is not identifiable.



Non-identifiability of the MAP2 3

The paper is organized as follows. In Section 2 we introduce the MAP and its

main properties. In Section 3, we study when two MAP2s have the same interarrival

time distributions, a necessary condition for non-identifiability. We call this property

weak equivalence. In Section 4 we consider the joint distribution of a sequence of

interarrival times generated from the MAP2 and show that there are at least two

different parameterizations of the MAP2 giving rise to the same joint distribution,

thus proving the non-identifiability of the MAP2. Finally in Section 5 we provide

conclusions and various possible extensions of this work.

2. The MAP and its main properties

Consider an irreducible, continuous, Markov process J(t) with state space S =

{1, . . . , m} and generator matrix D. Let N(t) represent the cumulative number of

arrivals in (0, t]. A MAP, represented by {J(t), N(t)} behaves as follows: the initial

state i0 ∈ S is generated according to an initial probability vector θ = (θ1, . . . , θm)

and at the end of an exponentially distributed sojourn time in state i, with mean 1/λi,

two possible state transitions can occur. Firstly, with probability 0 ≤ pij1 ≤ 1 a single

arrival occurs and the MAP enters a state j ∈ S, which may be the same as (j = i) or

different from (j #= i) the previous state. Secondly, with probability 0 ≤ pij0 ≤ 1, no

arrival occurs and the MAP enters a different state j #= i. Given that from all states

a transition must occur to a different state without an arrival or to any state with an

arrival, then for 1 ≤ i ≤ m,

m∑

j=1,j !=i

pij0 +
m∑

j=1

pij1 = 1.

When m = 2, we have a two state MAP, denoted by MAP2. Figure 1 illustrates

the different movements that can occur transitions that in this process by means of a

transition diagram.

Define the matrices P0 = (pij0)i,j∈S and P1 = (pij1)i,j∈S where pii0 = 0. Then the

MAP is defined by the set {θ, λ, P0, P1}, where λ = (λ1, . . . , λm). Alternatively, the

MAP can be characterized by the rate matrices, D0 = (dij0)i,j∈S and D1 = (dij1)i,j∈S ,

where dii0 = −λi, dij0 = λipij0, for j #= i and dij1 = λipij1, for 1 ≤ i, j ≤ m. This

definition implies that D ≡ D0 + D1 is the infinitesimal generator of the underlying
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Figure 1: Transitions diagram for the MAP2. 0 and 1 illustrate moves without and with

arrivals respectively.

Markov process. Intuitively, D0 can be thought as governing transitions that do not

generate arrivals and D1 can be thought as governing transitions that do generate

arrivals. The stationary probability vector of the Markov process with generator D is

π = (π1, . . . , πm), which satisfies

πD = 0, |π| = 1, (2.1)

where |x| denotes the sum of values of vector x. Thus, πj represents the stationary

probability that the process is in state j, for j = 1, . . . , m.

The Markov modulated Poisson process (MMPP) can be defined as a simplified

MAP where the matrix D1 (and thus, P1) is diagonal (see [8]). This implies that

arrivals can only occur in transitions to the same state. Some important properties of

the MAP are as follows. Firstly, it is known ([2]) that the MAP can be regarded as a

Markov renewal process. Let Xn be the state of the MAP at the time of the nth arrival,

and let Tn be the time between the (n − 1)st and nth arrival, then {Xn−1, Tn}∞n=1 is

a Markov renewal process with semi-Markovian kernel given by

∫ t

0
eD0tD1dt = (I − eD0t)(−D0)

−1D1. (2.2)

Therefore, {Xn}∞n=1 is a Markov chain, where from (2.2) the transition matrix can be

computed as

P ! = (I − P0)
−1P1 (2.3)
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and it can be shown that the stationary distribution, φ, is given by

φ = (πD1e)−1πD1. (2.4)

See the Appendix A for a proof.

Secondly, let the random variable T1 denote the time to the first arrival in a MAP.

Then, from ([2]), the cumulative distribution function (cdf) of T1 is given by

FT1
(t) = θ(I − eD0t)(−D0)

−1D1e, for t ≥ 0,

where e is an m column vector of ones. If T represents the stationary interarrival time

distribution, it can be found that

FT (t) = φ(I − eD0t)(−D0)
−1D1e, for t ≥ 0. (2.5)

Finally, the Laplace Stieltjes transform of the interarrival time distribution of a

stationary MAP is given by

f∗
T ;D0,D1

(s1, . . . , sn) = φ(s1I − D0)
−1D1 . . . (snI − D0)

−1D1e,

or equivalently,

f∗
T ;D0,D1

(s1, . . . , sn) = φ

n∏

i=1

∆(si)e, (2.6)

where

∆(s) = (sI − D0)
−1D1. (2.7)

For a more detailed description and further properties of the MAP (and BMAP) see

e.g. [8] or [2].

3. Weak equivalence

There have been a number of examples of fitting the MMPP to internet data traces.

In most applications, the two-state case has been considered (see for example [16], [14]

or [3]). The MMPPs, despite being simplified MAPs (the matrix P1 is diagonal, and

thus they are characterized by two less parameters), are complex processes and usually,

two states, at most three, are enough to capture the data behavior.
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From now on we consider the two-state MAP or MAP2, characterized by M ≡

{θ, D0, D1} where

θ = (θ, 1 − θ), D0 =



x y

z u



 , D1 =



w −x − y − w

v −z − u − v



 , (3.1)

and

x = −λ1, y = λ1p120, w = λ1p111,

z = λ2p210, u = −λ2, v = λ2p211.

The stationary probability φ = (φ, 1 − φ) (2.4) can be found to be

φ =
wz − vx

wz − vx − zy − vy + xu + wu
. (3.2)

When modeling real data, usually just the times between arrivals are observed, and

thus the interest when making inference for the MAP is focused on the embedded

Markov renewal process {Xn−1, Tn}∞n=1. As a preliminary step to studying the iden-

tifiability of the MAP2, we study the conditions under which two MAP2s possess the

same marginal interarrival time distributions. For two such MAP2s, we shall say that

they are weakly equivalent.

Definition 3.1. Let M represent a MAP2 with parameters {θ, D0, D1} as in (3.1).

Then we say that another MAP2, M̃ ≡ {θ̃, D̃0, D̃1} is weakly equivalent to M if and

only if

Tn
d
= T̃n, for all n ≥ 1, (3.3)

where Tn and T̃n represent the times between the (n − 1)th and nth arrivals under

both models.

The term weak is employed because equivalence is expressed in a marginal sense. Since

the interarrival times in a MAP2 are not independent, condition (3.3) is necessary but

insufficient for non-identifiability. A general condition looking at the joint density of

the sequence of interarrival times is analyzed in Section 4.

Given a known MAP2, M as in (3.1), define the constant

c = z + u − x − y. (3.4)
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Notice that if c = 0, then the rate until an arrival occurs from state 1 coincides with

that of state 2. This implies that the observable process (that where arrivals occur)

behaves like a Poisson process, with a single arrival rate. Thus, we will assume that

c #= 0. In addition, define the matrix Φ as that whose rows are composed by the

stationary vector φ. Suppose that P ! = Φ, then it is immediately clear that there are

many weakly equivalent MAP2s for example, any M̃ = {θ̃, D0, D1} is equivalent to

M = {θ, D0, D1}. We can thus assume too, that P ! #= Φ.

Theorem 3.1 gives the conditions for M̃ to be weakly equivalent to M.

Theorem 3.1. Let M be a MAP2 as in (3.1) with stationary distribution φ. Given

another MAP2, M̃ with stationary distribution φ̃ assume that

A1. c #= 0, c̃ #= 0.

A2. P ! #= Φ or P̃ ! #= Φ̃.

Then, M̃ is weakly equivalent to M if and only if

B1. T
d
= T̃ , and

B2. (θ, θ̃) = (φ, φ̃).

The variables T and T̃ in condition B1. represent the interarrival times in the

stationary versions of M and M̃. As will be shown in the proof of Theorem 3.1 (see

the Appendix B), B1. is equivalent to the equality of two rational functions,

αs + γ

s2 + βs + γ
=

α̃s + γ̃

s2 + β̃s + γ̃
, for all s, (3.5)

where the coefficients α, β and γ (respectively α̃, β̃ and γ̃) are given by

α = θ(z + u − x − y) − (z + u),

β = −x − u, (3.6)

γ = xu − yz.

Theorem 3.1 thus provides a straightforward way to check if two given MAP2s share

the same interarrival distribution.
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Example 3.1. As an example, let us consider the MAP2 defined by

D0 =



 −20 6

0.15 −0.5



 , D1 =



 12.228 1.772

0.0426 0.3074



 ,

or alternatively,

P0 =



 0 0.3

0.3 0



 , P1 =



 0.6114 0.0886

0.0852 0.6148



 ,

and exponential rates (λ1, λ2) = (20, 0.5). Suppose that the initial probability vector is

equal to the stationary distribution, θ = φ = (0.496, 0.504). The transition probability

matrix, P ! is computed from (2.3):

P ! =



 0.7 0.3

0.2952 0.7048



 #= Φ.

Consider another MAP2 with parameters

D̃0 =



 −19.7 10.835

0.6146 −0.8



 , D̃1 =



 7.1452 1.7198

0.1443 0.0411



 ,

or alternatively,

P̃0 =



 0 0.5500

0.7682 0



 , P̃1 =



 0.3627 0.0873

0.1804 0.0514



 ,

and exponential rates (λ̃1, λ̃2) = (19.7, 0.8). Assume that θ̃ = φ̃ = (0.799, 0.201). The

transition probability matrix, P̃ ! is

P̃ ! =



 0.8 0.2

0.79 0.21



 #= Φ.

It can be seen that c = 13.65 #= 0 and c̃ = −8.6796 #= 0 and (3.5) holds. Therefore,

from Theorem 3.1, the processes are weakly equivalent, as shown in Figure 2, which

depicts the cdf of the time between two arrivals in the stationary version for both

MAP2s.

More results similar to Theorem 3.1, when the assumptions A1. and A2. are relaxed

(and thus the number of weakly equivalent MAP2s to a fixed MAP2, increases), and

extensions to the three-state case MAP can be found in [12].
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Figure 2: CDF of T , time until next arrival in the stationary version, in the Example 1. As

θ = φ, then T
d
= T1 (similarly, eT

d
= eT1), and thus T

d
= T1

d
= eT

d
= eT1.

4. Non-identifiability of the MAP2

In this section we now prove that the MAP2 is a non-identifiable process. Following

Theorem 3.1, all MAP2s will be assumed to be stationary and M ( M̃) will denote

the set {φ, D0, D1} ({φ̃, D̃0, D̃1}) from now on. Our definition of non-identifiability

follows [15],

Definition 4.1. The MAP2 is a non-identifiable process if for any fixed MAP2, M,

then there exists another MAP2, M̃ such that

(T1, . . . , Tn)
d
= (T̃1, . . . , T̃n), for all n ≥ 1. (4.1)

Note that condition (4.1) is equivalent to the equality of the Laplace transforms,

f∗
T ;D0,D1

(s1, . . . , sn) = f∗
eT ; eD0, eD1

(s1, . . . , sn), (4.2)

for all n, s. We will show that given a MAP2, M, as in (3.1), then there always exists

a differently parameterized M̃ such that (4.2) holds for all n, s. Indeed, we will prove

that if (4.2) holds for n = 1, 2, then it will hold for all n.

Let us first consider the following result which gives the conditions under which

equations (4.2) hold for n = 1, 2.

Proposition 4.1. Let M and M̃ be two MAP2s. Let α, β, γ, δ1, δ2 (α̃, β̃, γ̃, δ̃1, δ̃2)
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be defined as

α = φ(z + u − x − y) − (z + u),

β = −x − u, (4.3)

γ = xu − yz,

δ1 = φ
(
(z + u − x − y)(w − v) + (x + y)(z + u) − (z + u)2

)
+

(z + u − x − y)v + (z + u)2,

δ2 = φ(x + y − z − u)(uw − yv − xv + zw) + (x + y − z − u)(xv − zw) − (u + z)γ

(x + y − z − u)(xv − zw) − (u + z)γ.

Then, if

α̃ = α, β̃ = β, γ̃ = γ, δ̃1 = δ1, δ̃2 = δ2, (4.4)

the equality of Laplace transforms (4.2) holds for all s and for n = 1, 2.

For a proof of Proposition 4.1 see the Appendix C. The following result gives the

solutions to equations (4.4).

Proposition 4.2. Consider a MAP2 as in (3.1). For all ũ < 0 and all z̃ > 0, let

x̃(ũ, z̃), ỹ(ũ, z̃), ṽ(ũ, z̃) and w̃(ũ, z̃) be defined as

x̃(ũ, z̃) = −ũ + x + u, (4.5)

ỹ(ũ, z̃) = −(ũ2 − ũx − ũu + xu − zy)/z̃, (4.6)

ṽ(ũ, z̃) =
−z̃(vx + vy − wz − wu + wz̃ − zz̃ − zũ)

(−ũu − uz̃ + xu + ũ2 + 2ũz̃ + z̃2 − ũx − z̃x − zy)
+

−z̃(−ũu + z̃2 + 2ũz̃ − uz̃ − vz̃ − ũv + wũ + ũ2)

(−ũu − uz̃ + xu + ũ2 + 2ũz̃ + z̃2 − ũx − z̃x − zy)
, (4.7)

w̃(ũ, z̃) =
zũx + 2z̃xu − z̃zy − xu2 + zxz̃ + zuz̃ + ũu2 + uzy

(−ũu − uz̃ + xu + ũ2 + 2ũz̃ + z̃2 − ũx − z̃x − zy)
+

−zxu − 2z̃ũx + z2y + uz̃v − wzy + zvy − z̃2u − 3ũz̃u − ũz̃v

(−ũu − uz̃ + xu + ũ2 + 2ũz̃ + z̃2 − ũx − z̃x − zy)
+

vũx − z̃vy + 2ũxu + vũu − wũx − wuũ + 2ũ2z̃ + zũu + wux

(−ũu − uz̃ + xu + ũ2 + 2ũz̃ + z̃2 − ũx − z̃x − zy)
+,

z̃2ũ − vũ2 − ũ2x + z̃wz + ũz̃w − ũz̃z − vxu + wũ2 − zũ2 + ũ3

(−ũu − uz̃ + xu + ũ2 + 2ũz̃ + z̃2 − ũx − z̃x − zy)
+

−zyũ + z̃u2 − z̃2x − 2ũ2u − z̃wx

(−ũu − uz̃ + xu + ũ2 + 2ũz̃ + z̃2 − ũx − z̃x − zy)
. (4.8)
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Then, the set {ũ, z̃, x̃(ũ, z̃), ỹ(ũ, z̃), ṽ(ũ, z̃), w̃(ũ, z̃)} solves the system of equations given

by (4.4).

The proof of Proposition 4.2 is tedious but straightforward, solving the system of equa-

tions (4.4) by conventional methods, and substituting φ and φ̃ from their definitions

(3.2). Although Proposition 4.2 gives infinite solutions to the system of equations (4.4),

a priori the values of x̃, ỹ, ṽ and w̃ may not define a MAP2. The following theorem

shows how to select feasible values of ũ and z̃ in the sense that x̃ < 0, ỹ, ṽ, w̃ > 0 and

φ̃ ∈ [0, 1], that is, provides the way to choose ũ and z̃ so that they make M̃ equivalent

to M.

Theorem 4.1. Define a MAP2, M as in (3.1), where it is assumed that x < u. Let

ε be chosen from

0 < ε < min

{

−x,
u − x

2
,
z(1 − φ)

φ
,
(u − x) +

√
(x − u)2 + 4zy

2

}

, (4.9)

and define ũ ≡ u − ε and z̃ ≡ z + ε. Then there exist an infinite number of MAP2s,

M̃, given by F = {ũ, z̃, x̃(ũ, z̃), ỹ(ũ, z̃), ṽ(ũ, z̃), w̃(ũ, z̃)}, where x̃(ũ, z̃), ỹ(ũ, z̃), ṽ(ũ, z̃),

and w̃(ũ, z̃) are defined by (4.5-4.8), such that (4.4) holds.

For a proof of Theorem 4.1, see the Appendix D.

As a consequence of Theorem 4.1 the following two corollaries may be derived.

Corollary 4.1. Consider a MAP2s M as in (3.1) and values ũ, z̃, x̃(ũ, z̃), ỹ(ũ, z̃),

ṽ(ũ, z̃), w̃(ũ, z̃)} as in Proposition 4.2 characterizing another MAP2, M̃. Let ∆(s) be

defined as in (2.7), (respectively, ∆̃(s)). Then,

φ∆(s1)e = φ̃∆̃(s1)e, (4.10)

φ∆(s1)∆(s2)e = φ̃∆̃(s1)∆̃(s2)e, (4.11)

(0, 1)∆(s1)e = (0, 1)∆̃(s1)e, (4.12)

(0, 1)∆(s1)∆(s2)e = (0, 1)∆̃(s1)∆̃(s2)e, (4.13)

for all s1, s2.

From (2.6), expressions (4.10)-(4.11) are an alternative way to state that equation (4.2)

holds for n = 1 and n = 2. By substituting the values of F found in Theorem 4.1 in

the expression for ∆̃(s) (2.7), routine, but tedious calculations yield to (4.12)-(4.13).
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Corollary 4.2. Consider a MAP2s M as in (3.1) and values ũ, z̃, x̃(ũ, z̃), ỹ(ũ, z̃),

ṽ(ũ, z̃), w̃(ũ, z̃)} as in Proposition 4.2 characterizing another MAP2, M̃. Let ∆(s) be

defined as in (2.7), (respectively, ∆̃(s)). If ∆(s) is given by

∆(s) =



a(s) b(s)

c(s) d(s)



 , (4.14)

then the solution to (4.10)-(4.13) is

∆̃(s) =



ã(s) b̃(s)

c̃(s) d̃(s)



 , (4.15)

where

ã(s) =
φ(a(s) − c(s)) + φ̃c(s)

φ
, (4.16)

b̃(s) =
φφ̃ (d(s) + 2c(s) − a(s)) + φ2 (a(s) − d(s) + b(s) − c(s)) − φ̃2c(s)

φφ̃
(4.17)

c̃(s) =
φ̃c(s)

φ
(4.18)

d̃(s) =
φ (c(s) + d(s)) − φ̃c(s)

φ
. (4.19)

The equations (4.10)-(4.13) form a system with four equations where the unknowns

are the elements of (4.15). A trivial verification shows that (4.16)-(4.19) solves the

system. The previous Corollary motivates the following definition.

Definition 4.2. Let G and G̃ be 2 × 2 matrices where

G =



a b

c d



 and G̃ =



ã b̃

c̃ d̃



 .

It will be said that G̃ is related to G, given the values φ and φ̃ if and only if

ã =
φ(a − c) + φ̃c

φ
, (4.20)

b̃ =
φφ̃ (d + 2c − a) + φ2 (a − d + b − c) − φ̃2c

φφ̃
, (4.21)

c̃ =
φ̃c

φ
, (4.22)

d̃ =
φ (c + d) − φ̃c

φ
. (4.23)

This relation will be noted by G
φ,eφ∼ G̃.
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The following result is a direct consequence of the definition (4.20)-(4.23) of G̃.

Proposition 4.3. If G
φ,eφ∼ G̃, then

φGe = φ̃G̃e,

where φ = (φ, 1 − φ), and φ̃ = (φ̃, 1 − φ̃).

The proof is straightforward from the definition of G̃ (4.20-4.23).

The next result, whose proof can be found in the Appendix E, is crucial for proving

the non-identifiability of the MAP2.

Proposition 4.4. If G
φ,eφ∼ G̃, and H

φ,eφ∼ H̃, then

GH
φ,eφ∼ G̃H̃.

Finally, we can prove the general theorem.

Theorem 4.2. The MAP2 is not an identifiable process.

Proof. The proof is based on the fact that given a MAP2, M as in (3.1), then any

other MAP2, M̃ chosen from the set F (see Theorem 4.1) satisfies the equality (4.2),

for all n.

If M̃ is selected from F , then, from Corollary 4.1,

∆(s1)
φ,eφ∼ ∆̃(s1) and ∆(s1)∆(s2)

φ,eφ∼ ∆̃(s1)∆̃(s2), for all s1, s2.

We conclude from Proposition 4.4 that

∆(s1)∆(s2)∆(s3)
φ,eφ∼ ∆̃(s1)∆̃(s2)∆̃(s3), for all s1, s2, s3,

and finally
n∏

i=1

∆(si)
φ,eφ∼

n∏

i=1

∆̃(si),

which by Proposition (4.3) is equivalent to (4.2), for all n ≥ 1.

To illustrate Theorem 4.2, we provide an example which illustrates two MAP2s that

verify (4.2), for all n ≥ 1.
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Example 4.1. Consider the MAP2 defined by

D0 =



 −10 2.5

0.6 −3



 , D1 =



 4 3.5

1.35 1.05



 ,

or alternatively,

P0 =



 0 0.25

0.2 0



 , P1 =



 0.4 0.35

0.45 0.35



 ,

with exponential rates (λ1, λ2) = (10, 3), and stationary probability φ = (0.5474, 0.4526).

It can be seen that ε, defined in (4.9), has to be chosen from

0 < ε < min {10, 3.5, 0.4961, 7.2081} .

Let ε = 0.3. Then, according to the equations given in Theorem 4.1,

D̃0 =



 −9.7 3.9

0.9 −3.3



 , D̃1 =



 4.675 1.1250

2.025 0.375



 ,

or

P̃0 =



 0 0.4020

0.2727 0



 , P̃1 =



 0.4820 0.1160

0.6137 0.1136



 ,

with exponential rates (λ̃1, λ̃2) = (9.7, 3.3) and stationary distribution φ̃ = (0.8217, 0.1783).

Because of the proof of Theorem (4.2), (4.2) holds for all s, and n, that is both MAP2s

will possess the same joint interarrival time distribution.

Three remarks need to be made here. First, let us point out that as has been

described in the previous proof, given a fixed MAP2, M, then any other MAP2, M̃

chosen from the set F , will verify (4.2) for all s and n, and thus both MAP2s will have

the same joint interarrival time distribution.

Our second remark is connected with the MMPP. Its definition implies that w ≡

−x − y, and v ≡ 0. As Rydén shows in [15], the MMPP is an identifiable process

up to permutations of the states, or equivalently, for the two-states case, if the set

{x, y, z, u, w = −x− y, v = 0} defines a MMPP2, then the only MMPP2 with the same

likelihood will be given by

{x̃ = u, ỹ = z, z̃ = y, ũ = x, w̃ = −z − u, ṽ = 0}. (4.24)
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It can be verified that when ṽ = v = 0, w̃ = −x̃− ỹ, and w = −x− y then, Proposition

4.2 provides just two solutions, the original MMPP2 and its permuted version, given

by (4.24). Thus, our results are equivalent to Rydén’s.

Finally, from the non-identifiability of the MAP2 and the identifiability of the

MMPP2, one could wonder if given a MAP2 there exist an equivalent MMPP2. This

has been tested from the equations given by Proposition 4.2, and the answer is that

this is not true, in general. The following example illustrates this fact.

Example 4.2. Let us consider the same MAP2 defined in Example 2:

D0 =



 −10 2.5

0.6 −3



 , D1 =



 4 3.5

1.35 1.05



 .

Then, according to the solutions given in Proposition 4.2 (having previously fixed

w = −x − y and v = 0), the only equivalent MMPP2 is given by

D̃0 =



 −7.4231 2.2712

5.6788 −5.5769



 , D̃1 =



 5.1519 0

0 −0.1019



 ,

which, since d221 < 0, does not define a real MMPP2. Thus, in this case, there does

not exist a MMPP2 equivalent to the given MAP2.

However, there do exist MAP2s which can be reduced to MMPP2s. For example,

D0 =



 −20 8

3.5 −5



 , D1 =



 11.5 0.5

0.5 1





is equivalent to the MMPP2 defined by

D̃0 =



 −19.4211 7.8973

4.6027 −5.5789



 , D̃1 =



 11.5238 0

0 0.9762



 .

5. Conclusions and Extensions

In spite of the good properties that the MAPs present, which make them very

suitable processes for modeling non-exponential events, there exist few works dealing

with identifiability of the MAP which is of crucial importance when inference for the

process is considered.
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This present work is novel in two aspects: firstly, we have proven that the MAP2

is not an identifiable process, providing a procedure to build an equivalent MAP2 to

a fixed one. We have shown that if two MAP2s have equal LST for one and two

data, then (and despite the great complexity involved in the equations), their LST will

be equal for any set of points (s1, . . . , sn). Secondly, unlike other purely theoretical

works, the results presented in this paper are illustrated by numerical examples. Many

calculations have been carried out using Matlab and all codes utilized in the examples

are available from the authors on request.

A number of extensions are possible. Firstly, we could consider the BMAP2 where

different numbers of batch arrivals are possible. Furthermore, we could extend this

analysis to MAPs or BMAPs with more than two states. Finally, it is of practical

interest to consider what happens when there is missing data, i.e. when a full sequence

of interarrival times is not considered. Work on these problems is underway.

Appendix A. Proof of expression (2.4)

As φ is the unique solution to φP ! = φ, we need to show that

(πD1e)−1πD1P
! = (πD1e)−1πD1.

Define Λ = diag{λ1, . . . , λm}, then D1 = ΛP1 and D0 = Λ(P0 − I). From (2.3),

P ! = (−Λ−1D0)−1Λ−1D1, and thus

(πD1e)−1πD1P
! = (πD1e)−1πD1(−Λ−1D0)

−1Λ−1D1

= −(πD1e)−1πD1D
−1
0 D1

= −(πD1e)−1π(D − D0)D
−1
0 D1

= (πD1e)−1(πD − πD0)D
−1
0 D1

= (πD1e)−1πD1.

Appendix B. Proof of Theorem 3.1

Firstly, we provide some lemmas that will be necessary for the proof.

Lemma B.1. Let Tn and T̃n denote the times between the (n − 1)th and nth arrival
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in two MAP2s, M and M̃. Then,

Tn
d
= T̃n, for all n ≥ 1,

if and only if

θ(P !)(n−1)(sI − D0)
−1D1e = θ̃(P̃ !)(n−1)(sI − D̃0)

−1D̃1e, (B.1)

for all n ≥ 1,and for all s.

Proof. The variables Tn and T̃n are equally distributed if and only if their Laplace

transforms are the same. These are given by (B.1), where θ(P !)(n−1), and θ̃(P̃ !)(n−1)

represent the “initial” probabilities after n − 1 arrivals.

A similar result to Lemma B.1, that provides a different characterization of Condi-

tion B1. in Theorem 3.1 is shown next.

Lemma B.2. Let T and T̃ denote the interarrival times of two stationary MAP2s M

and M̃, with stationary probabilities φ, and φ̃. Then,

T
d
= T̃ ,

if and only if

φ(sI − D0)
−1D1e = φ̃(sI − D̃0)

−1D̃1e. (B.2)

Proof. We proceed as in the proof of Lemma B.1, but taking into account that

lim
n→∞

(P !)n = Φ, lim
n→∞

(P̃ !)n = Φ̃

or equivalently, limn→∞ θ(P !)n = φ and limn→∞ θ̃(P̃ !)n = φ̃.

Lemma B.3. Let M and M̃ denote two MAP2s, and let ρ = (ρ, 1−ρ), ρ̃ = (ρ̃, 1− ρ̃)

be any probability vectors. If

ρ(sI − D0)
−1D1e = ρ̃(sI − D̃0)

−1D̃1e,

then

cρ + c̃ρ̃ + d = 0, (B.3)

where c and c̃ are as defined in (3.4) and d = z̃ + ũ − z − u.
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Proof. Substituting D0, D1, D̃0 and D̃1 by their values (3.1), it can be seen that

ρ(sI − D0)
−1D1e =

αs + γ

s2 + βs + γ
, (B.4)

where the coefficients α, β and γ are expressed in terms of (3.1) as:

α = ρ(z + u − x − y) − (z + u),

β = −x − u, (B.5)

γ = xu − yz.

Similarly,

ρ̃(sI − D0)
−1D1e =

α̃s + γ̃

s2 + β̃s + γ̃
,

where

α̃ = ρ̃(z̃ + ũ − x̃ − ỹ) − (z̃ + ũ),

β̃ = −x̃ − ũ, (B.6)

γ̃ = x̃ũ − ỹz̃.

Next, if
αs + γ

s2 + βs + γ
=

α̃s + γ̃

s2 + β̃s + γ̃
, (B.7)

then it can be easily seen that

α = α̃,

which is equivalent, given the definitions of α, α̃, to

cρ + c̃ρ̃ + d = 0

with c and c̃ as in (3.4) and d = z̃ + ũ − z − u.

Lemma B.4. Let P ! be the transition probability matrix in a MAP2 with vector of

stationary probabilities φ. If all the rows of P ! are equal, then P ! = Φ, the matrix

with rows are equal to φ.

Proof. The proof is straightforward once the equation φP ! = φ is solved, where it

is assumed that all the rows of P ! are equal.
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Finally, if P ! is transition matrix with vector of stationary probabilities φ, where

P ! =



p!
11 p!

12

p!
21 p!

22



 ,

and φ = (φ, 1 − φ), then it is straightforward to check that

φ =
p!
21

1 − p!
11 + p!

21

. (B.8)

Proof of the Theorem 3.1:

1. B1. and B2. → Weak equivalence.

Let us first assume that both B1. and B2. hold. We want to prove equivalence

given by (B.1), for all s and n ≥ 1. As (θ, θ̃) = (φ, φ̃) and since B2. is equivalent

to (B.2), then all equivalence conditions (B.1) hold because θP ! = φP ! = φ and

θ̃P̃ ! = φ̃P̃ ! = φ̃.

2. Weak equivalence → B1. and B2 .

If two given MAP2s are weakly equivalent, (B.1) holds, for all s and n ≥ 1.

If n → ∞, then from Lemma B.2, (B.2) holds, and thus B1. holds too. Let us

deduce B2. from weak equivalence; since (B.2) holds, then the pair (φ, φ̃) verifies

equation (B.3) (where ρ = φ and ρ̃ = φ̃),

cφ + c̃φ̃ + d = 0.

Because of weak equivalence, (B.1) holds for n = 1, and thus the pair (θ, θ̃) also

satisfies (B.3),

cθ + c̃θ̃ + d = 0.

Both equations imply,

cφ + c̃φ̃ = cθ + c̃θ̃,

or equivalently, using (B.8),

c
p!
21

1 − p!
11 + p!

21

+ c̃
p̃!
21

1 − p̃!
11 + p̃!

21

= cθ + c̃θ̃. (B.9)



20 Ramirez et al.

Again because of weak equivalence, and taking n = 2 in condition (B.1), then

c
p!
21

1 − p!
11 + p!

21

+ c̃
p̃!
21

1 − p̃!
11 + p̃!

21

= cθ(1) + c̃θ̃(1),

where

θ(1) = θP ! =
(
θ(1), 1 − θ(1)

)
, θ̃

(1)
= θ̃P̃ ! =

(
θ̃(1), 1 − θ̃(1)

)
.

It can be checked that

θ(1) = θ(p!
11 − p!

21) + p!
21, θ̃(1) = θ̃(p̃!

11 − p̃!
21) + p̃!

21,

and thus we need to solve for (θ, θ̃) in the following system of linear equations:

cθ + c̃θ̃ = c
p!
21

1 − p!
11 + p!

21

+ c̃
p̃!
21

1 − p̃!
11 + p̃!

21

(B.10)

c(p!
11 − p!

21)θ + c̃(p̃!
11 − p̃!

21)θ̃ = c

(
p!
21

1 − p!
11 + p!

21

− p!
21

)
+ c̃

(
p̃!
21

1 − p̃!
11 + p̃!

21

− p̃!
21

)
,

whose coefficient matrix is

C =



 c c̃

c(p!
11 − p!

21) c̃(p̃!
11 − p̃!

21)



 .

It can be easily seen that θ = φ, and θ̃ = φ̃ solves the system. We need

to determine the uniqueness of this solution. This comes from A1., A2., and

Lemma B.4; since P ! #= Φ or P̃ ! #= Φ̃, then by Lemma B.4 either the rows of

P ! or that of P̃ ! are not equal. This implies that p!
11 − p!

21 #= 0 or p̃!
11 − p̃!

21 #= 0.

In addition, since c, c̃ #= 0 the rank of C is 2, and the solution is unique: θ = φ,

and θ̃ = φ̃.

Appendix C. Proof of Proposition 4.1

Let us first consider the case where n = 1. It is known from the proof of Lemma

B.2 that the equality of Laplace transforms f∗
T ;D0,D1

(s) = f∗
eT ; eD0, eD1

(s) in the stationary

version is equivalent to (B.7), where ρ = φ, and ρ̃ = φ̃. If α̃ = α, β̃ = β, and γ̃ = γ,
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or equivalently

φ̃(z̃ + ũ − x̃ − ỹ) − (z̃ + ũ) = α, (C.1)

−x̃ − ũ = β, (C.2)

x̃ũ − ỹz̃ = γ, (C.3)

then (B.7) holds, and thus M and M̃ are weakly equivalent.

In the two data case, it can be shown that

f∗
T ;D0,D1

(s1, s2) =
δ1s1s2 + δ2s2 + αγs1 + γ2

s2
1s

2
2 + γs2

1 + γs2
2 + βs2

1s2 + βs1s2
2 + β2s1s2 + βγs2 + γ2

,

where

δ1 = φ
(
(z + u − x − y)(w − v) + (x + y)(z + u) − (z + u)2

)
+

(z + u − x − y)v + (z + u)2,

δ2 = φ(x + y − z − u)(uw − yv − xv + zw) + (x + y − z − u)(xv − zw) − (u + z)γ

(x + y − z − u)(xv − zw) − (u + z)γ.

If the equations (C.1)-(C.3) are satisfied, and in addition

φ̃
(
(z̃ + ũ − x̃ − ỹ)(w̃ − ṽ) + (x̃ + ỹ)(z̃ + ũ) − (z̃ + ũ)2

)
+

+(z̃ + ũ − x̃ − ỹ)ṽ + (z̃ + ũ)2 = δ1, (C.4)

φ̃(x̃ + ỹ − z̃ − ũ)(ũw̃ − ỹṽ − x̃ṽ + z̃w̃)+

+(x̃ + ỹ − z̃ − ũ)(x̃ṽ − z̃w̃) − (ũ + z̃)γ̃ = δ2, (C.5)

then (4.2) holds for n = 1 and n = 2.

Appendix D. Proof of Theorem 4.1

The set F is contained in the set of solutions given by Proposition 4.2. To prove

that the set F provides feasible solutions (real MAP2s) let us first assume that x < u.

Notice that this just orders the states; given a MAP2 defined by {x, y, z, u, w, v} then

if x > u, then the same MAP2 can be parameterized by changing state 1 by state 2 as

{x′, y′, z′, u′, w′, v′} = {u, z, y, x,−z − u− v,−x− y −w}. Let ε be defined as in (4.9):

0 < ε < min

{

−x,
u − x

2
,
z(1 − φ)

φ
,
(u − x) +

√
(x − u)2 + 4zy

2

}

.
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It is easily checked that min{−x, u−x
2 , z(1−φ)

φ
,

(u−x)+
√

(x−u)2+4zy

2 } > 0. Because of

that,

ũ = u − ε < 0, z̃ = z + ε > 0.

Moreover, since ε < u−x
2 , this assures that x̃ < ũ, and thus the parameterization of M̃

is different from that of M with permuted states. Next,

(u − x) −
√

(x − u)2 + 4zy

2
< 0 < ε <

(u − x) +
√

(x − u)2 + 4zy

2
,

implies

ỹ(ũ, z̃) ≡
−(ε2 + (x − u)ε− zy)

z + ε
> 0.

In addition,

w̃(ũ, z̃) ≡
wz + vε

z
> 0, ṽ ≡

v(z + ε)

z
> 0,

and finally, since ε < z(1 − φ)/φ,

φ̃ ≡
(z + ε)φ

z
∈ [0, 1].

Appendix E. Proof of Proposition 4.4

Let us assume that

G =



a b

c d



 , H =



α β

γ δ



 and GH =



A B

C D



 .

Now it is straightforward to verify that if G̃ and H̃ are defined by equations (4.20)-

(4.23) (with respect to the elements of G and H , respectively), then

G̃H̃ =




φ(A−C)+eφC

φ
φeφ (D+2C−A)+φ2 (A−D+B−C)−eφ2C

φeφ
eφC
φ

φ (C+D)−eφC
φ



 .
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