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Departamento de Ciencia e Ingenieŕıa de los Materiales e
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Resumen

El cancer de mama es una de las enfermedades que causan una mayor
mortalidad entre las mujeres. Se estima que, slo en Europa, una mujer es
diagnosticada de esta enfermedad cada 2 minutos y medio, y que una muere
cada 7 minutos y medio. Para su cura es fundamental la deteccin temprana
de los pequeños tumores. Si éstos son detectados a tiempo, los tratamientos
que existen hoy en da son mucho más efectivos. En consecuencia, es de
fundamental disponer de tecnoloǵıas especializadas que puedan llevar a cabo
esta tarea con seguridad y, al ser posible, a un costo bajo.

La técnica de referencia hoy en d́ıa sigue siendo la mamografa, una ima-
gen de rayos X de la mama comprimida. Sin embargo, éstas siguen teniendo
inconvenientes bien conocidos: no detectan un 15 % de los tumores malignos,
al mismo tiempo que el resultado de los falsos positivos es muy elevado (sòlo
un 13 % de las manchas encontradas resultan finalmente ser un tumor ma-
ligno). Adems, exponen a las pacientes a radiación potencialmente peligrosa
y el procedimiento es, a veces, poco confortable. Otras técnicas, como la res-
onancia magnética, dan buenos resultados pero son muy caros y no pueden
utilizarse como medio de prevención a una escala general. Por ello, otras
técnicas alternativas se están estudiando en la actualidad para el diagnóstico
no invasivo de esta enfermedad. Entre ellas, destacan la tomograf́ıa de óptica
difusa, la tomograf́ıa de impedancia eléctrica y las imágenes de microondas.

En esta tesis se propone un algoritmo numérico especialmente diseñado
para la detección y caracterización de pequeos tumores usando microondas.
La idea consiste en iluminar la mama con radiación de frecuencias del orden
de unos pocos GHz, y reconstruir las imágenes del interior a partir de las
señales que se recogen en la superficie de la mama. La reconstrucción de
estas imagenes supone la resolución de un problema inverso en donde se
minimiza la diferencia de las señales medidas y las simuladas con el modelo de
mama propuesto (que incluye el posible tumor). Para ello aplicamos técnicas
novedosas de conjunto de nivel que permiten la representación impĺıcita de
las estructuras del interior de la mama, y suponen además una regularización
implicita que estabiliza la resolución del problema inverso.

Los resultados de nuestros experimentos numéricos demuestran que el al-
goritmo es capaz de localizar los tumores y reconstruir las distrubuciones de
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los parámetros dieléctricos dentro del mama de una manera eficiente. El al-
goritmo no sólo detecta el posible tumor y aproxima correctamente su tamao,
sino que además es capáz de caracterizar el tejido sano por su contenido en
fibra y grasa y aproximar las propiedades dieléctricas del tumor, que pueden
ser reflejo de su grado de malignidad.
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Chapter 1

Introduction

1.1 Motivation

Breast cancer is one of the most dangerous diseases in the modern world with
a high mortality [32]. It is estimated that within the European Union, every
2.5 minutes a woman is diagnosed with breast cancer. Every 7.5 minutes a
woman dies from the disease [64]. The early detection of small breast tumors
is absolutely necessary for preventing the metastasis of the cancer and for
obtaining good prognosis of cancer treatment. Therefore it is of highest
importance to have technologies and algorithms available which are able to
image tumorous structures of few milliliters in the breast non-invasively and
with relatively low cost.

The gold standard technique for early tumor detection is still the x-ray
image of the compressed breast, the mammography, which remains the pri-
mary screening method for detecting non-palpable early-stage breast cancer
tumors. The mammogram essentially is a map of breast density (see Fig.1.1).
The resolution of the obtained image is high, however, the contrast is low. It
is difficult, even impossible in many cases, to localize a tumorous structure of
few milliliters or to distinguish between the different types of benign and ma-
lignant tumors. Overall, mammography misses up to 15% of the cancerous
tumors [37]. At the same time, the false positive results of the mammogra-
phy technique, which amounts to an estimated 13% of all suspicious findings,
lead to the need for additional mammographies and biopsy tests [37]. An
additional drawback of X-ray breast screening is the potential danger of the
X-ray itself, which is an ionizing radiation. Furthermore, the mammography
procedure is uncomfortable and even painful for many patients. All these
drawbacks and inconveniences produce anxiety in many patients, accumu-
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Figure 1.1: A typical X-ray mammography image which a trained physician
can use for detecting suspicious spots for possible hidden tumors.

late the radiation exposure of healthy tissue and increase the overall costs of
tumor detection [32].

The natural question arises if any alternative radiation technique, less
dangerous and possibly even more effective than mammography, can be de-
veloped and used clinically to enhance the diagnosis. Over the last decade,
the use of microwaves for breast screening has developed into such a new and
very promising diagnostic option [37].

But what are the advantages of microwaves for breast screening? The
dielectric properties of different biological tissues, including normal and tu-
morous breast tissue, have been investigated scientifically during the past
four decades [18, 23, 40, 41]. The obtained data indicate that there exists a
significant contrast between the dielectric properties of tumorous and normal
breast tissue [75]. This characteristic difference in the dielectric parameters
(permittivity and conductivity) appears, among other reasons, due to in-
creased water content, protein hydration and vascularization of the tumorous
tissue.

Microwaves are called here the electromagnetic waves with frequencies
ranging from 300 MHz up to 30 GHz. The breast can easily be radiated from
outside and is translucent to microwaves in this regime, up to a certain degree.
Microwave radiation, as used in the screening process, contains insufficient
energy to directly change biological tissue by ionization or similar effects, and
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consequently, is a very harmless radiation. Most of the studies conclude that
it is perfectly safe for the human health [36, 37]. On the other hand, since
microwaves potentially give rise to a certain amount of heating of organic
tissues, many investigators point out its potential, when applied with much
higher power than in the screening process, to be used in tumor treatment
for destroying cancerous tissue by locally overheating suspicious marks [51].

In response to the increasing interest in microwaves for breast cancer
detection, new studies have been prepared and published recently containing
and analyzing the breast data of a large group of patients [71, 72, 73]. The
result of this work is that the contrast between the healthy and tumorous
tissue is lower than it was reported in earlier studies. In particular, the
contrast in dielectric properties is less significant for breasts with higher
content of dense fibroglandular tissue. Nevertheless, a majority of breasts
can be classified as mostly ’fatty’ (fatty tissue is from 3 up to 10 times less
dense than fibroglandular tissue), with approximately 70% of fatty and 30%
of fibroglandular tissue [86]. This important circumstance supports the hope
that, in a majority of the cases, the possibility of the successful detection of
very small tumors via microwave imaging exists. Furthermore, for the case of
very dense breasts and consequently lower contrast, new imaging strategies
and new numerical algorithms need to be developed which exploit in an
optimal way the sensitivity of microwaves to the existence of such a small
dielectric contrast. In this thesis, we present a new numerical algorithm
which efficiently detects, locates and characterizes small breast tumors in
different types of breasts. In particular, we will see that for the cases in
which the breast is very dense and/or the tumor is small and it is located
deep in the breast, it is necessary to reconstruct, in addition to the tumor,
the internal breast structure.

Lately, significant improvements of the existing microwave imaging tech-
niques have been obtained due to the progress in the underlying numerical
methods and engineering devices. Many research groups are investigating
the application of microwaves for breast cancer diagnosis, among them pres-
tigious research groups at the University of Wisconsin, at Dartmouth College,
at the Northeastern University of Boston, and others.

Finalizing this introduction, we want to resume the expected advantages
of microwaves for the early breast cancer detection:

• Microwaves are absorbed and reflected differently by tumorous and
healthy tissues.

• They detect breast cancer at a curable stage.

15



• They have low health risk.

• They penetrate easily through tissue because the biological tissue is
translucent to microwaves.

• They involve minimal discomfort and the examination is easy to per-
form.

• The cost of microwave screening is predicted to be very low.

In this thesis we investigate the potentials, advantages and disadvantages
of microwave imaging for the early detection of breast cancer from a more
mathematical and computational viewpoint as opposed to the experimental
studies which already exist in the literature. We present a new numerical
algorithm for the detection of small breast tumors via microwave imaging,
and demonstrate its robustness and advantages when used for early breast
cancer detection. We show that the new algorithm can be successfully applied
not only for tumor detection, but also for the characterization of the internal
breast structure and the dielectric characterization of tumorous inclusions.
From the mathematical viewpoint, we propose a novel scheme of using two
or more different level set functions simultaneously for achieving structural
inversions from few data. In particular, we not only reconstruct various
different interfaces in the breast tissue, but also interior profiles characterizing
fatty and fibroglandular tissue textures from the same data set. This is a
very novel development in the framework of level set inversion schemes.

The following sections of this chapter 1 are organized as follows. In sec-
tion 1.2 we describe the anatomical structure of the human breast from the
perspective of microwave imaging applications. The next section 1.3 reviews
the currently existing imaging techniques for breast screening and the main
research directions in the microwave medical imaging literature. In section
1.4 we define the underlying inverse problem and general concepts of ill-
posedness. Finally, the last section 1.5 is devoted to the introduction into
the level set technique as used in this thesis.

1.2 Breast anatomy

Human breast consists mainly of glandular, fatty and fibrous tissue located
on the pectoral muscles of the chest wall and attached to the skin by fibrous
strands called Cooper’s ligaments, as it is visualized in the left image of Fig.
1.2.
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Figure 1.2: Breast internal structure (left image) and the anomalies of healthy
tissue (right).

The density of the breast depends on its relative content of fibroglandular
and fatty tissue and vary from patient to patient. It is difficult to predict
the physiological structure of patient’s breast, because there are many fac-
tors which can influence it. At the same time, this knowledge sometimes
determines the success of the diagnoses, because in particular for the denser
breasts of high content of fibroglandular tissue the techniques used for the
reconstruction need to be more refined, as it is necessary to reconstruct the
denser parts of the breast together with the correct tumor characteristics.

A tumor, which can be precancerous (benign) or cancerous (malignant),
may apparently have no symptoms and is difficult to detect at the early stage
by traditional methods (X-ray mammography), especially if it is situated
deeply inside the breast. However, the success of the treatment depends
heavily on the size of the detected tumor, i.e. on the current stage of the
disease.

The recently published studies [71, 72, 73] have demonstrated that the
contrast between the dielectric properties of healthy and tumorous tissues, as
well as the dielectric contrast between the benign and malignant tumors, are
not so large as expected. Malignous anomalies have a high content of water,
as they are typically crossed by more blood vessels than benign anomalies.
Therefore, we can in general assume a higher grade of malignancy for lesions
with higher dielectric parameters.

The difficulty of early cancer diagnosis is that inside the breast tissue there
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exist a large variety of possible physiological anomalies. They are related to
age, hormonal treatments, lactate periods or lesions. In the right image of
Fig. 1.2 we can see benign lesions, as for example a cyst, a fibroadenoma or
an abscess, as well as a malignant lesion, which is a tumor. All these lesions
give rise to local changes in the dielectric properties of the healthy tissue.
In the X-ray image all these abnormalities result in a very similar response,
namely spots of higher density. This similarity is the main reason for the
large number of false positives in cancer detection.

Our algorithm aims at early cancer detection in cases of breasts of differ-
ent densities. It can be applied also to the reconstruction of the structure of
healthy breast tissue and the detection of any benign lesion, if necessary.

1.3 Imaging techniques for breast screening

Methods of noninvasive breast imaging can be divided into two groups: the
classical techniques and those which have been developed more recently.

Among the classical techniques for breast imaging we mention the mam-
mography, magnetic resonance imaging, positron emission tomography and
ultrasound imaging.

Mammography is the process of using low-dose X-rays to examine the
human breast for the early detection of breast cancer. This is typically
done by detection of characteristic spots of dense tissue, which need to be
distinguished from microcalcifications. As it was mentioned before, X-ray
mammography is still the main tool in the breast cancer screening, but suf-
fers from certain drawbacks and is not very effective in many cases (see the
subsection 1.1).

Magnetic resonance imaging (MRI) is a medical imaging technique which
provides much greater contrast between the different soft tissue types of
the body than other methods. It uses a strong magnetic field to align the
nuclear magnetization of hydrogen atoms in water molecules of the body.
Radiofrequency fields are used to alter the alignment of this magnetization,
which produces a rotating magnetic field of hydrogen nuclei which can be
detected by a scanner. The MRI method can create images of high resolution,
is very precise in its diagnosis, but unfortunately it is very expensive to use
as a broad-scale preventive screening tool.

Positron emission tomography (PET) is a nuclear medicine imaging tech-
nique which produces a three-dimensional image or map of different parts of
the body. A positron-emitting radionuclide is introduced into the body, and
the system detects pairs of gamma rays emitted by this tracer. The computer
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analysis reconstructs the images of tracer concentration in the 3-dimensional
space. In general, the quality of the image delivered by this reconstruction
technique is not as good as the one of MRI reconstructions.

Diagnostic ultrasonography is an ultrasound-based diagnostic imaging
technique used to create images of the internal body organs, their sizes,
structures and possible pathologies or lesions. In physics, ultrasound refers
to acoustic waves of frequencies above the limit which the human ear can
hear (higher than 20 kHz). The scanner usually operates in the frequency
range between 2 and 18 MHz. The resolution of the image depends on the
chosen frequency: lower frequencies produce images of less resolution than
higher frequencies do. The acoustic wave propagating through the tissue is
reflected when it hits an interface of regions with different densities, and the
reflected wave can be measured by a transducer. The depth of the tissue
interface is calculated from the travel time of the reflected sound wave. The
attenuation of the sound wave is increased at higher frequencies. Therefore,
in order to have better penetration of deeper tissues, a lower frequency (3-5
MHz) is often used despite of the lower resolution which can be achieved
with lower frequencies.

The limitations of X-ray mammography, which is the gold standard in
early detection of breast cancer, provide a clear motivation for the develop-
ment of new complementary breast imaging strategies to assist in the detec-
tion and diagnosis of small tumors. Among the newer imaging techniques
under investigation for breast screening we want to mention in particular dif-
fuse optical tomography (DOT), electrical impedance tomography (EIT) and
microwave imaging (MI).

Diffuse optical tomography is a particular case of computed tomography
where the photons of the near-infrared regime show significant scattering
during their way through the body. Near-infrared light penetrates within the
tissue several centimeters but suffers from a large amount of scattering which
blurs the images of the optical inhomogeneities of the tissue. Consequently,
new tomographic algorithms have been devised to overcome this problem
and improve the resolution of these images [28, 2, 63, 61]. Diffuse optical
tomographic technologies use either continuous-time, or time-harmonic, or
time-pulsed excitation. The time-pulsed excitation is realized by means of
the exposure of the tissue to short laser pulses of the order of nanoseconds, or
even shorter. The data gathered at the detectors are superpositions of large
numbers of photons with different path histories inside the tissue but the
same travel time and/or receiver location when measured. They are sensitive,
for example, to the local oxygenation status of the blood, which can be used
for tumor detection or for detecting a hematoma. In the time-harmonic
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mode, the tissue is illuminated with modulated light in the frequency range
0.1-10 GHz (this is the so called frequency-domain or phase method). Then,
the degree of modulation of the scattered light and the corresponding phase
shift at modulation frequencies is recorded as data.

Electrical impedance tomography is a medical imaging modality in which
an image of the conductivity or permittivity of a part of the body is con-
structed from surface electrical measurements. The electrodes are attached
to the surface of the body transmitting small alternating currents. The re-
sulting electrical potentials are measured, and the process is repeated for
numerous different configurations of applied currents [54, 9, 62].

Microwave imaging, on the other hand, can be divided further into two
groups: the radar techniques (among them confocal microwave imaging and
space-time beamforming) and tomographic imaging techniques. Both of
these groups are under intensive development. Confocal imaging and space-
time beamforming are non-iterative techniques which display the received
backscattered signal energy as a function of location to define the regions of
the breast of increased scattering power [46, 47, 35, 75, ?, 8, 74]. Beamform-
ing methods are developed to overcome the difficulties associated with the
high heterogeneity of the breast tissue. Their spatial resolution is propor-
tional to the bandwidth of the applied signal.

Other broadband array imaging techniques that provide an image of the
backscattered signal in clutter are currently under investigation [10]–[14].
Borcea et al. [13] have proposed a new method, called coherent interferom-
etry, for imaging in randomly inhomogeneous media. The authors introduce
an imaging functional that does not depend on the detailed properties of the
random media, and apply the optimal smoothing of the image to stabilize it.
To compensate for the delay spread of the signal due to multipathing in these
media, they cross-correlate the traces over appropriate space-time windows.
In addition, optimal illumination and waveform design for array imaging can
be used to enhance the resolution of small scatterers [14].

All these methods, as well as the tomographic techniques, are based on
the supposed high contrast between the dielectric properties (permittivity
and conductivity) of the tumors, benign or malignant cysts, and the healthy
breast tissues, namely the fibrous, glandular, adipose and skin tissue [23, 40,
37]. We point out that, so far, these methods are not able to reconstruct the
shape of the scattering region. They can only identify it.

To differentiate a malignant tumor from benign tumor, El-Shenawee and
Miller have proposed a shape-based method aims at accurately estimating
certain shapes and their locations of anomalous regions [34]. Malignant tu-
mors tend to have irregular shapes due to the invasive nature of malignant

20



cells and their random growth [1]. Benign tumors, however, tend to have
smoother more ellipsoidal or spherical shapes. Typically, the quality of a
shape reconstruction algorithm also depends on the accuracy with which the
electromagnetic properties (permittivity and conductivity) of the tumors are
known or, if they are unknown a-priori, can be estimated simultaneously with
the shapes. There are several differences between the work of [34] and the
shape-based work presented here, which will be pointed out further below in
this thesis.

Finally, microwave tomographic imaging (which most closely character-
izes the technique used in this thesis) is showing a significant promise as a
new technique for the early detection of breast cancer. It includes the mea-
surements of the scattered microwave signals through the contrast media and
simulate these signals numerically using a breast model. The corresponding
inverse problem consists in minimizing the mismatch between the signal of
the scattered waves and the one simulated with the numerical model, under-
taking at the same time the corresponding corrections of the initial model
[79, 17].

One-step inversion methods, like the Born and Rytov approximations, are
applied in practice as well, but they are only able to give an indication about
the location of an inhomogeneity in the tissue [52, 15]. The classical pixel-
based iterative algorithms, which go beyond the Born and Rytov approxi-
mations, successively improve the initial guess. This is done by comparing
the predicted data corresponding to the latest estimate of the tumor charac-
teristics with the measured data, and minimizing the resulting least-squares
data misfit. In order to stabilize the inversion process, the least-squares
data misfit is typically augmented by some additional regularization terms.
Unfortunately, the standard Tikhonov-Philips regularization term, usually
employed in these strategies, has the effect of ’over-smoothing’ the recon-
structed images. As a consequence, it is difficult or impossible to accurately
estimate key characteristics of the breast internal structure and the tumor,
like their shapes and internal dielectric properties.

Obtaining these characteristics, on the other hand, could lead to poten-
tially important strategies for breast cancer diagnosis and the definition of
the interior density of breast tissues. In part of the clinical situations stud-
ied recently, the fibroglandular tissue has high density and assumes dielectric
properties which become closer to those typically assumed for tumors. This
means that, in contrary to previous believe, the contrast between tumor and
healthy tissue is not necessarily always very high, even though it still seems
to be significant [81, 71, 72, 73]. This lower contrast increases even further
the need for very efficient and robust mathematical reconstruction techniques
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for extracting reliable estimates of tumor characteristics from the microwave
data. This thesis aims at going one significant step forward in this direction
by providing a new reconstruction algorithm which makes optimal use of the
microwave data and of some of the available prior information about typical
human breast tissue.

1.4 Some general concepts

In his original paper [58], J. B. Keller calls two problems ’inverse to each
other’ if the formulation of one involves the formulation of the other. For
example, the problem which predicts the future behavior of a physical system
from knowledge of its current state would traditionally be called the direct
problem, whereas the problem of determining the present state from future
observations (for example, certain observations of the system’s evolution)
would be called the inverse problem. The inverse problem is usually ill-
posed. The definition of ill-posedness of a problem will be introduced in the
subsection 1.4.1. In order to solve ill-posed problems in a stable and reliable
way, typically regularization methods are needed. Some typical regularization
techniques are outlined in subsection 1.4.2.

1.4.1 Ill-posedness of the inverse problems

In this section we will give a brief outline of important concepts of ill-
posedness using, as example, a linear operator equation Am = b with a
bounded linear operator A : H → K which maps from a Hilbert space H to
a Hilbert space K. We can define the corresponding direct problem as finding
b assuming m is known, whereas the corresponding inverse problem is to find
m from the knowledge of b, which satisfies Am = b in some meaningful sense
[84]. The problem of calculating m is directly related with the properties of
the operators A and, if it exists, of A−1.

We say that the inverse problem is well-posed or properly posed if the
three following conditions are satisfied:

• The exact solution exists.

• There is no more than one solution.

• The solution depends continuously on the data.

These three conditions mean that b is in the range of A, that A is injective
and A−1 exists and is continuous in the given spaces. Usually, the typical
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inverse problems encountered in medical imaging do not satisfy the above
three requirements (often none of them at all), which means that they are
ill-posed. Moreover, when one discretizes the ill-posed inverse problem to
solve it numerically, the discretized problem is typically represented by an
ill-conditioned matrix. For this discretized problem, the condition number 1

becomes bigger the finer one chooses to discretize.

1.4.2 Regularization

From the above discussion it follows that for solving an ill-posed inverse
problem, we need to regularize it. Regularization means to replace the ill-
posed inverse problem by a family of nearby well-posed problems, which
often is characterized by one or more regularization parameters. In the end,
one member of this family of approximated well-posed problems is chosen
to represent the solution of our ill-posed inverse problem. This replacement
of the (often non-existing) solution of the ill-posed problem is often called a
’quasi solution’.

The least squares method is often used to regularize an inverse problem.
The goal is to find an estimate m+ such that it minimizes the least-squares
data misfit functional

J = ‖Am− b‖2 . (1.1)

If there is more than one minimizer, we choose the one with minimal
norm and call it m+. It can be shown that m+ is the unique solution of
the corresponding normal equations A∗Am = A∗b, where A∗ is the formal
adjoint operator to A [33]. By this choice of m+ we define an operator
A+, such that: A+b = m+. If we know the singular value decomposition of
operator A, the generalized solution m+ of the inverse problem is determined
by the Moore-Penrose generalized inverse A+ as follows [33]:

m+ = A+b =
r∑

i=1

λ−1
i < b,wi > vi (1.2)

where {λi, vi, wi} are the singular values and vectors of A, respectively. r is
the number of singular values λi distinct from zero.

The singular values of an ill-posed inverse problems are often character-
ized by a rapid decay, which has the effect that noise in the data introduces
an instability to the generalized solution due to small singular values. Most

1The condition number ca = ‖A‖‖A−1‖ is a useful measure of the stability, which
characterizes the dependence of the error in the predicted solution from the error in data.
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Figure 1.3: The level set function φ implicitly defines the shape S. A small
perturbation δφ changes the shape S to the new shape S + δS in an implicit
way.

regularization methods aim at damping or eliminating those parts of the solu-
tion which correspond to very small singular values. If an iterative algorithm
is used for solving an ill-posed inverse problem, then the early stopping of the
iterative method can be interpreted as a form of regularization. This is so,
since often the earlier iterations concentrate more on the parts of the solution
which correspond to larger singular values, whereas the later iterations tend
to fit the parts corresponding to smaller singular values.

Another popular regularization method is the so called Tikhonov method
[101]. The goal is to find the mα which minimizes the modified cost functional

Jα = ‖Amα − b‖2 + α‖m‖2 , (1.3)

with the regularization parameter α > 0, which controls the weight of the
penalty term ‖m‖2 (and some appropriate norms ‖ |, || chosen). The modified
normal equations in the least squares sense are

(A∗A + αI)mα = A∗b , (1.4)

which solution formally is mα = (A∗A + αI)−1A∗b.
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If we know the singular value decomposition of A, this solution can be for-
mally written as a ’filtered’ version of the generalized inverse, in the following
sense

m+
α = A+

α b =
r∑

i=1

λ2
i

λ2
i + α

λ−1
i < b, wi > vi. (1.5)

Therefore, the Tikhonov regularization method can be interpreted as a ’fil-
tering’ method. It filters out those components of the singular value decom-
position with λ2

i ¿ α.
The above mentioned regularization schemes are aiming mainly at sup-

pressing the impact of data noise on the reconstruction. In general, a diffi-
culty of ill-posed problems is the often high dimension of the solution space
and the small number of data which are available to determine a valid so-
lution. One way of regularization is, therefore, the incorporation of a priori
information into the solution scheme. This potentially reduces the number of
possible solutions and helps focusing in the reconstruction on those features
which in fact can be recovered in a stable and reliable way.

Our approach in this thesis follows this general idea of regularization.
In our application, we can include this prior information by assuming some
knowledge regarding the type of tissues which the breast is composed of. This
means that the dielectric properties of the breast tissue are not arbitrary but
follow certain rules or constraints which are in agreement with this prior
knowledge. In particular, we will make use of the assumption of well defined
interfaces between the different tissue types.

Once we have chosen this ’shape-based’ approach for the different compo-
nents of breast tissue, it still remains to reconstruct the shapes from the the
boundary data. One possibility is to parameterize the unknown shapes, for
example, using harmonic functions, and to cast the problem as an optimiza-
tion problem by solving for the unknown coefficients of the parametrization as
in [34]. However, this approach is limited to shapes which can be represented
by the a priori assumed parametrization. Besides, they do not perform well
under topological changes of the unknown shapes when these occur during
the iterative reconstruction process. In this thesis, we will follow a com-
pletely different approach to reconstruct the unknown shapes. They will be
implicitly represented by higher dimensional level set functions as will be
explained in the next section.

Notice that in the tumor detection task, the problem to be solved is not
so much the determination of a detailed and complete map of electromag-
netic parameters inside the breast, which would in fact be impossible from
the given few noisy data. Instead, the physician which interprets the results
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would be satisfied if just a few questions could be answered reliably from
the data, namely regarding the existence, size, contrast and possibly shape
of one or more hidden tumors. Certainly, this information cannot be recov-
ered reliably without specifying from the same data set at least some overall
features of the remaining structure of the breast tissue. Not all of these re-
maining features might have the same impact on answering the important
questions stated above. Also, certain characteristics of the breast are in fact
known (say, for example, the existence of interfaces between glandular and
fatty tissue, and a range of possible values for these two tissue types), such
that this prior knowledge might help in focusing on the main goal of the
interpretation of the data.

The novel level set technique proposed in this thesis is following this
path of focusing on the reliable answering of the above mentioned important
questions of the existence and main characteristics of hidden breast tumors.
It aims at providing an optimal way of using all available information at hand
in the inversion of microwave data of the breast.

1.5 Level sets

The level set method was originally developed by Osher and Sethian for
describing the motion of curves and surfaces [88, 89]. Since then, this method
has been widely applied in different areas of research. Examples are the
application to image enhancement, modelling physical interface problems,
crystal growth, and others [93]. In 1996, Santosa proposed to use the level
set technique for solving inverse problems with interfaces [92]. In this seminal
paper he presented as examples the solution of linear inverse problems using
the level set technique for shape representation. Later, the level set method
was used by Litman et al for a nonlinear inverse scattering problem [76].
In that work, a shape evolution is defined by calculating the derivative of
the cost functional with respect to the hidden shape, the boundary of the
shape moving in a descent direction of the corresponding cost functional.
The calculation of the interface velocity, i.e. the updates for the level set
function in each step, requires the solution of one forward and one adjoint
Helmholtz problem. In that work, the evolution of the level set function is
controlled by a Hamilton-Jacobi-type equation describing shape evolution.
In this thesis, we will follow a slightly different approach in which the level
set function is updated by means of an evolution law directly formulated for
the level set function. Next we explain the main ideas of the representation
of shapes by level sets and introduce the evolution law as our main tool for
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Figure 1.4: The distribution of the characteristic parameter κ(x) is defined
by a level set function φ. In optimization approaches, an evolution of the
shape S is performed in order to decrease the mismatch between measured
and predicted data.

the shape reconstruction.

1.5.1 Representation of two regions by level sets

In the level-set method the shape of an object is represented implicitly by one
higher-dimensional level set function. The boundary of the shape coincides
with the zero level set, and the negative values of the level set function define
the interior of the shape. Figure 1.3 illustrates this relationship. The figure
shows a possible level set function φ at some step of a shape evolution (solid
line), and a possible modification of this level set function (dashed line) after
an update δφ has been applied according to some criterion (e.g. reducing a
predefined cost function). Obviously, the implicit representation of a level
set function is not unique since there are infinite many level set functions
which can define one given shape S.

Usually, the number of components in the domain of interest S is arbitrary
(finite) and unknown. During the reconstruction process, typically the need
for modelling topological changes arises. Traditional parameterized models
for the shape S are not suited for modelling such topological changes since
they require reparameterization in that case. The advantage of using the
level set technique is that topological changes occur automatically without
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the need for reparameterization [31].
In the simplest form of the level set representation, only two regions are

considered: an anomaly region and the embedding background medium, both
typically with a constant parameter value. The anomaly region (in the fol-
lowing sometimes called ’object’) can consists of a finite collection of disjoint
compact subdomains enclosing ’holes’ filled with the background material,
but all the subdomains have the same material (or biotissue) properties. In
this case, only one level set function is necessary to define the resulting bi-
modal distribution that needs to be reconstructed. A level set function φ(x)
defines the piecewise constant coefficient κ(x) that characterizes the domain
Ω, with x being the location variable, in the following way

κ(x, φ) =

{
κi in S, φ(x) ≤ 0
κe in Ω\S, φ(x) > 0 .

(1.6)

In this way, the distribution of this characteristic parameter in the domain Ω
depends on the level set function φ(x) (see Fig. 1.4). For the computational
evolution of the level set functions it is useful to introduce the narrowband
χ(x), which coincides with a neighborhood of φ(x) with a specific width.
Often, the level set function is modified only inside this narrowband for
moving the boundary computationally one step. In this thesis, we will present
and discuss more general approaches for level set evolution which are tailored
to the application of structural inversion in medical imaging from microwaves.

A possible optimization approach for calculating the evolution of the level
set function φ(x) consists in minimizing the least squares cost functional
defined as

J (S) =
1

2
‖Am− b‖2. (1.7)

To formally evolve the level set function φ(x), a velocity field v(x) is intro-
duced for each point of the domain (see for more details the exposition in
[31]). The goal is to decrease the cost functional J (S) by applying a suitable
velocity field v(x) in direction n(x), normal to the boundary of the shape.
Usually, the evolution is performed only in the narrowband χ(x) of the shape
boundary. Obviously, the tangential component of v(x) does not contribute
to the shape deformation. Mathematically, the general expression for the
descent direction of the cost functional contains the scalar product v(x)n(x),
where v(x) is calculated appropriately. In this thesis, we will follow a slightly
different approach (even though related) by defining an evolution law

dφ

dt
= f(x, t) , (1.8)
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Figure 1.5: A unique level set function representing two materials.

for the level set function φ describing the interface between different tissue
types (in this case, the tumorous and the healthy tissue). The scalar forcing
term f(x, t), which depends on the position x and the artificial evolution time
t, is determined such that the cost functional (1.7) decreases. In chapter 3
we derive an explicit mathematical expression for f(x, t) and demonstrate
how it is used numerically as part of the reconstruction problem.

1.5.2 Level set representations for multiple regions

In many applications one needs to reconstruct the parameter distribution of
interest defined by more than two possible values as, for example, in our case
the different dielectric parameters corresponding to the several tissue types
inside the breast. The level set approaches in the literature that deal with
this problem can be divided into two groups: the techniques which use only
one level set function, and the techniques which use two or more level set
functions depending on the number of different materials (here bio-tissues)
within the domain.

In the first approach, the interfaces of the different materials are repre-
sented by the same smooth level set function, but using level-sets for dif-
ferent levels (values). Figure 1.5 illustrates this idea in which the shapes of
two materials correspond to two predefined level values, in addition to the
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Figure 1.6: A vector level set representation for two materials.

background value. However, this approach has some drawbacks (as it is dis-
cussed in [77]) since it might not exist any smooth level function satisfying
the necessary requirements (certain topological restrictions apply with this
approach).

In the second approach, several level set functions are used to represent
a domain composed of multiple regions (each level set function associated
with a different material), as in [107, 95]. Note, that the level sets can
overlap during the iterative process (see the Fig. 1.6) giving rise to physi-
cally not well-defined materials with multiple values. In this case, additional
constraints can be introduced in the cost function in order to minimize the
overlap area. Alternatively, a slightly different approach of using more than
one level set function has been proposed in [102, 22, 77], to deal with this
problem. Here, each possible sign combination of the different level set func-
tions defines a different region. This avoids overlap regions with undefined
values. Our approach used in this thesis is somehow similar to that approach,
even though we modify this general idea to the specific situation of tumor
detection in breast tissue, and to the specific algorithm proposed here. For
more details see chapter 4 of this thesis. More information regarding alter-
native level set techniques for inverse scattering problems as discussed in the
literature can be found in the recent review [31].
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Chapter 2

Mathematical modeling: the
direct problem

2.1 Introduction

This chapter presents the basic ideas of the mathematical modeling used
throughout this thesis. We begin with Maxwell’s equations and the two-
dimensional wave propagation problem used here. We then discuss the nu-
merical method employed when solving the forward (and adjoint) problems
during the reconstruction. We also present the different breast models we
have considered in our investigations, and the model used here for describing
dispersion in human tissue.

Associated with any inverse problem there is a direct problem (some-
times called a forward problem). In the case of the scattering of electro-
magnetic waves from a hidden object, the direct problem seeks to determine
the scattered fields measured at the detector positions given some model of
the scattering medium, i.e., it calculates some physical response. On the
other hand, the inverse problem consists in determining the properties of the
scattering medium, given the source configuration and some measurements
of the scattered fields.

In general, as mentioned before, the formulations of the direct problem
and the inverse problem of any practical application involve all or part of the
solution of the other [58]. Often, the direct problem has been studied ex-
tensively and is well understood, while the inverse problem is newer and not
so well understood. Also, the direct problem is usually well-posed, whereas
the inverse problem is usually ill-posed. This is so, because in most physical
techniques used for imaging the direct problem provides a unique and typi-
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cally stable response given the relevant physical data (or small variations of
them), whereas very similar responses can be the effect of different causes in
the inverse problem.

We point out that the inverse problem for microwave breast imaging is
nonlinear. Hence, most inversion techniques known today require to solve
the direct problem many times. Typically, the solution of the inverse prob-
lem is achieved by an iterative process, in which successive improvements
of an initial guess of the breast model is attempted by minimizing some
data misfit cost functional involving the gathered scattered-field data. When
employing an adjoint scheme, for example, as part of a gradient based op-
timization technique, in each iteration of the inversion algorithm, one (or
two) direct problems need to be solved. As a consequence, if the forward
solver is not efficient, solving the direct problem many times becomes a ma-
jor computational bottleneck. We will use finite differences modeling and
perfectly matched layers (PML) for solving the partial differential equations
that describe the propagating waves in a two dimensional configuration. This
will model situations in which the patient is lying facedown with the breast
naturally extending through a hole in the examination table.

In summary, in our application, solving the forward problem means to
calculate the electromagnetic field at the detectors using a model for electro-
magnetic wave propagation and a model for the scattering medium, which
in our case is a two dimensional model of the breast. If we know the prop-
erties of the breast (the distribution of its dielectric parameters) and the
source configuration, we can calculate the values of the electromagnetic field
at each point of the medium, as well as the data gathered at the detector po-
sitions. With this data we will infer the spatial distribution of the dielectric
parameters, as will be explained in the next chapters.

As in any other practical situation, noise and uncertainty is inevitable.
This will be also considered and conveniently modeled in our approach.

2.2 Maxwell’s equations

The well-known Maxwell’s equations in differential representation and SI
units are [105]:

∂B

∂t
(r, t) +∇× E(r, t) = 0 (2.1)

∂D

∂t
(r, t)−∇×H(r, t) = −J(r, t) (2.2)

∇ ·B(r, t) = 0 (2.3)
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∇ ·D(r, t) = ρ(r, t) . (2.4)

In these equations, E, H, D and B are the electric field, the magnetic field,
the electric field displacement, and the electromagnetic induction, respec-
tively. They are vector quantities that completely characterize the electro-
magnetic field. In (2.1)-(2.4), ρ is the charge density and J is the current
density. The variables r and t are the position vector and time, respectively.
The vector functions E, H, D and B completely characterize the electromag-
netic field.

If we assume a harmonic dependence on time, the above Maxwell’s equa-
tions can be written in the frequency domain as:

∇× E(r) = iωB(r) (2.5)

∇×H(r) = −iωD(r) + J(r) (2.6)

∇ ·B(r) = 0 (2.7)

∇ ·D(r) = ρ(r), (2.8)

where ω = 2πf is angular frequency and i is
√−1.

The Maxwell’s equations are not independent. Taking the divergence of
(2.1) gives rise to (2.3), and taking the divergence of (2.2) and using the
continuity equation

∂ρ

∂t
(r, t) +∇J(r, t) = 0 (2.9)

for the electromagnetic field, we arrive at (2.4).
The same holds in the frequency domain. Only two of the equations (2.5)-

(2.8) are independent. Hence, in order to apply the Maxwell’s equations for
the four unknowns E, H, D and B, it is necessary to specify the relations
between D and E, and H and B through the constitutive relations1

D = εE (2.10)

B = µH . (2.11)

They correspond physically to specifying how much polarization and mag-
netization a material acquires in the presence of electromagnetic fields. The
response of biological tissue, as other materials, to external fields is not in-
stantaneous. For this reason, the permittivity ε is treated as a complex

1We consider here the case of isotropic media in which the constitutive relations are
independent of the field polarization. Moreover, we assume that the medium is linear, so
ε and µ are not functions of the fields.
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function (complex numbers allow specification of a magnitude and a phase).
Moreover, the time response of the biological tissue depends on the frequency
of the time varying field, so that the permittivity depends on frequency.

On the other hand, biological materials are not magnetic, and therefore,
the magnetic permeability µ can be assumed equal to the vacuum magnetic
permeability (µ0 = 4π × 10−7henry/m). In the section 2.4, we discuss the
properties of biological systems with more details.

One further constitutive relation can be considered as well. In a conduct-
ing material the electromagnetic field itself gives rise to currents. If the field
strengths are not too large, we can assume a linear relationship between the
field and the created current, so that Ohm’s law holds. In this case, we have
that

J = σE + Ja, (2.12)

where σ is the conductivity of the medium, and the vector Ja is the applied
current density. Using the constitutive relations (2.10)-(2.12) we can write
(2.5) and (2.6) as:

∇× E(r) = iωµ0H(r), (2.13)

∇×H(r) + iω[ε(r, ω) + iσ(r, ω)/ω]E(r) = Ja(r) . (2.14)

Note that in (2.14) the conductivity term is combined with the permittiv-
ity, so we can generalize the permittivity in such a way that the conduction
contributes to its imaginary part, and define the (relative) complex permit-
tivity ε∗r as:

ε0 ε∗r(r, ω) = ε0 [εr(r, ω) + i
σ(r, ω)

ε0 ω
] . (2.15)

2.3 Scalar Maxwell’s equation for TM polar-

ized waves

Many interesting physical phenomena in electromagnetics can be described
by a scalar approximation of the above vector equations (2.13)-(2.14). In our
application, for example, this is the case in the situation in which the patient
is lying facedown with the breast naturally extending through a hole in the
examination table, and the breast is illuminated by TM polarized waves.

When the electromagnetic properties of the medium, ε and σ, do not
vary in one direction, e.g., the z direction, the vector equations (2.13) and
(2.14) can be reduced to two decoupled scalar equations. These two scalar
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equations define two types of waves: transverse electric to z (TE polarized
waves) and transverse magnetic to z (TM polarized waves). As a result,
the z components of the electromagnetic field, Ez and Hz, can be used to
characterize the TM and TE waves, respectively.

If we take the curl of Eq. (2.13), and substitute (2.14) into the result, we
arrive at the following equation for the electric field:

∇×∇× E− k2E = iωµ0Ja, (2.16)

where
k2(r, ω) = ω2µ0ε0 [εr(r, ω) + iσ(r, ω)/ε0 ω] (2.17)

is the squared complex wave number. If we now apply the vector identity
∇×∇× v = ∇(∇ · v)−4v to (2.16), we obtain:

∇(∇ · E)−4E− k2E = iωµ0Ja . (2.18)

In the absence of charge, ∇ ·D = 0. Then, from the constitutive relation
(2.10) we have ∇ ·E = −(E · ∇ε)/ε. Introducing this formula into (2.18) we
arrive at:

∇2E(r) + k2(r)E(r) +∇[
E(r)∇ε(r)

ε(r)
] = −iωµ0Ja(r) . (2.19)

Let us now consider the case of TM polarized waves, where the z com-
ponent of the magnetic field Hz is zero and E = (0, 0, Ez). Moreover, if the
electromagnetic properties of the medium do not vary in the z direction, i.e.,
∂ε(r,ω)

∂z
= 0, we can reduce the vector equation (2.19) to the scalar equation

∇2Ez(x, y) + k2(x, y)Ez(x, y) = −q(x, y) , (2.20)

for the z component of the electric field Ez. In (2.20), q(x, y) = iωµ0Ja,z(x, y)
is the source.

Equation (2.20) is known as the Helmholtz equation for the z component
of the electric field. From now on, we will use this equation to analyze the
potentials and limitations of microwave imaging for the application of early
breast cancer detection. To solve it, we impose the Sommerfeld radiation
condition that guarantees that no waves enter into our domain coming from
the infinity. In two dimensions this condition is:

lim
|x|→∞

√
|x|(∂Ez

∂|x| − ikEz) = 0 , (2.21)

where x = (x, y). Under this condition, which is represented as a suitable
boundary condition in our numerical model, the Helmhotz equation has a
unique solution.
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2.4 Dispersion in biological tissue

The interaction between biological tissue and electromagnetic radiation is
strongly influence by the inhomogeneities of the tissue (organic molecules,
variation in water content, blood flow, ...). The dependence of this interac-
tion on the frequency has been investigated both, from an empirical and a
theoretical point of view. In this section we summarize one of the most widely
used dispersion models for biological tissue: the Debye dispersion model.

As it has already been mentioned, the biological tissue does not respond
instantaneously to an applied electromagnetic field. This is modeled by the
complex permittivity 2

ε∗(ω) = ε0 ε∗r(ω) = ε0 [ε′r(ω) + iε′′r(ω)] (2.22)

that depends on frequency (this frequency dependence is referred to as the
dispersion property). In this expression the complex permittivity ε∗ (here-
after, permittivity) is expressed as the product between the vacuum permit-
tivity ε0 and the relative complex permittivity εr (hereafter, relative per-
mittivity). The real part of the relative permittivity, ε′r, is related to the
stored energy within the medium, while the imaginary part ε′′r is related to
the loss of energy within the medium which attenuates the propagation of
electromagnetic waves in the medium.

Biological materials contain a large amount of water (typically, between
70% and 80% in soft tissue as muscle, skin, fat, fiber, ...). Hence, the dielectric
properties of these materials are mainly dictated by the dielectric properties
of water. A water molecule has a permanent dipole, which has the effect
that the frequency dependence of the relative permittivity, εr(ω), and of the
conductivity, σ(ω), can be approximated by the single-pole Debye relaxation
model of the following form [43]:

εr(ω) + i
σ

ωε0

= ε∞ +
εs − ε∞
1− iωτ

+ i
σs

ωε0

, (2.23)

where ε∞ is the permittivity at the limit of very high frequency, εs is the
static permittivity, i.e., the low frequency limit, and σs is the static conduc-
tivity. Moreover, τ is the characteristic relaxation time. Since τ is similar

2We point out that the choice of sign for the imaginary part of the complex permittivity
depends on the convention regarding whether the time dependence is exp(−iωt), as it is
usual in physics, or exp(+iωt), as it is usual in engineering literature. The signs used in
this thesis correspond to those commonly used in physics literature. It is easy to convert
from one of these conventions to the others such that we will not dwell much on the small
differences in the formulas which we achieve.
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Figure 2.1: Three examples of numerical breast models used in the thesis.
Left image: a simple model consisting of only two tissue types (healthy
tissue and skin). Center image: a more complicated model with an internal
structure created artificially (the dark blue region is fibroglandular tissue and
the light blue region is fatty tissue). Right image: a breast model based on
magnetic resonance imaging (MRI) data.

for different biological tissues in the microwave regime [40], it will be treated
in this thesis (without loss of generality of the results) as a constant (τ = 7.0
ps) everywhere in the interior of the breast. Therefore, for each pixel or
region inside the numerical breast phantom used to generate the synthetic
data, there are three tissue parameters in our Debye model: ε∞, εs, and σs.

In (2.23), the quantity ∆ε = εs − ε∞ can be interpreted as the relaxation
strength and it reflects the response of the biological material as a whole, i.e.,
the coupling of all dipoles in the system that leads to the response. Although
in this thesis we will only consider Eq. (2.23) to model dispersion in tissue,
one can also take into account other molecules in the biological tissue besides
water molecules and generalize Eq. (2.23) to

εr(ω) + i
σ

ωε0

= ε∞ +
N∑

n=1

εsn − ε∞n

1− iωτn

+ i
σsn

ωε0

. (2.24)

In this equation, ε∞n , εsn , σsn and τn are the high frequency permittivity, the
low frequency permittivity, the static conductivity, and the relaxation time,
each of the n− th molecule type.

2.5 Breast models

The normal breast has a complex tree-like architecture, composed of fibrog-
landular and fatty tissues, and surrounded by the skin layer. The different
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breast structures can be divided in three groups, categorized by the adipose-
fibroglandular tissue contents [86]: 30− 70%, 50− 50% and 70− 30%. The
large majority of female breasts belong to the third category.

In this section we present the numerical breast models used in this the-
sis. The breast models provide macroscopic characteristics of various regions,
including point and structural properties. The 2D synthetic breast models
(with simulated abnormalities) that we use for testing our shape-based ap-
proach are: (i) a simple model with only two types of tissue (healthy tissue
and skin), (ii) a model with three types of tissue (fat, fibroglandular tissue
and skin) in which we choose an arbitrary shape for the fibroglandular re-
gion, and (iii) an MRI-derived breast model which incorporates published
information on the typical spatial arrangement of the different tissue types.
To generate simulated data and assess the possibilities and potentials of our
shape-based reconstruction technique, we introduce a small tumor at differ-
ent depths below the skin in these models.

Although there is significant variation in the dielectric properties of nor-
mal breast tissue due to its strong heterogeneity and its complex interior
network, an often used assumption in microwave breast imaging is that the
breast is approximately homogeneous wherein the interior healthy tissue is
represented by the same set of (average) dielectric properties, possibly (but
not always) combined with another value for the surrounding skin.

1. Under this assumption, the first numerical breast model consists of only
healthy tissue surrounded by a thin layer of skin as it is shown in the left
image of Fig. 2.1. To model the breast heterogeneity, the breast tissue
contains random variations in the dielectric properties of up to ±5%
over 4 millimeter cubes. A very similar breast model has been used,
for example, by [36, 96, 26]. We will also consider this simple model in
chapter 3 to analyze the potentials and limitations of microwave breast
cancer detection.

As we will see in the next chapter, the complex interior network of the
breast tissue is an important issue to take into account when trying to obtain
good reconstructions and to avoid false positives.For this reason, in this thesis
we intend to keep the complexity of the breast model as realistic as possible.
We will consider a 2D model with two distinct tissue types (fatty and fibrog-
landular) in the interior of the breast, in addition to the surrounding skin.
We will use two different models of this kind:

2. A model in which the fibroglandular region is created artificially (see an
example in the center image of Fig.2.1). The average values chosen for
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both the fatty and the fibroglandular tissue are taken from references
[8, 26, 81]. To model anatomical heterogeneity of the biological tissue
we add random variations of ±15% in form of fluctuations, distributed
over 4 × 4 mm2 square pixel blocks, centered in these values in both
tissue types.

3. An MRI-derived model (based on real MRI images published recently
in the literature on breast imaging) containing not only a realistic spa-
tial arrangement of the different tissue types (see an example in the
right image of Fig.2.1), but also the heterogeneities of these tissues. In
this model the MRI pixel intensities in the heterogeneous tissues are
mapped to the Debye parameters so that the MRI image is used as a
template of the heterogeneity of the breast tissue. Hence, these models
represent the high heterogeneity encountered in real situations. MRI
based breast models have been used, among others, by [104, 26, 65, 67].

Before concluding this section, we state a few observations about the
dielectric parameters in the Debye model, and the numerical implementation
of our breast models in the following.

Since τ is similar for different biological tissue types in the microwave
regime [40], it will be treated as a constant (τ = 7.0 ps) everywhere in the
breast interior. Therefore, for each pixel or region inside the numerical breast
phantom used to generate the synthetic data, there are three parameters in
our model: ε∞, εs, and σs.

In general, these three parameters need to be reconstructed for each pixel
inside the breast model from the microwave data. However, in realistic breast
models these three parameters are not completely arbitrary but correspond
to typical breast tissue values. This observation motivates us to simplify our
breast model assuming that there exists some functional relation between
these three parameters. In Table I of reference [104], for example, we observe
that the dispersion parameters of the fibroglandular tissue approximately
follow a linear relation. We can write:

ε∞ = a1 + b1εs , (2.25)

σs = a2 + b2εs , (2.26)

with a1 = 7.7, b1 = −0.067, a2 = 0.03, b2 = 0.01. Consequently, in our
models we only have to determine one parameter (εs) at each pixel or region
within the breast, and the other two parameters are then given using (2.25)-
(2.26). We note that functional relations different from (2.25)-(2.26) (i.e.
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Figure 2.2: The Sommerfeld raditation condition in the infinite domain is
represented by absorbing Perfectly Matched Layers (PML).

different from those given in [104]) can be used as well in our technique with-
out any further changes in the algorithm. From a mathematical viewpoint,
the assumption (2.25)-(2.26) introduces a constraint into the optimization
problem and leads to a subspace search strategy in the space of parameters
ε∞, εs, and σs.

2.6 Numerical Method

We have shown in the subsection 2.3 that our model can be described
mathematically by the Helmholtz equation (2.20) supplemented by the Som-
merfeld radiation condition (2.21) at infinity. In this equation the dielectrical
characteristics of different media (fatty and fibroglandular tissues, skin, tu-
mor) are represented by the squared wavenumber k. The electromagnetic
sources are characterized by the source term q. In order to obtain a unique
solution for the forward problem, the Sommerfeld radiation condition re-
stricts the solutions of the Helmholtz equation in a manner that the scattered
wave is only outgoing, and there are no waves incoming from infinity. In this
section we describe how we model and solve the Helmholtz equation taking
into account this condition numerically by introducing so-called Perfectly
Matched Layers (PML).
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2.6.1 Perfectly Matched Layers (PML).

Since the Sommerfeld radiation condition restricts the scattered wave to be-
ing only of the outgoing type, the physical formulation of the inverse problem
is done for an infinite domain. This condition is very difficult to implement
by the classical finite-differences or finite elements schemes. It is obvious,
that in a given computer implementation we typically have to simulate the
original Sommerfeld condition on a numerical grid defined on a finite com-
putational subdomain Ω. But in finite domains we need explicit boundary
conditions, for example of the Dirichlet or Neumann type, for terminating the
computational domain. These boundary conditions typically will have the
numerical effect of introducing artificially reflected waves incompatible with
the Sommerfeld radiation condition. To solve this problem, we use the tech-
nique of Perfectly Matched Layers (PML) introduced originally by Berenger
[5]. The basic idea of the PML approach is to add to the computational
domain Ω an artificial layer surrounding it. Inside this layer the conductivity
increases from the inner boundary to the outer frontier of the PML, thereby
gradually (i.e. ideally without numerical reflections) absorbing the outgoing
waves until their magnitude has decreased sufficiently. Then, at the outer
boundary of the domain augmented by the PML, any suitable boundary con-
dition can be applied without significant reflection due to the smallness of
the waves at those points. For a visualization, see Fig. 2.2.

Formally, the equation to solve inside the PML is [30]:

c(x)∇c(x)∇E(x) + k2(x)E(x) = 0. (2.27)

Here, c(x) ≡ c(ξ) =
ε0ω

ε0ω + is(ξ)
, ξ is the distance from a given point

inside the PML to its inner boundary, ω is the angular frequency, ε0 is
the dielectric permittivity of free space, and i is the imaginary unit. The
function s(ξ) 3 characterizes the absorption power inside the PML, which
increases gradually towards the exterior boundary of Ω. The wave ampli-
tude decreases towards the outer PML boundary until it reaches values close
to zero. Therefore, we can apply the homogeneous Dirichlet condition at
the exterior boundary of the PML without problems. See Fig. 2.2 for a
visualization of this general procedure.

3Note that s(ξ) resembles a conductivity term

41



2.6.2 Discretization of the Helmholtz equation

Let us consider our 2-D domain as a square grid Ω=[0, L]× [0, L]. Using the
PML approach, the mathematical model of our problem can be described as:





∂2E

∂x2
+

∂2E

∂y2
+ k2(x, y)E(x, y) = q(x, y), (x,y) ∈ Ω\PML\∂Ω

c(x)
∂

∂x

(
c(x)

∂E

∂x

)
+ c(y)

∂

∂y

(
c(y)

∂E

∂y

)
+ k2(x, y)E(x, y) = 0, (x,y) ∈PML

E(x, y) = 0, (x,y) ∈ ∂Ω
(2.28)

To solve this problem numerically, we use the second order centered finite
differences scheme in a homogeneous mesh characterized by a spatial step size
h.

The PML is chosen to have NPML layers on each side, and a suitable
choice of the absorption function s(ξ) is given by the following parametric
function

s(ξ) = sf

(
ξ

hNPLM

)p

, (2.29)

where the parameters sf and p are chosen in order to obtain minimal reflec-
tion of the waves. See the details given further below in this section.

Given a square domain of size L × Lcm2, the total number of points in
each direction x and y for our computational grid is N = L/h, and using the
usual notation xi = i× h, yi = i× h, Ei,j = E(xi, yj), we obtain the discrete
version of Eq. 2.28 as





(1− h2k2
i,j)Ei,j + Ei+1,j + Ei−1,j + Ei,j+1 + Ei,j−1 = h2qi,j

for i, j = [NPLM , N −NPML]

(c2
i,j − h2k2

i,j)Ei,j + c2
i,j(Ei+1,j + Ei−1,j + Ei,j+1 + Ei,j−1)+

4ci,j

(
(ci+1,j − ci−1,j)(Ei+1,j − Ei−1,j) + (ci,j−1 − ci,j−1)(Ei,j+1 − Ei,j−1)

)
=

= 0
for i, j = [0, NPML] and i, j = [N −NPML, L]

Ei,j = 0,
for i, j = 0 i, j = L

(2.30)

This scheme can be written in a corresponding matrix form as A
−→
E = −→q

[91]. Its solution
−→
E discribes the electric field Ei,j in each grid point of the
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Figure 2.3: Real (left image) and imaginary (right image) part of the calcu-
lated electric field calculated with our computational approach for a homoge-
neous domain surrounded by PML (with sf = 5.4 and p = 2.0) and compared
to the corresponding analytical infinite space solution (using Green’s func-
tions): -∗- line is the exact Green’s function solution, -•- line is the solution
for step h = 0.0005 m, solid line is the solution for step h = 0.001 m. We
use the frequencies 3 GHz and 5 GHz. The homogeneous domain character-
istics are static permittivity equal to 15, conductivity equal to 0.21S/m and
infinite permittivity equal to 6.66.

mesh.

In our problem, the value of the PML parameters sf and p have been
determined empirically (see also [60, 91] for related approaches) as sf = 5.4
and p = 2.0 by comparing numerically calculated waves for a homogeneous
domain surrounded by PML with analytical infinite space solutions. Some
of the results are displayed in Fig. 2.3. In more details, in order to check the
accuracy of our numerical model, we compared the exact solution, obtained
analytically, with the solution calculated by our numerical scheme (using the
so-called ’eye-ball’ norm, i.e. checking visually their agreement). Here, we
have considered a homogeneous domain, characterized by the static permit-
tivity value equal to 15, conductivity 0.21S/m and infinite permittivity 6.66.
We introduced a unitary source, emitting at frequencies 3 and 5 GHz, and
being located at 2 cm distance from the boundary of the domain. We solved
analytically the Helmholtz equation for all the points on a horizontal line in
the direction to the opposite side of Ω, using the exact solution described
by Green’s functions. For the numerical solution, we used two different step
sizes: h = 0.0005 m and h = 0.001 m. For each mesh, the numbers of PML
layers were 20 and 10, respectively. The values of the PML parameters which
were finally chosen and for which cross sections are displayed in Fig. 2.3 are
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sf = 5.4 and p = 2.0. The figure shows the real and imaginary parts of the
’analytically’ and ’numerically’ calculated electric field, which are in good
agreement with each other.
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Chapter 3

Basic inverse problem: a simple
breast model

3.1 Introduction

To understand better the potentials and limitations of our shape-based ap-
proach for microwave breast imaging, we first analyze in this chapter the
performance of our algorithm for a simple breast model. The model consists
of only one type of tissue in the interior of the breast (besides the possible
tumor) and of the surrounding skin layer, as shown in the left image of Fig.
2.1 in section 2.5. Furthermore, we will consider that the relaxation time
τ in the Debye dispersion model (2.23) is negligible, so that the complex
(relative) permittivity is given by

ε∗r(x; ω) = ε(x) + iσ(x)/ωε0 , (3.1)

where, for simplicity, we have written ε = εs, σ = σs, and x = (x, y).
Therefore, for each pixel inside the numerical breast phantom there are two
parameters in this model: ε, and σ. In this chapter, we will assume in the
inversion process that the average dielectric properties of the healthy tissue
are known. The thickness of the skin layer and its dielectric properties are
also assumed to be known. In other words, the unknowns of the inversion are
only the main characteristics of the possible tumor: its location, its shape,
and its dielectric properties.

As described in section 2.3, for modelling wave propagation we consider
the scalar Helmoltz equation

∇2u(x) + κ(x) u(x) = −q(x) (3.2)
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in a computational domain Ω. Here, we have used the notation u = Ez

and κ = k2 = ω2µ0ε0ε
∗
r. Equation (3.2) is supplemented by the standard

Sommerfeld radiation condition in two dimensions

lim
|x|→∞

√
|x|( ∂u

∂|x| − iku) = 0 . (3.3)

Equations (3.2)-(3.3) define the direct problem describing wave propagation
under the assumption that the dielectric properties of the medium, defined by
κ(x), are known. Since we use a Sommerfeld radiation condition as boundary
condition, the computational domain Ω is discretized including appropriate
absorbing boundary conditions (PML) as it is described in section 2.6.

The goal of this chapter is to verify whether a shape-based approach is
able to estimate the important key characteristics of the tumors in a stable
and reliable way. Being able to recover the dielectric properties of the tumor
could lead to a higher specificity between benign and malignant tissues, and
may lead to a new strategy for determining whether a normal tissue is in the
process of becoming malignant.

3.2 Formulation of the inverse problem

In the inverse problem, we assume that the spatial distribution of p different
sources qj (j = 1, . . . , p) is given. These sources illuminate the breast, one
after the other, with various angular frequencies ωl (l = 1, . . . , L), and the
data are gathered at the detector positions xm (m = 1, . . . , M) around the
breast. For simplicity, in our numerical experiments the detector positions
coincide with the source positions.

For each source
qj = Jjδ(x− xj) , (3.4)

where Jj is the source strength, and for each frequency ωl we define the vector
in the data space Dj = CM

G̃jl = (ũjl(x1), ũjl(x2), . . . , ũjl(xM))T ∈ Dj (3.5)

that collects the data at all the detector positions corresponding to a single
experiment with one source and one frequency. In (3.5), the fields ũ solve
(3.2)-(3.3) with the correct spatial distribution of the dielectric properties
contained in κ̃(x), i.e.,

∇2ũjl(x) + κ̃l(x) ũjl(x) = −qj , (3.6)
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with

κ̃l(x) = ω2
l µ0ε0[ε̃(x) + iσ̃(x)/ωlε0] . (3.7)

We can also define for each source qj the linear measurement operator Mj

acting on the solutions of (3.2)-(3.3) as

Mj u = (u(x1), u(x2), . . . , u(xM))T ∈ Dj, (3.8)

and write

Mj ũjl = G̃jl j = 1, . . . , p, l = 1, . . . , L . (3.9)

Finally, we gather these data sets (for all sources qj, and all frequencies ωl)
in the array

G̃ = (G̃11, G̃12, . . . , G̃pL) . (3.10)

Then, the objective of our inverse problem is to reconstruct the unknown
parameter distribution κ̃(x) in the breast interior using the measured data
G̃ as in (3.10).

We point out, again, that in the application of microwave imaging for
the early detection of small tumors in the breast we are not interested in
reconstructing a complete and detailed image of the breast interior, but to
answer the question of whether or not there is a tumor and to reconstruct
its key properties. In other words, we are interested in the localization, size
and dielectric properties of the possible tumor. To this end, we will follow a
shape-based approach that uses level set techniques as it is explained in the
next sections.

We want to introduce one more operator which will be useful in the
following. For some guess κ, and given the measured data G̃jl, the residual
operator

Rjl : P −→ Dj , Rjl[κ] = Mjujl[κ]− G̃jl (3.11)

describes the mismatch between the physically measured data G̃jl and the
data corresponding to the guess κ in the parameter space P = L2(Ω). In the
inverse problem, we ideally want to find a spatial distribution κ̂ in P such
that

Rjl[κ̂] = 0 for all j, l . (3.12)

Certainly, for the ’true’ squared complex wavenumber κ̃, (3.12) holds if the
data are in the range of Mj. Most likely this is not the case if we use real
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data, so we generalize our criterion for a solution to the inverse problem
defining the least squares cost functional

Jjl[κ] =
1

2
‖Rjl[κ]‖2

Dj
, (3.13)

and searching for a minimizer of this cost functional. This cost functional de-
fines the difference between the predicted data, i.e., the solution of the direct
problem for the predicted model (as described by κ), and the measurements
for the ’real’ model. In (3.13), ‖ ‖Dj

represents the norm in the data space
Dj for frequency j.

We recall that the goal in this chapter is to localize a possible small tumor
inside the breast, and to estimate its shape and its dielectric properties. To
this end, we will formulate the inverse problem as a shape reconstruction
problem and cast it in a form that makes use of the level set representation
of objects, as it will be explained further below. In this formulation, the
unknowns will be (i) the level set function defining the location and geometry
of the tumor, and (ii) the permittivity εi inside the detected tumor. The
other dielectric properties (those for the healthy tissue and the conductivity
σi inside the tumor) are assumed to be known.

3.3 Pixel-based gradient direction of Jjl

To solve the shape reconstruction problem we need to introduce first the
(pixel-based) gradient direction of the cost functional

Jjl[κ] =
1

2
‖Rjl[κ]‖2

Dj
=

1

2
< Rjl[κ], Rjl[κ] >Dj

. (3.14)

We assume that the residual operator (3.11) admits the expansion

Rjl[κ + δκ] = Rjl[κ] + R′
jl[κ]δκ + O(||δκ||2P ), (3.15)

where R′
jl[κ] is the linearized residual operator, which is closely related to

the ’sensitivity functions’ of the parameter profile with respect to the data
1. In these expressions, <>P and ‖ ‖P represent the inner product and the

1The (linearized) variations of model output measurements (the system response) with
respect to parameter variations can in an intuitive way be described by these sensitivity
functions. They show the (linearized) change in the data caused by a unit variation of an
individual model parameter
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norm in the parameter space, respectively. The linearized residual operator
R′

jl[κ] is defined by

R′
jl[κ] : P −→ Dj , R′

jl[κ]δκ = Mjvjl , (3.16)

where vjl solves the linearized equation

∇2vjl(x) + κ(x) vjl(x) = −δκ ujl in Ω . (3.17)

Here ujl is the solution to (3.2)-(3.3). Equation (3.17) can be derived by
perturbing (3.2) according to κ → κ + δκ and ujl → ujl + vjl and neglecting
terms of higher than linear order in δκ and vjl.

To derive an expression for the gradient of Jjl, we substitute (3.15) in
(3.14) for κ → κ + δκ and get

Jjl[κ + δκ] = Jjl[κ] + Re [< gradκJjl, δκ >P ]︸ ︷︷ ︸
δJjl

+O(||δκ||2P ) =

Jjl[κ] + Re [< R′
jl[κ]∗Rjl[κ], δκ >P ] + O(||δκ||2P ) . (3.18)

From (3.18), we can extract the gradient and write

gradκJjl[κ] = R′
jl[κ]∗Rjl[κ] . (3.19)

In these equations, R′
jl[κ]∗ is the adjoint operator of R′

jl[κ] with respect to
the spaces P and D [84]. The adjoint operator R′

jl[κ]∗ is defined by

〈R′
jl[κ]δκ, ρ〉Dj

= 〈δκ,R′
jl[κ]∗ρ〉

P
, (3.20)

where 〈 , 〉Dj
and 〈 , 〉

P
denote the inner products in the data and parameter

spaces, respectively, and ρ is a vector in the data space Dj. We assume that
the inner products in the parameter space P and in the data space Dj are
given by

〈f, g〉
Dj

=
M∑

m=1

fm ḡm ; 〈A,B〉
P

=
∫

Ω
A B̄ d~x , (3.21)

where fm = f(xm) and gm = g(xm), m = 1, . . . , M , are complex numbers
defined at the detector positions xm, and the overline means ’complex con-
jugate’.

An efficient way to compute the (pixel-based) gradient direction of Jjl

in κ is to use the adjoint formulation. The following adjoint form of the
linearized residual operator is derived in [84]. We give here the main result.
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The gradient direction of Jjl in κ is given by

gradκJjl = − 1

ω2
l ε0µ0

ujl zjl , (3.22)

where ujl solves (3.2)-(3.3), and zjl solves the following adjoint equation

∇2zjl + κlzjl =
M∑

m=1

Mjujl(xm)− G̃jl(xm) in Ω . (3.23)

Note that zjl is similar to the so-called backpropagated wave [84]. We will
use in the following this pixel-based formulation to define a shape evolution
which gradually changes a tumor shape into a descent direction until the cost
is minimized.

3.4 Level set representation of tumor shape

To evaluate the possibilities of our approach for microwave breast imaging
we artificially introduce simulated tumors of different characteristics in our
numerical experiments (see an example in the top left image of Fig. 3.1).
Hence, in this chapter, the breast interior is composed of only two types of
tissue: the healthy tissue and the tumorous tissue.

An important assumption of our model is that the healthy and tumor-
ous tissue are well distinguished, so that there is an interface between them.
Furthermore, we will assume during the reconstruction that the squared com-
plex wavenumber κ(x) = ω2µ0ε0[ε(x) + iσ(x)/ωε0] in the breast interior is
piecewise constant with only two possible values, namely one for the healthy
tissue and another for the tumor.

For modeling the shape S of the tumor we introduce a sufficiently smooth
level set function φ such that

κ(x) =

{
κi(x) inside S where φ(x) ≤ 0
κe(x) outside S where φ(x) > 0 .

(3.24)

Here, κi(x) and κe(x) describe the dielectric properties inside and outside
a tumor of shape S, respectively. The boundary of the tumor, δS, consists
of all the points where φ(x) = 0, and the tumor itself consists of all points
where φ(x) ≤ 0.
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We will indicate the dependence (3.24) of the parameters κ on the level
set function φ by

κ = κ[φ] . (3.25)

Note that there are in general many possible level set functions which can
be used for describing the same tumor, and that every continuous function
uniquely specifies a tumor by the above definitions. The main advantage
of this implicit representation of the unknown shape by a level set function
consists of its capability of automatically splitting and merging shapes during
the reconstruction, and, in its generalized form as employed here (in the first
part of our algorithm), to create and eliminate an arbitrary number of tumors
automatically at any step of the algorithm if this is required by the data.

3.5 The shape reconstruction problem

With the above definitions, we can formulate the shape reconstruction prob-
lem using level sets as follows.

Assuming that the dielectric properties of the tumor and the healthy
tissue (contained in κi and κe, respectively) are known, and given some data
G̃ as in (3.10), find a level set function φ̂ such that κ[φ̂] reproduces the data.

To solve the shape reconstruction problem for the tumor we will follow
a time evolution approach. The goal will be to find an evolution law, of the
form

dφ

dt
= f(x, t) , (3.26)

for the unknown level set function φ which reduces, and eventually mini-
mizes, the least-squares cost functional (3.13). Equation (3.26) describes the
evolution of the shape S during an artificial time t. The forcing term f(x, t)
is an unknown that needs to be determined from the data G̃ in each (arti-
ficial) time step. It will be chosen to point into some descent direction for
the cost functional (3.13). We note that only the normal component of a
velocity field is needed for moving the shape S (the tangential component
does not contribute to the shape evolution). Hence, here and in the following
the scalar f(x, t) will denote the normal component of the velocity.

In order to find such a descent direction, we formally differentiate J (κ(φ(t)))
with respect to the artificial time t and apply the chain rule. We get

dJ
dt

=
∂J
∂κ

∂κ

∂φ

dφ

dt
= Re [< gradκJ ,

∂κ

∂φ

dφ

dt
>P ] =
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Re

∫

Ω
R′[κ]∗R[κ] (κe − κi)δ(φ) f(x, t) dx , (3.27)

where Re indicates the real part of the corresponding quantity. In (3.27),
R′[κ]∗ denotes the formal adjoint of the linearized residual operator R′[κ] and
the expression R′[κ]∗R[κ] coincides with the pixel-based Frechét derivative of
the parameter-to-data mapping explained in section 3.3.

Using Eq. (3.27), we can select a descent direction for the cost functional
by choosing [31]

f1(x, t) = − Re
(
(κe − κi) R′[κ]∗R[κ]

)
for all x s.t. φ(x) = 0. (3.28)

Note that so far the descent direction (3.28) has been specified only at the
boundary shape where φ(x) = 0, so we need to determine a suitable ’exten-
sion velocity’ to solve (3.26). A trivial extension of the velocity is directly
suggested by Eq. (3.27). Using the fact that δ(φ) ≥ 0 we can define

f2(x, t) = − Re
(
(κe − κi) R′[κ]∗R[κ]

)
χφ,d(x) for all x ∈ Ω , (3.29)

where χφ,d(x) is a ’narrowband’ function that approximates δ(φ). The nar-
rowband function which is one in a small neighborhood of the shape boundary
and zero elsewhere is defined as:

χφ,d(x) =

{
1 for all x ∈ Ω s.t |x0 − x| < d and φ(x0) = 0
0 otherwise.

(3.30)
We point out that the parameter d defines the degree of the approxi-

mation. As it will be explained next, during the first stage of our shape
reconstruction algorithm we will choose to neglect the narrowband function
completely so that

f3(x, t) = − Re
(
(κe − κi) R′[κ]∗R[κ]

)
for all x ∈ Ω . (3.31)

This search direction f(x, t) has the property that it can be applied even if
there is no initial shape available when starting the algorithm (expression
(3.31) is defined and typically non-zero in the whole domain Ω). Therefore,
it allows for the creation of objects at any point in the domain, by lowering
a positive-valued level set function until its values become negative. This
property is useful for avoiding certain types of local minima which often
occur in level set formulations that are solely based on the propagation of an
already existing shape (where the counterpart to expression (3.31) is zero or
almost zero at large parts of Ω). We refer to the discussion given in [31] on
the different extension velocities used in the literature.
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Numerically discretizing (3.26) by a straightforward finite difference dis-
cretization of the time derivative with time-step δt(n) > 0 in step n, and
interpreting φ(n+1) = φ(t(n) + δt(n)) and ψ(n) = ψ(t(n)) yields the iteration
rule

φ(n+1) = φ(n) + δt(n) f (n)(x), φ(0) = φ0. (3.32)

Regularization and smoothing.

So far we have not really insisted in the fact that our level set function φ
should be sufficiently smooth inside the domain of interest. The level set
function φ defines the tumor which may be very small (milliliter sized). Our
experience has shown us the need of applying some smoothing to the updates
in each step of the algorithm. Otherwise, undesired small artifacts appear
during the reconstruction process that make it difficult the reliably detect
these small tumors.

In our regularization approach we enforce that the updates to the level set
function describing the shapes are smoothly varying to a certain degree. Let
Ψ = R

′
[κ]∗ζ be the update for some residual vector ζ ∈ Dj that takes into

account the sensitivity map of the inverse problem. Then, we can convolve
these (unregularized) updates Ψ calculated by R

′
[κ]∗ζ with a Gaussian kernel

of variance σ > 0

fσ(x) =
1

4πσ
exp

(
−|x|

2

4σ

)
(3.33)

which produces the smoothed update

Φ̂ = fσ ∗Ψ =
∫

fσ(x− y)Ψ(y)dy. (3.34)

Practically, this can be done by solving the initial value problem for the heat
equation

vt −∆v = 0 for t ∈ [0, η] (3.35)

v(0) = Ψ

on Ω with η = σ and with suitably chosen boundary conditions, and putting

Φ̂ = v(η). (3.36)

Here, the smoothing time η can be considered as a regularization parameter:
for η = 0 no regularization takes place, whereas with increasing η the updates
become increasingly smoothed. See the general discussion on regularization
schemes led in [44, 31].
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3.6 Estimation of the dielectric properties of

the tumor

In the shape reconstruction problem described in the previous section, we as-
sumed that the values corresponding to the dielectric properties of the tumor
and (an average value for) the surrounding tissue were given, even though
they might not necessarily match the real values. With these assumptions,
our algorithm finds the location and shape of a tumor that minimizes the
cost functional (3.13) for the given dielectric parameters. If these parameters
are incorrectly estimated, we expect that the shape will also be slightly in-
correct in order to compensate for this error in the model. It is now natural
to assume that, if there is any hope at all in reconstructing simultaneously
the parameter values and the shape of the tumor from the given data, the
final cost value will be the smaller the more we approach the correct values.
With this assumption we will get a clearly defined global minimum of the
cost functional for the simultaneous estimation of the correct shape and the
corresponding correct parameter value. In the following, we want to investi-
gate to what extend this statement is true, and whether it can be used for
finding the dielectric properties of the tumor simultaneously with the shape.

To this end, we will start a shape reconstruction with a low relative per-
mittivity equal to εi = 15. We recall that εi is the only unknown dielectric
property in this chapter, the other dielectric properties, κe, and σi, are as-
sumed to be known. Upon convergence of this initial step, we find the tumor
shape that minimizes the cost functional (3.13) for this parameter value, and
we store the minimum value of the cost functional achieved in this search.
We then successively increase εi by one unit δε (in our numerical simulations
we choose δε = 1) in each step, and we proceed in a similar way by comput-
ing the tumor shape that minimizes (3.13) for these new parameter values
storing the corresponding minimum cost values. We stop the search when εi

arrives at some predefined maximal value (which in our case is 65).

It is important to remark that in each of these reconstruction steps we
start the search of the shape from the final result of the previous permittivity
value. In this way, we have to perform only very few iterations of the shape
reconstruction algorithm in order to achieve convergence. This is so because
the optimal shape only changes very little when varying slightly the internal
permittivity value.

At the end of this procedure, we obtain a curve corresponding to the
achieved minimal values of the cost functional as a function of the permit-
tivities εi, see the center right image of Fig. 3.1. We select the shape and
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the dielectric properties of the tumor as the solution of the reconstruction
problem which correspond to the global minimum of this curve.

We mention that, in principle, it is also possible to address the simulta-
neous estimation of the dielectric tumor parameters together with the shape
by incorporating the tumor parameters into the set of unknowns of our evo-
lution problem and looking for descent directions for them in each step of
the algorithm. However, our experience is that this strategy does not work
well for small tumors due to the existence of many local minima. Therefore,
we have chosen to employ the above described alternative technique which is
able to find all local and global minima for these additional parameters and
the corresponding optimal shapes. In some sense, our alternative technique
is a hybrid strategy that combines a gradient technique for the shape of the
tumor and a sampling strategy for its dielectric properties.

3.7 Basic inversion algorithm

In the following we describe the numerical algorithm for detection and char-
acterization of very small objects in the breast (tumors in their early stage
of development) whose dielectric parameter values are significantly differ-
ent from those of the fluctuations in the healthy tissue. The reconstruction
algorithm consists of two stages:

• First stage. Localization of the tumor. Assuming a fixed permittivity
value ε

(0)
i = 15 inside the tumor, we find a series S(q) such that the cost

(3.13) decreases with increasing q = 0, 1, . . . (see the top right image of

Fig. 3.1). The value ε
(0)
i is chosen arbitrarily but slightly bigger than

the value for the healthy tissue. In fact, we experimentally find that
the location of the tumor is quite robust with respect to the choice of
this value and gives about the same location if we choose a different
one as long as this value is sufficiently different from the background
value, εe, of the healthy tissue. It is important to note that we assume
no initial tumor in this stage.

• Second stage. Estimation of its shape and dielectric properties. Here
we find a series of pairs (S(n), ε

(n)
i ) such that the cost (3.13) decreases

with increasing n = 0, 1, . . .. We use as a good starting guess (S(0), ε
(0)
i )

the one provided by the first stage.

We now give more details of the algorithm. For visualization of the algo-
rithm, we frequently refer to a typical test case displayed in Fig. 3.1. More
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Figure 3.1: First numerical experiment: a tumor with the true permittivity value
εi = 49. Tumor size = 63 pixels. Background fluctuations = ±10%. Noise level
of data = ±0.5%. Left column from top to bottom: reference permittivity profile
(top), reconstructed profile at the end of the first stage of the algorithm (center),
and reconstructed profile at the total minimum cost value of the second stage of
the algorithm (bottom). Right column from top to bottom: evolution of the cost
functional (3.13) during the first stage of the algorithm (top), the minimal cost
value for each permittivity value during the second stage of the algorithm (center),
and the size of the symmetric difference between the true tumor shape and the
reconstructed tumor shape for each permittivity value during the second stage of
the algorithm (bottom). The global minimum of the cost functional during this
second stage of the algorithm is achieved at the permittivity value εi = 50.

details to this test case are given, together with more numerical experiments,
in section 3.8.

We start the first stage with a constant positive-valued level set function
φ(0) > 0, which means that initially there is no shape present in the domain
and no preference is given for any initial location of a tumor. Therefore,
the first task of the algorithm will be to ’create’ one or more objects at
positions where the probability of a tumor is high. Then, we apply (3.32)
with f (1) given by (3.31). As step-size criterion for the choice of δt(1) in (3.32)
we look for the smallest choice of δt(1) which changes approximately (and
preferably not more than) 5 pixel values in the domain (notice that this step-
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size criterion does not require to run additional forward or adjoint problems
and is therefore without additional computational cost.) This means that
after applying the update (3.32) in the first step of the algorithm, a small
shape (about 5 pixels in size) will be created at a location indicated by the
sensitivity structure of the data. Then, we continue deforming this shape
by calculating iteratively new forcing terms f (n), given by (3.31), and the
corresponding new corrections of the level set function updating the latest
best guess.

Each of these new steps uses the data of 5 frequencies (between 0.5 and 2
GHz) one after the other, which yields a so-called ’sweep’ of our algorithm.
In each update we choose a step-size such that about 5 pixel values change at
this update (hitting exactly the target value of 5 pixels is sometimes difficult,
in which cases we allow for fewer or more pixels to change in these updates).
During this first stage of the inversion, 30 sweeps are applied in order to
optimize the initial shape corresponding to the parameter value εi = 15.
At the end of this initial loop, we have found an optimized shape and a
corresponding value of the least squares cost functional which are the final
result of this initial reconstruction procedure. The result of the first stage
reconstruction is displayed in the center left image of Fig. 3.1. The evolution
of the cost functional is presented in the upper left image of this figure. Note,
that we visually highlight the found shape of the tumor in these images by
artificially surrounding it with a small band of darker color. Two ’ghosts’
appear during this search.

Thereafter, we start the second stage of our algorithm whose aim is to
optimize simultaneously the parameter value inside the tumor and its shape.

During this second stage of the algorithm, we continue in an efficient
way by probing the corresponding minimal cost values achieved by the next
higher permittivity values. Accordingly, we increase the value of εi by a fixed
small step-size δε, and repeat the above search for the shape starting from
the reconstructed shape corresponding to εi = 15 but now assuming the value
εi = 15 + δε. Then we continue with the permittivity value εi = 15 + 2δε
using as starting guess the reconstructed shape for εi = 15 + δε. During
this second stage we restrict the velocity f(x, t) to a narrowband in a small
neighborhood of the tumor shape at each iteration. Hence we use a velocity
given by (3.29). Doing so, we suppress in this second stage the ability of
our level set updates to create new shapes far away from already existing
ones. Since we already have found the location(s) of the possible tumor(s) at
this stage of the algorithm, no new shapes are desired in this second stage.
Instead, we can concentrate on refining the details of the already discovered
shape(s). Moreover, in order to achieve more refined details in this second
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stage, we restrict the line search criterion to a change of at most 2 pixels
per update (again, in very few updates it might happen that it is difficult to
achieve this step-size, in which cases a different number of pixels is allowed to
change). We perform from 5 to 10 iterations for the set of 5 frequencies per
permittivity value, and we store: (i) the minimum value of the cost functional
(3.13), and (ii) the size of the ’symmetric difference’ between the real and the
reconstructed tumors (i.e., the added number of pixels which either belong
to the correct tumor but not to the reconstructed one, or belong to the
reconstructed tumor but not to the correct one). Once we have found these
values for each probing permittivity, we search for the global minimum of
the cost functional and interpret the corresponding permittivity value of the
tumor and its corresponding shape as the reconstructed estimates of tumor
characteristics. We emphasize that the size of the symmetric difference is
monitored here only in order to investigate and validate the performance of
our algorithm, but that it is not used in the reconstruction task itself (because
it would require the knowledge of the correct tumor shape). The symmetric
difference and the cost functional curves are displayed in Fig. 3.1 (center and
bottom left images, respectively). The bottom left image corresponds to the
final reconstruction result.

3.8 Numerical Experiments

In the numerical experiments presented here we investigate a 2D tomographic
configuration as shown in the top left image of Fig. 3.1. In our experimental
setup, a 12.0-cm-diameter breast, covered by a 3 mm-thick skin layer, is
immersed in a matching fluid environment. 40 ’transducers’ are equidistantly
distributed around the breast. The transducers illuminate it, one after the
other, with microwaves of different frequencies. We use here 0.5, 0.8, 1.0, 1.5
and 2.0 GHz. The average relative permittivity and conductivity values for
the breast tissue (background medium) are assumed to be εe = 9 and σe = 0.4
S/m, respectively. To simulate the heterogeneity of the normal breast tissue,
as measured by Chaudhary et al. [23] and Joines et al. [53], we add random
variations of ±10 %, distributed over 4×4 mm2 squares, around these values.
The skin layer has a permittivity value of εskin = 34 and a conductivity value
of σskin = 1 S/m. The surrounding ’matching’ fluid medium is chosen to be
slightly lossy with values εliquid = 2.5 and σliquid = 0.04 S/m.

It is one of our goals in this chapter to investigate if our algorithm is
able to specify the dielectric properties of a detected tumor together with its
location and approximate size. For this purpose, we will apply our algorithm

58



y 
(m

m
)

0 50 100 150

0

50

100

150

x (mm)

y 
(m

m
)

0 50 100 150

20

40

60

80

100

120

140

160

20 30 40 50 60
0.03

0.04

0.05

0.06

0.07

permittivity

co
st

 fu
nc

tio
na

l

20 30 40 50 60
0

10

20

30

40

50

permittivity

si
ze

 s
ym

.d
if.

Figure 3.2: Experiment 2 (a): a very small tumor. Tumor size = 23 pixels. True
permittivity value εi = 49. The tumor is located deep in the breast. The objective
of this experiment is to show the limitations of the algorithm for the simultane-
ous determination of size and parameter values of deeply located small tumors in
relation to the level of the background fluctuations in the breast. Shown are re-
constructions of the tumor assuming ±5 percent of background tissue fluctuations.
We display a block of four images, of each of which the top left shows the true
permittivity profile, the bottom left shows the final reconstruction of stage 2 of
the algorithm, the top right shows the minimum value of the cost functional for
each permittivity value during the second stage of the algorithm, and the bottom
right image shows the size of the corresponding symmetric difference between the
true shape of the tumor and the reconstructed shape for each permittivity value.

to two different types of tumors, the first one having a constant permittivity
value of εi = 36 and the second one having the value εi = 49. Both tumors
have a conductivity value of σi = 4 S/m. We consider tumors with different
sizes and positions in our numerical experiments. The combination of all
reliably estimated characteristics for a given tumor (dielectric properties,
size, shape, etc.) could help the physician in the task of characterizing a
detected tumor as ’benign’ or ’malignant’.

We solve (3.2) with a second order finite differences scheme and a perfectly
matched layer (PML) for numerically terminating the computational domain.
We use a mesh of 160 × 160 pixels. Each pixel is a square of 1 × 1 mm2.
The numerically simulated ’true’ data (corresponding to the assumed ’true’
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Figure 3.3: Experiment 2 (b): same as in Figure 3.2 but with ±10 of percent
background tissue fluctuations.

breast) is perturbed by ±0.5% white Gaussian noise. In the following we
show several results for breast imaging that illustrate the performance and
robustness of our level-set based algorithm.

Figure 3.1 shows the results for a tumor that is located 2.0 cm beneath
the surface. In this numerical setup, the tumor has a size of 63 pixels and its
’true’ permittivity value is εi = 49. The remaining values are as described
previously. The top left image of this figure shows the ’true’ permittivity
profile. During the first stage, the algorithm tries to detect whether there
is a tumor, and if so, to find its approximate location. For this, a low
permittivity value εi = 15 of the tumor is assumed (being actually quite
far from the ’true’ one εi = 49). The center image of the left column of
the figure shows the final reconstruction after 30 sweeps or iterations of this
first stage of the algorithm. Each sweep uses each of the five frequencies
exactly once. The top right image of the figure displays the evolution of
the cost functional (3.13) during these 30 iterations. It is apparent that the
cost functional (as well as the corresponding reconstructed shape) stabilizes
after about 10 iterations at a relatively low cost value. A comparison of the
reconstructed tumor with the correct one (displayed in the top left image of
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Experiment 3 (a): Experiment 3 (b):
cost assuming true tumor shape cost for reconstructed tumor shape

Figure 3.4: The graphs in the left image (Experiment 3(a)) display the values
of the cost functional for each permittivity value between εi = 15 and εi = 65
assuming that the correct shape of the true tumor is known. The graphs in the
right image (experiment 3(b)) show the corresponding calculated cost values as-
suming instead the shapes which have been reconstructed by the algorithm for
each permittivity value. The individual graphs of both images correspond to the
following situations. Graph (1) (solid): ±5 % background fluctuations, ±0.5 %
noise in the data, conductivity of surrounding skin σs = 1 S/m; graph (2) (dashed):
same as in graph (1) but with ±10 % background fluctuations; graph (3) (dotted):
same as in graph (1) but with ±2.5 % noise in the data; graph (4) (dash-dotted):
same as in graph (1) but with σs = 4 S/m; graph (5) (solid): ±10 % background
fluctuations, ±1.5 % noise in the data and σs = 4 S/m (the most ’difficult’ case
considered here). The ’flatter’ a given curve is, the more difficult it will be for the
algorithm to find the correct global minimum of the combined cost functional in
the simultaneous search for shape and permittivity value.

the figure) demonstrates that (i) the tumor has been detected reliably (ii) its
location has been estimated correctly and (iii) its size has been approximated
quite well taking into account that the permittivity value assumed for the
reconstructed tumor is incorrect and far away from the true one. Certainly,
the reconstructed size can be improved, as it will be done during the second
stage of the algorithm when searching also for the correct parameter value.

The second stage of the algorithm starts with the reconstruction of the
first stage as initial guess. It minimizes the cost functional in only few itera-
tions for a set of equidistant permittivity values between εi = 15 and εi = 65.
For demonstration purposes we used here 10 iterations for each permittivity
value, even though fewer would suffice. This minimized cost functional is
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Figure 3.5: The same situation and arrangement of images as described in Fig.
3.1, but now without a tumor present in the ’true’ breast. The objective of this
experiment is to verify whether the algorithm can reliably distinguish between the
situation with a tumor present in the ’true’ breast and that one without a tumor
present assuming random background fluctuations of about ±10 percent in the
parameters of the breast tissue and ±0.5% of noise in the data.

displayed in the center image of the right column of Fig. 3.1 as a function of
the permittivity value. Once this second stage has been completed, we look
for the global minimum of this curve and we take the corresponding permit-
tivity value and its shape as the estimates of the tumor characteristics. We
plot in the bottom left image of Fig. 3.1 our final estimated shape.

In order to monitor the quality of our reconstruction, and taking advan-
tage of the fact that in our ’simulated’ setup we actually ’know’ the true
tumor, we plot in the bottom right image of Fig. 3.1 the size of the sym-
metric difference (in number of pixels) between the reconstructed tumor and
the true tumor shapes. We observe that both curves (displayed in the cen-
ter and the bottom of the right column) show a clear minimum around the
’true’ permittivity value εi = 49. We conclude from this observation that
our algorithm has been able not only to estimate the true permittivity value
sufficiently well, but also to provide us with a good estimate of the corre-
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sponding size of its shape: only very few (of the order of five) pixels are
estimated incorrectly at this minimum value of the cost.

The second numerical experiment, whose results are displayed in Fig. 3.2,
is designed in order to investigate the limitations of the second stage of our
algorithm in the task of simultaneously estimating the parameter values of a
tumor which has been detected and correctly located during the first stage
of the algorithm. A small tumor of only 23 pixels and a permittivity value
of εi = 49 is located at 3.0 cm beneath the surface. Here the question arises
which level of noise (in particular background fluctuations) can be tolerated
in cases that the size of the tumor is very small and the tumor is located quite
deep in the breast. We display in the top four images of the Fig. 3.2, subtitled
as ’experiment 2 (a)’, the reconstruction of our algorithm assuming that
the background fluctuations are at the level of ±5% (as usual we also have
added here ±0.5% of additive noise in the data). In the top left and bottom
left images we plot the ’true’ and the reconstructed permittivity profiles,
respectively. In the top right image we plot the minimal cost value for each
permittivity, and in the bottom right image we plot the size of the symmetric
difference between true and reconstructed tumors. In Fig. 3.3, subtitled as
’experiment 2 (b)’, show the reconstruction for the same situation but with
stronger background fluctuation at the level of ±10%. The arrangement of
images in ’experiment 2 (b)’ is the same as in ’experiment 2 (a)’. We observe
that, for such a small and deeply located tumor, a reliable estimate of the
true permittivity value can still be achieved by the algorithm for the case
of ±5% background fluctuations, but that this is no longer possible if the
background fluctuations reach the level of ±10%. In the latter case, no clear
minimum of the cost functional with respect to the permittivity value can
be found during the second stage of the algorithm. Nevertheless, we want to
emphasize that in both experiments the presence of the tumor is still clearly
detected by our algorithm, along with a good estimate of its size.

A more systematic investigation of the limitations of the algorithm for
the purpose of the simultaneous reconstruction of its size and permittivity
value is displayed in Fig. 3.4. This study can also provide indications of
the limitations of more general microwave imaging systems for this purpose.
The general setup of this experiment is the same as that used in Fig. 3.1.
However, three limiting factors of the algorithm are now modified: (i) the
level of unknown background fluctuations of the parameters, (ii) the level of
noise added to the data, and (iii) the conductivity value of the skin. Note
that a high conductivity value of the skin has a ’shielding-effect’ since the
probing microwaves cannot easily penetrate into the breast.

As one part of this comparison we assume that the correct (’true’) shape
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of the tumor has been found and only the permittivity value needs to be
reconstructed. In other words, we assume the prior knowledge of the location
and exact shape of the tumor. In the upper image of Fig. 3.4 we display the
least squares mismatch (3.13) between the ’true’ (noisy) data and those data
which have been calculated assuming probing permittivity values between
εi = 15 and εi = 65. It is clear that a very flat curve of the least squares cost
(3.13) with respect to the permittivity value will make it very difficult for
the algorithm to estimate the correct permittivity value by a least squares
search. In this case, the least squares cost does not depend significantly on
the permittivity value. The exact parameter values corresponding to each of
the curves from (1) to (5) are explained in detail in the caption of the figure.
Interpreting these curves, we expect that the situations with a moderate level
of noise in the data, represented by curves (1), (2) and (4), will allow us to
reliably determine the permittivity value in addition to size and location of
the tumor. These curves show sufficient variation of the least squares cost
(3.13) with respect to the permittivity value (a ’gradient’ or ’slope’ being
sufficiently different from zero). On the other hand, the situations (3) and (5),
where the level of noise in the data has been increased, are expected to make
it hard to recover these characteristics simultaneously with the shape. In
these cases, the corresponding curves are almost flat (their slope or gradient
almost being zero) in a large neighborhood of the correct permittivity value.
From this figure, we conclude that the level of additive noise in the data is
one of the more limiting factors in the simultaneous reconstruction of shape
and permittivity value of the tumor, whereas the background fluctuations
and the conductivity value of the skin are less restrictive.

As the other part of this comparison, we show in the bottom image of
Fig. 3.4 the results when the correct shape of the tumor is not known. In
other words, the corresponding curves achieved during this second part of
the comparison take into account the simultaneous reconstruction of both
the shape and the permittivity value of the tumor in order to minimize
(3.13). These curves are those which correspond to the center right images
of Fig. 3.1 (the second stage of our reconstruction algorithm) when assuming
the modified values as used here. Comparing these curves with those of the
upper image, we see that our algorithm reproduces their general tendency
without knowing the correct shape. We observe, though, that the slopes of
the curves obtained in the lower image are in general smaller (their gradients
being closer to zero) than those of the upper image, and that the achieved
minimized cost values are also slightly smaller. This behavior is due to the
fact that an incorrectly assumed permittivity value during the reconstruction
can partly be compensated by the algorithm by producing a slightly modified
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Figure 3.6: An example of a tomographic situation where the assumed binary
model of this chapter represents an oversimplification. Here we know the
average values of dielectric properties of breast, but the algorithm is not able
to localize and characterize correctly the tumor. Left: reference profile, right:
reconstruction with the basic algorithm.

shape. Nevertheless, this ’compensation effect’ is not significant and does
not change the location of the total minimum of these curves. Therefore,
the simultaneous detection of size and permittivity value is indeed possible,
as long as the curves shown in the upper image (which assume a perfectly
reconstructed shape) have a sufficiently pronounced total minimum. Notice
also that the cost value achieved by our algorithm when probing with the
’correct’ permittivity value of εi = 49 is almost identical to the one shown in
the upper image, which indicates that our algorithm has been able to provide
a very good approximation to the true shape of the tumor.

Figure 3.5 displays the results of our algorithm in a situation where no
tumor is actually present in the breast. The arrangement of images in this
figure is the same as in Fig. 3.1. The natural question that arises here is
whether the typical but unknown background fluctuations, and the noise in
the data, might give rise to ’ghosts’ in the reconstructions which could be
interpreted as a tumor (a ’false positive’). Recall that during the first stage
of our algorithm we artificially enforce the creation of a tumor in the first
step. Since the initial guess does not contain a tumor, there is no other way
to start the search than to create a tumor. We observe, however, that during
the first stage of the algorithm this created tumor does not grow, but instead
is repeatedly removed. It might reappear at some later iteration, maybe
at some other location, but also then it is removed by following iterations.
We observe that none of these ’ghost objects’ during the iterations of the
first stage behaves stably, such that this first stage already indicates that
there is in fact no tumor present. The evolution of the cost functional (3.13)
during this stage of the algorithm shows highly erratic oscillations around the
noise level 0.05 (see the top right image of Fig. 3.5), not showing any clear
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Figure 3.7: Another example of a tomographic situation where the simple
binary model assumed in this chapter represents an oversimplification. Here
we also do not know the average values of dielectric properties of the breast,
and the algorithm is not able to localize and characterize correctly the tumor.
Left: correct profile, right: reconstruction with the basic algorithm.

tendency of reduction for a given reconstruction. The final result of this first
stage is, in this particular case, a small ’ghost’ whose size consists of very
few pixels (less than 5). As it can be seen, the first iterations of the second
stage of the algorithm removes this ’ghost tumor’ immediately, such that it
is lost permanently. The now added ’narrowband’ does not allow for the
creation of a new tumor: a shape which has been removed completely during
the second stage of the algorithm cannot be recovered. The final cost value
remains constant at the value which represents the background fluctuations
and the additional noise in the data. Moreover, the ’final shape’ is empty,
indicating correctly that there is no tumor present in the domain. Notice
that it is already apparent at the end of the first stage of the algorithm that
there is no tumor (since the cost is not clearly reduced), such that it is not
really necessary to perform the second stage if there is no tumor present.

3.9 Limitations of the basic inversion algo-

rithm

So far we have investigated the performance of our ’basic inversion algorithm’
in the situations in which the numerically simulated data are generated with
an ’almost binary’ breast model (up to the assumed fluctuations), which is
similar to the one assumed during the reconstruction. This was helpful in
order to understand the fundamental behavior of level-set based reconstruc-
tion techniques in this application. Certainly, as we have shown in section
1.2, the structure of the real breast is typically more complex and does not
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follow a strictly binary assumption. We present here two numerical exper-
iments which demonstrate that a more refined breast model is required for
the inversion in more realistic situations. Such a more refined model will be
introduced and discussed then in the next chapter 4 of this thesis.

Figures 3.6 and 3.7 show two results of our basic inversion algorithm when
applied to more realistic breast models. Here, the ’true’ data are generated
with an MRI-derived breast model for being as realistic as possible. These
reference models are displayed in the left images of the corresponding figures.
Roughly, the white and blue regions represent the fatty and fibroglandular
tissue regions, with clearly visible variations of tissue parameters inside these
regions and with a clearly visible interface between the regions of different
tissue type. The added tumors are shown in a dark blue color. The results of
our basic reconstructions, assuming a binary profile with only two possible
values (one for the healthy tissue and another for the tumor, in addition to
the known skin region), are shown in the right images of the figures. The
results show that the big difference between the basic model and the true
breast structure in these examples makes it impossible to reliably detect and
characterize the hidden tumors. The basic algorithm cannot be applied in
these situations. This motivates the development of a substantially general-
ized model as performed in the next chapter 4 of this thesis.

3.10 Summary

We have presented a novel shape based algorithm for the early detection and
characterization of breast tumors from microwave data, which we call here
the ’basic inversion algorithm’. It uses a binary model for the breast tissue
and aims at investigating general aspects of level set based inversion from
microwave data for breast screening. A level set technique has been employed
in order to free the iterative algorithm from topological restrictions. The pre-
sented algorithm consists of two parts. The goal of the first part is to detect
a tumor and to give a first estimate of its location and size. The second part
starts with the result of the first part and aims at refining the information of
location and size of the tumor while at the same time estimating its correct
permittivity value. We have shown that the task of detecting and locating
a hidden tumor by our algorithm is very stable and reliable. If there is no
tumor present in the breast, the algorithm may create ghost objects during
its first part due to the chosen line search criterion. However, these ghost
objects are small and unstable and change location during the iteration, and,
more importantly, the behavior of the cost functional during the first part
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shows clearly that these objects cannot be interpreted as true tumors. More-
over, the ’ghost objects’ disappear automatically during the first few steps
of the second part of the algorithm due to the chosen narrowband strategy.
Once a ’true’ tumor has been detected and localized, the second part of the
algorithm is able to reliably estimate its correct permittivity value simultane-
ously with its size and location. Only for very small tumors which are hidden
deep in the breast, and in the presence of strong data noise, this character-
ization task of the tumor fails (we emphasize again that the detection and
location task of the algorithm is not affected by these severe conditions). We
have shown that in this case the least squares cost functional is nearly flat in
a large neighborhood of the correct values (its ’slope’ or ’gradient’ is almost
zero) and does not show a clear global minimum at the correct permittivity
value. Different algorithms, aiming at simultaneously minimizing the least
squares cost with respect to both the permittivity value and tumor shape
by a strict gradient scheme, might trigger the stopping criterion at a prema-
ture and wrong permittivity value in these situations due to local minima.
Finally, we have shown that the breast model used in the basic algorithm
might be oversimplified when applied to real breast anatomies. This indicates
the need for a more generalized and more complex reconstruction algorithm
which is able to handle correctly and reliably real breast structures. In the
next chapter 4 we will address this issue.

3.11 Publications and presentations

The following publications and presentations have resulted from the research
described in this chapter.
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• Natalia Irishina , Miguel Moscoso y Oliver Dorn , “Detection of small
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• Irishina Natalia, Oliver Dorn and Miguel Moscoso :’A level set evolu-
tion strategy in microwave imaging for early breast cancer detection’,
’Computers and Mathematics with Applications’, v.56, n3, 2008.

• Irishina Natalia, Oliver Dorn and Miguel Moscoso: ’Level-set tech-
niques for microwave medical imaging’, 6th International Congress on
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Pages: 592-596 Published: 2008
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presented by N. Irishina) The 23rd International Review of Progress in
Applied Computational Electromagnetics ACES 2007, Verona, Italy

• Natalia Irishina , Miguel Moscoso y Oliver Dorn : Oral communication
’A shape based algorithm for microwave breast imaging’, International
Congress ’Mathematics for Industry’,ECMI 2006 ’, Madrid, Spain, July
10-14, 2006.
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Chapter 4

Structural inversion

4.1 Introduction

In this chapter, we consider breast models with more realistic internal struc-
tures. The breast models have three types of healthy tissue: fatty tissue,
fibroglandular tissue, and the surrounding skin layer, as shown in the center
and right images of Fig. 2.1 in section 2.5, and in Fig. 4.1 below. An im-
portant assumption throughout the chapter is that in all these breast models
there are well defined interfaces between the different types of tissue. Fur-
thermore, we will consider that the frequency dependence of the dielectric
properties of the breast tissue is given by the Debye model

ε∗r(x; ω) = ε∞(x) +
εs(x)− ε∞(x)

1− iωτ
+ i

σs(x)

ωε0

, (4.1)

where ε∗r is the complex relative permittivity, ε∞ is the relative permittivity
at infinite frequency, εs is the static relative permittivity, and σs is the static
conductivity. In equation (4.1), τ is the relaxation time.

As in the previous chapter, to model wave propagation in a 2D heteroge-
neous breast Ω, illuminated by TM waves, we consider the scalar Helmholtz
equation

∇2u(x) + κ(x; ω)u(x) = − q(x) in Ω , (4.2)

supplemented by the Sommerfeld boundary condition. Here, κ(x; ω) =
ω2µ0ε0ε

∗
r is the (squared) complex wavenumber, where ε∗r(x; ω) is the frequency-

dependent complex relative permittivity given by (4.1).
In this chapter, we will show that the use of microwaves, combined with an

adequate tomographic imaging strategy based on level set techniques, enables
us to detect small tumors even in those cases where the strong heterogeneity
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Figure 4.1: Synthetic MRI derived models [26]. Left column: the static permit-
tivity maps; right column: the corresponding histograms of the static permittivity
distribution.
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φ ≤ 0 φ > 0
ψ ≤ 0 tumor fibre
ψ > 0 tumor fat

Table 4.1: Representation of the fatty, fibroglandular, and tumor tissue by the
level set functions ψ and φ.

of the healthy tissue substantially obscures the tumor response in the data.
In addition, our generalized strategy provides information about the breast
tissue composition that could be used in conjuction with other tomographic
approaches. Our numerical experiments demostrate that the incorporation
of a good estimate of the internal breast structure is necessary to detect the
tumor in difficult situations, e.g. when the tumor is located deep inside the
breast or when it is small.

Even though we will reconstruct also the fatty and fibroglandular regions,
our main objective will still be to simultaneously (i) locate a tumor, (ii)
estimate its size, and (iii) characterize its dielectric properties. In order to
achieve these goals, we will introduce a four-stage reconstruction scheme
where the complexity of the unknown (in our case, the static permittivity
map εs(x)) increases at each stage of the algorithm until arriving at the
complete breast model. We will show that a significant improvement in the
accuracy of the reconstruction process is obtained in this way.

The rest of the chapter is organized as follows. In section 4.2 we gen-
eralize the level set technique for representing the shapes of the different
tissue types and we derive the evolution laws used for updating the level sets
during the reconstruction process. In section 4.3 we present our four-stage
reconstruction strategy. In section 4.4 we present the numerical experiments
which confirm the robustness of our structural approach. Finally, section 4.5
summarizes the work presented in this chapter and gives some conclusions.

4.2 Structural inversion with level sets

In this section we present our shape reconstruction method using level sets.

A crucial feature of our model (and our algorithm) is the assumption that
beneath the skin there are a well defined region containing fibroglandular
tissue with dielectric properties which are distinct from those of the fatty
tissue, and a tumor with dielectric properties distinct from those of both the
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fatty and the fibroglandular tissues.

In the level set approach of shape reconstruction, the unknown shapes of
the fibroglandular region and the tumor will be implicitly represented by two
different ’level set functions’ ψ(x) and φ(x). We introduce two sufficiently
smooth level set functions ψ and φ such that

κ(x) =





κtum(x) where φ(x) ≤ 0,
κ

fib
(x) where φ(x) > 0 and ψ(x) ≤ 0 ,

κ
fat

(x) where φ(x) > 0 and ψ(x) > 0 .
(4.3)

Here, the functions κ
fib

and κ
fat

denote the (squared) wavenumber inside
the fibroglandular and fatty tissue regions, respectively, and κtum denotes
the wavenumber inside the tumor. See also Table 1. In our approach, we will
assume that the internal permittivity profiles of the fatty and fibroglandular
regions are described by space-dependent functions, whereas those inside the
tumor are assumed to be constant for all practical purposes due to the small-
ness of the tumor. We will indicate the dependence (4.3) of the parameter κ
on the level set functions φ and ψ, by κ = κ[φ, ψ].

We recall that, acording to (4.1), κ depends on four parameters: τ , εs, ε∞
and σs. However, as it was explained in section 2.4, τ is similar for different
biological tissues in the microwave regime, so it will be considered as a known
constant (τ = 7.0 ps) in our model. Furthermore, motivated by published
experimental values from the literature we will assume that in many realistic
breast models the remaining three parameters are not completely indepen-
dent. In fact, the dispersion parameters of the fibroglandular tissue in Table I
of reference [104] approximately follow a linear functional relationship. This
observation motivates us to simplify our breast model assuming that there
exists some functional relation between these three parameters as it is ex-
pressed in (2.25)-(2.26). Consequently, in our models κ will only depend on
one independent parameter (in our case, εs). The other two parameters are
then given using (2.25)-(2.26).

Nevertheless, according to the above described model, we need to specify
from the data five different unknowns instead of just one in the classical
pixel-based approach: the two level set functions, the two space-dependent
static permittivity profiles of the fatty and fibroglandular tissues, and the
constant static permittivity value of the tumor.

In order to derive evolution laws for the individual unknowns, we write
(4.3) in the alternative form

κ(x) = κtum(1−H(φ)) + H(φ)
[
κ

fib
(1−H(ψ)) + κ

fat
H(ψ)

]
, (4.4)
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where H denotes the Heaviside step function whose value is zero for negative
arguments and one for positive arguments. In other words, we have now
κ = κ(φ, ψ, κ

fib
, κ

fat
), such that the least squares output cost functional can

be written as

J (κ(φ, ψ, κ
fib

, κ
fat

)) =
1

2
‖R(κ(φ, ψ, κ

fib
, κ

fat
))‖2 . (4.5)

Notice that we have formally not included κtum in the list of unknowns since
we will treat this important parameter with a special technique in our ap-
proach as explained further below.

Let us introduce an artificial evolution time t for the above specified
unknowns of the inverse problem. Then, the goal is to find evolution laws

dφ

dt
= f(t) ,

dψ

dt
= g(t) (4.6)

dκ
fib

dt
= h

fib
(t) ,

dκ
fat

dt
= h

fat
(t) , (4.7)

such that the cost functional J (4.5) decreases with time. Consequently, the
cost will also depend on the artificial evolution time, J = J (t), such that
we can formally calculate its time-derivative using the chain rule

dJ
dt

=
dJ
dκ

[∂κ

∂φ

dφ

dt
+

∂κ

∂ψ

dψ

dt
+

∂κ

∂κ
fib

dκ
fib

dt
+

∂κ

∂κ
fat

dκ
fat

dt

]
(4.8)

= Re

〈
R′[κ]∗R[κ] ,

∂κ

∂φ
f(t) +

∂κ

∂ψ
g(t) +

∂κ

∂κ
fib

h
fib

(t) +
∂κ

∂κ
fat

h
fat

(t)

〉

P

where Re indicates to take the real part of the following complex quantity.
As in the case of the simple breast model (see chapter 3), R′[κ]∗ is the ad-
joint of the linearized residual operator R′[κ], and the expression R′[κ]∗R[κ]
represents the Fréchet derivative of R[κ] with respect to κ. From (4.4) we
derive by straightforward formal calculation that

∂κ

∂φ
= δ(φ)

[
κ

fib
(1−H(ψ)) + κ

fat
H(ψ)− κtum

]
, (4.9)

∂κ

∂ψ
= H(φ)δ(ψ)(κ

fat
− κ

fib
), (4.10)

∂κ

∂κ
fib

= H(φ)(1−H(ψ)), (4.11)

∂κ

∂κ
fat

= H(φ)H(ψ). (4.12)
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Therefore, denoting GJ [κ] = R′[κ]∗R[κ], the following choices for the forcing
functions point into descent directions of the least squares cost (4.5)

f(t) = −C
φ
(t)Re

[
GJ [κ]

(
κ

fib
(1−H(ψ)) + (4.13)

κ
fat

H(ψ)− κtum

)]

g(t) = −C
ψ
(t)Re[GJ [κ]H(φ)(κ

fat
− κ

fib
)] (4.14)

h
fib

(t) = −C
fib

(t)Re[GJ [κ]]H(φ)(1−H(ψ)) (4.15)

h
fat

(t) = −C
fat

(t)Re[GJ [κ]]H(φ)H(ψ), (4.16)

where C
φ
, C

ψ
, C

fib
and C

fat
are positive-valued (possibly evolution-time-

dependent) constants which steer the speed of the evolution of each compo-
nent individually. These constants can also be chosen zero, in which case the
corresponding quantity does not evolve. Note that in the above formulas only
the time-dependence of the functions f(t), g(t), h

fib
(t) and h

fat
(t) has been

written explicitly (for simplicity), even though they are (for each given time)
also functions of the space variable x. Note, as well, that the forcing terms
(4.13)-(4.16) have be extended to the whole domain Ω as we did previously
in chapter 3.

Numerically discretizing the evolution laws (4.6) and (4.7) by a straight-
forward finite difference time-discretization with time-step δt(n) > 0 in step
n yields the iteration rules

φ(n+1) = φ(n) + δt(n)f (n), (4.17)

ψ(n+1) = ψ(n) + δt(n) g(n), (4.18)

κ(n+1)
fib

= κ(n)
fib

+ δt(n)h(n)
fib

, (4.19)

κ(n+1)
fat

= κ(n)
fat

+ δt(n) h(n)
fat

, (4.20)

with suitable initializations for the four quantities at the (discretized) evolu-
tion time t(0).

4.3 Four-stage reconstruction strategy

In this section we describe the four stage reconstruction algorithm for the
detection and characterization of very small tumors. In order to achieve this
goal, the structural reconstruction of fibroglandular and fatty regions and
their characterizations will be essential. The main idea of our reconstruction
strategy can be summarized as follows:
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Figure 4.2: An example for our reconstruction algorithm using one of the numer-
ical models from figure 4.1. Top row: reference static permittivity profile and the
reconstructed static permittivity map at the end of stage I (right). Center row:
reconstructions at the beginning (left) and at the end of stage II (right). Bottom
row: reconstruction at the end of stage III (left) and the final reconstruction corre-
sponding to the minimum value of the cost functional during the IV stage (right).
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tum during the search in the
fourth stage of the algorithm.

We define four stages of increasing complexity. At each new stage, the re-
constructed breast model incorporates more features of the complete breast,
so it is more refined than the reconstruction of the previous stages. In par-
ticular, we use at each stage of the algorithm the result of the preceeding
stages for defining a good starting guess.

This strategy of using in each stage submodels with increasing complexity,
until arriving at the complete breast model in the last stage, allows us to avoid
certain local minima in the underlying optimization problem. Furthermore,
it helps us in arriving at a stable and reliable reconstruction process.

A quick overview of the four stages is given next. A more detailed dis-
cussion of each stage follows further below. During this quick overview we
illustrate basic stages of the algorithm referring to Fig. 4.2 which shows the
corresponding results for a test case. The setup of this test case is described
in more details also further below.

• First stage. Pixel-based reconstruction. At the beginnig of the recon-
struction we do not assume neither an initial shape of the fibroglandular
region nor a tumor. We start the inversion by a classical pixel-based
iterative reconstruction to achieve successive improvements of an initial
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guess, which in our case is a homogeneous profile with arbitrary dielec-
tric properties. This amounts to setting the level set functions φ = 1
and ψ = 1 everywhere within the domain, and Cφ = Cψ = Cfib = 0
and Cfat > 0 in the general model presented in section 4.2. The stage
ends when the cost functional is minimized (see Fig. 4.3). A result of
such a reconstruction at the end of this stage can be seen, for example,
in the top right image of Fig. 4.2.

• Second stage. Shape-based reconstruction of the fibroglandular region.
The goal of this second stage is to find a first estimate of the fibrog-
landular region assuming that there is no tumor. We set φ = 1, and
Cφ = 0, Cψ > 0, Cfib > 0 and Cfat > 0 in the general model pre-
sented in section 4.2. The estimate of the fibroglandular region does
not need to be exact and it will be refined later. From a starting guess
(ψ(0), κ(0)

fib
, κ(0)

fat
) extracted from the result of the first stage (see the cen-

ter left image in Fig. 4.2), as will be explained below, we find a series
of (ψ(n), κ(n)

fib
, κ(n)

fat
), n = 0, 1, . . . , N2, such that the cost functional J (n)

decreases. The second stage ends when J (n) does not decrease anymore
(see Fig. 4.3). An example of a reconstruction at the end of the second
stage can be seen in the center right image of Fig. 4.2.

• Third stage. Location and shape of the tumor. Once we have obtained
a first estimate of the shapes and dielectric properties of the fibrog-
landular and fatty tissue, we proceed in a similar way to detect the
possible tumor and to approximate its location and shape. We as-
sume no initial tumor shape in this stage. Initially, we set Cφ > 0,
Cψ > 0, and Cfib = Cfat = 0 in the general model derived in sec-
tion 4.2. We use as a starting guess, (φ(0), ψ(0), κ(0)

fib
, κ(0)

fat
), the result

(φ = 1, ψ(N2), κ(N2)
fib

, κ(N2)
fat

) given by the second stage. Assuming a

fixed static permittivity value ε(0)
tum

= 35 inside the tumor, we find a
series (φ(n), ψ(n), κ(n)

fib
, κ(n)

fat
) which minimizes the cost functional J (n),

n = 0, 1, . . . , N3. The value ε(0)
tum

is chosen arbitrarily but slightly big-
ger than the values for the healthy tissue. We stop the iteration process
when the cost functional does not decrease anymore. An example of a
reconstruction at the end of this stage can be seen in the bottom left
image of Fig. 4.2. Observe that the location and size of the tumor have
been approximated very well although the assumed value of εtum is not
correct (the correct value in this example is 53).

• Fourth stage. Characterization of the tumor. In this last stage of the
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algorithm we address the probably most difficult task: to specify the
correct dielectric properties and the shape of the detected tumor. We
assume here that the shapes and internal properties of the fatty and
fibroglandular regions have already been estimated well, so we keep
(ψ, κ

fib
, κ

fat
) fixed. Therefore, C

ψ
= C

fib
= C

fat
= 0 and C

φ
> 0. To

find the optimal values (φopt, κopt
tum

) that fit the data, corresponding to
the global minimum of the cost functional, we use a hybrid strategy
combining a gradient technique for the shape of the tumor and a sam-
pling strategy for its dielectric properties. See the inset Fig. 4.3 that
shows the minimal cost values versus the static permittivity. We pick
the reconstruction corresponding to the global minimum of this curve
as our final reconstruction (shown in the bottom right image of Fig.
4.2).

It is interesting to compare the quality of our reconstruction in this test
case with the ’classical’ pixel-based reconstruction (certainly using our own
implementation) presented in the top right image. The level set strategy
provides a much clearer identification of the tumor key characteristics and a
more accurate estimate of the complex structure of the breast interior than
our pixel-based scheme. This certainly makes sense since the level set strategy
takes into account important structural information regarding typical breast
tissue, which cannot easily be incorporated in a classical pixel-based scheme.

In the following we give more details of the algorithm.

We start the inversion process by a classical pixel-based iterative ap-
proach. We assume to know the dielectrical properties and the width of the
skin layer, as well as the properties of the surrounding medium. The recon-
struction at the end of this first stage of the algorithm is shown in the upper
right image of Fig. 4.2. Observe that at the end of this stage it is difficult
or impossible to accurately estimate key characteristics of a tumor like its
position and size, or even to reliably assess the presence of the tumor.

We mention here that pixel-based schemes might be optimized to capture
microwave imaging applications, yielding possibly slightly better results than
those of our straightforward pixel-based implementation for this first stage.
Nevertheless, the ’oversmoothing effect’ of regularized pixel-based schemes
will still apply which makes it difficult (in most cases impossible) to extract
the important information directly from the results of these schemes for very
small tumors embedded in heterogenous breast tissue.
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The goal of the second stage is to estimate the shape of the fibroglandular
region assuming that there is no tumor present. To estimate the fibroglan-
dular region we first replace the reconstructed pixel pattern achieved during
the previous stage by a bimodal distribution: we only consider in this stage
healthy tissue (fat and fibroglandular) ignoring the possible presence of a
hidden tumor. To this end, we compute the mean value of the reconstructed
permittivity distribution and introduce a level set function ψ(x) which is
positive at the locations of lower permittivity value (fat) and negative at the
locations of higher permittivity value (fibre). The assigned values to κfat and
κfib are the average values in each of the corresponding fatty or fibroglandu-
lar regions. The result is a bimodal distribution defined by the introduced
level set function ψ(x). The center left image of Fig. 4.2 is an example of
such an initial guess.

We update the level set function ψ(x) using the corresponding descent
direction of the cost functional (see section 4.2 for details). In each region,
defined by ψ(x) and denoted by Dfat,fib, we update the (average) values
κfat,fib calculating the following corrections

δκfat,fib =
∫

Dfat,fib

GJ [κ](x) dx (4.21)

from the data. The result of the second stage of the algorithm is shown in
the center right image of figure 4.2.

Once we have obtained a first estimate of the shape of the fibroglandu-
lar tissue, we proceed in a similar way to detect and find the location and
shape of a possible tumor during the third stage of the algorithm. Notice
that introducing a tumor has an effect also on the optimality property of
the fibroglandular tissue region as found in the second stage, such that we
also keep evolving this region during this new stage. Now, the distribution
of κ(x) will take four values assumed to be fixed: three values indicating
healthy tissue (skin, fat, and fibroglandular), and a fourth value indicating
the tumorous tissue. The initial guesses for the first three of these values are
taken from the previous stages, whereas the fourth value (the permittivity of
the tumor) will be chosen arbitrarily but slightly bigger than the values for
fat and fibroglandular tissue.

In the third stage, we will have to evolve two level set functions simulta-
neously: φ which models the tumor, and ψ which models the fibroglandular
region. During the first steps we choose C

ψ
> 0, C

φ
> 0, and C

fib
= C

fat
= 0

in the general model case derived in the previous chapter. Upon convergence
we locate and estimate the shape of the tumor together with the correspond-
ing optimal area of the fibroglandular tissue.
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Note that, so far, we have not yet taken into account the internal structure
of fatty and fibroglandular tissue. Actually, this task can be accomplished
easily with our general formulation. If it is desired, during the evolution, we
can not only correct in each step the two level set functions, but we can also
extract from the data pixel-by-pixel updates for the internal profiles in the
fatty and fibroglandular regions. A nice feature of our adjoint based shape
reconstruction scheme using level sets is that there is no extra cost involved
for finding updates for those tissue variations in each step of the algorithm.
All what is needed is the knowledge of the pixel-based Frechét derivative
R′[κ]∗R[κ] which anyway is part of the calculation of the updates for our
level set functions. Accordingly, at the end of this third stage we will choose
C

ψ
> 0, C

φ
> 0, C

fib
> 0 and C

fat
> 0 in the general model derived in the

previous subsection. In the numerical examples in which we have chosen to
approximate the effect of these unknown internal profiles on the data, we
have initialized the search by adding arbitrary fluctuations of a typical type
into the fatty and fibroglandular regions (which certainly will not agree with
the true profile). The result of the third stage of our algorithm is presented
in the bottom left image of Fig. 4.2.

In the last stage of the algorithm we address the probably most difficult
task, namely specifying the correct dielectric properties and the shape of
the detected tumor. In the previous stages we have used an arbitrary value
for the static permittivity value for the tumor which satisfies certain criteria
but which is unlikely to be the correct value. It is clear that the correctly
estimated value will depend on the details of the other reconstructed features
of the breast, most notably on the estimated size of the tumor. Since we
have already estimated during the first three stages in a very reliable way
those features of the breast which correspond to the fatty tissue and the
fibroglandular tissue, we will concentrate in this fourth step on the correct
estimation of the tumor and its correct dielectric properties. The shape of
the fibroglandular tissue, as well as the internal properties of the fatty and
fibroglandular regions, are fixed in this stage. Therefore, C

ψ
= C

fib
= C

fat
=

0 and C
φ

> 0.
We will consider two different strategies for finding the correct values

inside the tumor(s). The first and most straightforward strategy consists
in applying a gradient-based strategy which updates in each step of the al-
gorithm (with no extra cost) the internal tumor profiles, now considered as
space dependent functions, in the same way as we have updated in stage three
the internal profiles of the fatty and fibroglandular regions. This strategy is
applied in the numerical experiment shown in figure 4.8 from subsection 4.4.1,
where two tumors with different internal static permittivity values need to
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be characterized simultaneously from the same data set.
However, this joint search of the dielectric tumor properties and the tumor

shape (and size) is an optimization problem which often suffers from many
local minima and extremely slow convergence when using such a traditional
gradient based search strategy. Moreover, it is very difficult to find good
criteria for the right balance in the step sizes for the joint updates of the
shape and the dielectric properties of the tumor when using this strategy.

We propose an alternative technique (in a certain sense a hybrid strategy
combining a gradient technique for the shape of the tumor and a sampling
strategy for its dielectric properties) for finding the global minimizer of our
cost functional in a stable and efficient way from the given data, which was
already described in the previous chapter devoted to the simplified model.
We will use this alternative technique in those cases where the result of the
third stage indicates that there is only one tumor present in the breast.
We remind the reader that in this alternative technique we assume that the
static permittivity inside the tumor is a constant value which needs to be
estimated (together with the tumor shape) from the data. We choose as
final reconstruction the shape and the permittivity value which correspond
to the global minimum of the curve which maps minimal cost values (from
the shape reconstruction for each of the probed internal static permittivity
values) against the corresponding internal static permittivity values.

4.4 Numerical experiments

In this section we have divided the numerical experiments into three groups
according to their difficulty. There are three sets of experiments in which
we gradually reduce the amount of correct ’prior’ information available for
estimating the breast tissue properties, and we decrease the signal-to-noise
ratio (SNR)1. They also correspond to the chronological order in which they
have been obtained in our research.

• Set of experiments I. In subsection 4.4.1 we assume that the aver-
age values of the dielectric properties of the healthy tissue (fat, fibre

1Signal-to-noise ratio is an electrical engineering concept, defined as the ratio of a signal
power to the noise power corrupting the signal:

SNR(dB) = 10 log10

∑Ndet

i=0 A2
i∑Ndet

i=0 (Di −Ai)2
, (4.22)

Ai is the data in the detector i for the ’real’ image, Di is the data with noise, Ndet is the
number of detectors. A lower SNR indicates a higher degree of noise in the data
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Figure 4.4: Top left image: reference permittivity profile illustrated by the dis-
persion Debye parameter εs (±15% of fluctuations). Top right: reconstructed
permittivity profile of εs. Bottom left: cross sections along the tumor location of
the reference εs (solid line) and the reconstructed εs (dashed line). Bottom right:
minimal cost value for each value of the dispersion Debye parameter εs during the
fourth stage of the algorithm.

and skin) are known. The width of the skin layer is assumed to be
known as well. Accordingly, we will choose Cfib = Cfat = 0 during
the reconstructions. The ’true’ synthetic data in these experiments
are generated numerically from the ’true’ breast model using the same
160x160 mm2 grid as used during the reconstructions. We add ±0.5%
of Gaussian noise to the obtained data, so the resulting SNR is 50 dB.
The breast model we consider in these experiments corresponds to the
model shown in the center image of Fig. 2.1. It has a well differentiated
fibroglandular region with average static permittivity value εs = 22.6
(the corresponding values of ε∞ and σs are 6.1 and 0.3 S/m, respec-
tively), and fatty tissue around the fibroglandular region with average
static permittivity εs = 10 (ε∞ = 6, 9 and σs = 0.15 S/m). The aver-
age values chosen for both the fatty and the fibroglandular tissue are
taken from references [8, 104, 26, 81]. To model the anatomical hetero-
geneities of the biological tissue we add random variations of ±15% in
form of fluctuations, distributed over 4× 4 mm2 squares, around these
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values in both tissue types. This presumably covers realistic fluctua-
tions in real human breast [23, 99, 53]. The dilectric parameters of the
skin are: εs = 34, ε∞ = 4 and σs = 1.1 S/m.

• Set of experiments II. In subsection 4.4.2 we do not assume prior
knowledge of the average dielectric properties of the fatty and fibrog-
landular tissue. However, the properties of the skin layer (dielectric
properties and width) are still assumed to be known. Now the ’true’
synthetic data are obtained using a finer grid (320x320 mm2) than the
160x160 mm2 grid used during the inversion process, so the ’effective’
SNR (which incorporates this difference in the grid sizes as ’additional
noise’) decreases significantly. The resulting effective SNR is 26 dB.
In this set of experiments we used MRI-derived breast models that
offer a more complex internal structure and a more realistic hetero-
geneity of the tissue. These models are shown in Fig. 4.1 together
with their histograms that display the range and distributions of the
static permittivities. The average values of the fibroglandular regions
are: εfiber

s = 23, 19 (top), εfiber
s = 24, 1 (middle), and εfiber

s = 19, 33
(bottom). The average values of the fat regions are: εfat

s = 8, 20 (top),
εfat
s = 11, 65 (middle), and εfat

s = 9, 20 (bottom). The dielectric pa-
rameters of skin are: εs = 37, ε∞ = 4, and σs = 1.1 S/m.

• Set of experiments III. In subsection 4.4.3 we further increase the
difficulty of the reconstructions by assuming no ’prior’ knowledge about
the properties of any tissue type contained in the breast. In particular,
the properties of the skin layer are also unknown. As in Set of exper-
iments II, we use MRI-derived breast models and different grids for
generating the synthetic data and for the reconstruction task.

In all the cases, we introduce a small diameter tumor at different depths
below the skin to generate the sythetic data. The considered tumors have
different sizes (the diameters range from 3 to 8 mm) and static permittivities
εs (which may indicate the grade of malignancy of the tumor) which both
need to be reconstructed from the data. As typical values for the remaining
electromagnetic parameters inside the tumors we apply ε∞ = 3.9 and σs = 0.7
S/m. Since the sizes of the tumors, sought in our numerical simulations,
are at the resolution limit of typical microwave imaging strategies, we will
neglect here their possible internal structure and assume that their internal
dielectric parameters are spatially independent when creating simulated data.
The 12.0-cm-diameter breast, immersed in a slightly lossy environment with
dielectric parameters εliquid = 2.5 and σliquid = 0.04 S/m, is surrounded by
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40 equidistantly distributed electromagnetic ’transducers’ that illuminate it,
one after the other, with microwaves of different frequencies.

4.4.1 Set of experiments I

The breast model of the numerical example shown in Fig. 4.4 is composed
of a compact region of fibroglandular tissue with εfib

s = 16.3, and a well
differentiated surrounding layer of fatty tissue with εfat

s = 10. The shape of
the fibroglandular region and the small heterogeneities of the breast tissue
are created artificially. This model is not derived from an MRI image. A
small tumor of εfib

s = 40 is inserted in the fatty tissue not very far from
the external boundary of the breast. Therefore, this is an easy example to
study the performance of the algorithm. Besides, we assume a complete and
correct knowledge of the properties of the skin layer. This figure shows that
(i) the tumor has been detected reliably, (ii) its location has been estimated
correctly and (iii) its size and dielectric parameters have been approximated
very well. In addition, the reconstruction of the shape of the fibroglandular
region was successful.

An assumption used in the previous example was that the parameter
values of the skin layer were known. In figure 4.5, we examine the robustness
of our algorithm when these parameters are chosen incorrectly. For this
numerical experiment, we compute the ’true’ data using a 2.0 mm-thick skin
layer with εs, ε∞ and σs, equal to 37, 4.0 and 1.1 S/m, respectively. However,
for the reconstruction we assumed a 1.5 mm-thick skin layer with εs, ε∞ and
σs, equal to 39, 4.1 and 1.0 S/m, respectively. Hence, the assumed parameters
are not correct and represent a modeling error. In this experiment, the tumor
is located closer to the center of the 2D coronal plane of the breast. Its static
permittivity value is εtum

s = 45. Also here the figure shows that our algorithm
is able to identify the tumor and provides information on its size and dielectric
properties (the estimated static permittivity is 42).

In figure 4.6, we investigate the sensitivity of our algorithm to the number
of antennas. In this numerical example we use fewer antennas (20 instead of
40), and the breast model has a higher average static permittivity value in
the fibroglandular region of εs = 22.6. This is a typical static permittivity
value of the fibroglandular tissue in denser breast [104], [81]. The static
permittivity of the tumor is now εtum

s = 50. As it can be seen in figure 4.6,
the tumor is detected and well located. However, the static permittivity value
inside the tumor is in this case underestimated (here 40). Other numerical
experiments with 40 antennas (and the same breast model parameters), not
shown here, provided a better estimate of the tumor permittivity value (47).
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Figure 4.5: The probe of the robustness of the detection of a hidden tumor of size
6× 8 mm2 from slightly incorrect assumed skin values during the reconstruction.
Top left image: reference permittivity profile illustrated by the dispersion Debye
parameter εs. Top right: reconstructed permittivity profile of εs. Bottom left:
cross sections along the tumor location of the reference εs (solid line) and the
reconstructed εs (dashed line). Bottom right: minimal cost value for each value of
the dispersion Debye parameter εs during the fourth stage of the algorithm.

Next, we consider in the experiment displayed in figure 4.7 a situation
where no tumor is actually present in a breast with the same set of dielectric
parameters as in figure 4.5. The natural question that arises here is whether
the typical but unknown background fluctuations, and the noise in the data,
might give rise to ’ghosts’ in the reconstructions which could be interpreted
as a tumor (a ’false positive’). Recall that at the third stage of our algorithm
we artificially enforce the creation of a tumor in the first step which evolves
during the succeeding updates, see the small spot at the lower right border
of the fibroglandular region in the top right image of the figure. We observe,
however, that the final reconstruction at the bottom left of figure 4.7 indicates
that this ’tumor candidate’ actually has an estimated static permittivity
value of εtum

s = 19 which is very close to the fibroglandular tissue value of
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Figure 4.6: The dependence of the reconstruction on the number of antennas.
Fewer antennas (20 instead of 40) are used here for finding a tumor located within
a denser fibroglandular tissue (εtum

s = 50, εfib
s = 22.6, εfat

s = 10, and ±15%
fluctuations). The results are displayed in a panel of four figures as figure 4.5. The
color map corresponds to the colorbar shown in figure 4.5.

this experiment (16.3) and far from a typical tumor value. Therefore, the
algorithm correctly indicates that no tumor is present in the breast.

Now we investigate a situation where more than one tumor are present
with different internal static permittivity values. We will apply a gradient-
based reconstruction technique during stage IV of the algorithm in those cases
where the result of stage III indicates that there are more than one tumor
in the breast. This allows us to reconstruct individual static permittivity
values for these two tumors. In more details, the set of parameters of the
breast model used in the experiment of figure 4.8 is the same as in figure
4.5. There are two tumors present in the breast, the first one being located
4 cm beneath the skin (εtum

s = 35), and the second one being located 4.2 cm
beneath the skin (εtum

s = 55). We observe that both tumors are well located
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Figure 4.7: The behavior of the algorithm if no tumor is present in the breast.
The breast has values εfib

s = 16.3, εfat
s = 10, and ±15% fluctuations. The figure

shows the reference permittivity profile (top left), the reconstructed profile at the
end of the third stage of the algorithm (top right), the reconstructed profile at the
end of the algorithm (bottom left), and the minimal values of the cost functional
vs. εtum

s (bottom right). The color map corresponds to the colorbar shown in
figure 4.5.
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Figure 4.8: The behavior of the algorithm if two different tumors are present in
the fibroglandular region tissue (εtum1

s = 35, εtum2
s = 55, εfib

s = 16.3, εfat
s = 10, and

±15% fluctuations). The top left image shows the reference permittivity profile
illustrated by the dispersion Debye parameter εs. Top right image: reconstructed
permittivity profile εs at the end of the third stage of the algorithm. Bottom left:
final reconstructed profile. Bottom right: cross sections along the tumor location
(y= 91 mm) of the reference εs (solid line) and the reconstructed εs (dashed line).
Reconstructed values of the static permittivity are εtum

1 = 27 and εtum
2 = 34. The

color map corresponds to the colorbar shown in Fig. 4.5.
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Figure 4.9: Numerical experiment for a case of a less dense breast with fibrog-
landular tissue intermixed with fat and a tumor of permittivity value εtumor

st = 50.
First row: reference permittivity profile (left) and the reconstructed pixel by pixel
profile at the end of the first stage of the algorithm (right). Second row: initial
guess (left) and final reconstruction at the end of the second stage (right) show-
ing a good estimate of the fibroglandular shape. Bottom row: the reconstruction
result at the end of the third stage (left) and at the end of our algorithm (right).

and their sizes are well estimated. However, the discrimination between these
two tumors is only qualitative (which, as mentioned in section 4.3, might be
due to the existence of local minima in the gradient search for these values).
The reconstructed values of the static permittivity are here εtum

1 = 27 and
εtum
2 = 34.

4.4.2 Set of experiments II

In the following experiments we do not assume that the average dielectric
properties of the fatty and fibroglandular tissues are known. We only assume
that the properties of the surrounding skin layer are known. We emphasize
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Figure 4.10: Numerical experiment for the breast with a large fibroglandular
tissue intermixed with fat and a tumor of permittivity value εtumor

st = 48. First
row: reference permittivity profile (left), the pixel by pixel reconstructed image
(center) and the reconstructed profile at the end of the algorithm (right). Second
row: a cross section through the correct tumor position (dashed line), for the pixel
by pixel reconstructed image (solid line) and the reconstructed image (dashed-
dotted line), for constant x coordinate.

that the breast models used in this set of experiments mimic the complex
network of glandular, connective and fatty tissue in the breast interior. The
first numerical experiment has already been discussed during the description
of the algorithm (see again Fig. 4.2). The results are displayed in a panel of
six images: the top left image is the reference static permittivity distribution;
the top right image is the result of the pixel by pixel reconstruction during
the first stage of the algorithm; the center left image is the initial guess for
the second stage; the center right image is the reconstruction at the end of
the second stage; the bottom left image is the reconstruction at the end of
the third stage; the bottom right image is the final reconstruction. This
figure shows that (i) the tumor has been detected reliably, (ii) its location
has been estimated correctly and (iii) its size and dielectric parameters have
been approximated well. The static permittivity εtum

s of the inserted 8 mm-
diameter tumor is 53 while the reconstructed value is 50. In addition, the
reconstruction of the shape of the fibroglandular region was successful.

Figure 4.9 displays the results for another numerical experiment in which
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the fibroglandular tissue is not compact but scattered within the breast inte-
rior. The breast contains predominantly fat intermixed with fibroglandular
tissue. The inserted tumor has a static permittivity εtum

s = 50. The arrange-
ment of the images is the same as in Fig. 4.2. Although this case represents
a more challenging reconstruction due to the complex shape of the fibroglan-
dular region, the results show that the algorithm is able not only to detect
and locate the presence of a small tumor, but also to provide a good estimate
of its size and permittivity value (here 48).

In Fig. 4.10 we compare in more detail the reconstructions obtained with
a ’classical’ pixel-based strategy (upper row, center image) and with our
level set based strategy (upper row, right image). The reference map of tis-
sue structure (upper row, left image) contains predominantly fibroglandular
tissue and a well differentiated layer of surrounding fatty tissue. The inserted
tumor has a static permittivity value εtum

s = 48. The lower row of Fig. 4.10
shows the cross sections through the three profiles as indicated in the first
row (green solid line: pixel by pixel reconstruction, blue dashed-dotted line:
our reconstruction, and red dashed line: real image). It is apparent that in
this case, where the tumor is small and is located quite deep, the ’classical’
pixel-based reconstruction could not detect reliably the presence of the tu-
mor. On the other hand, we sucessfully accomplished the task of detecting,
localizing and characterizing this small tumor. In addition, the reconstruc-
tion of the shapes of the healthy tissues and the estimation of their dispersion
parameters was also successful.

In Fig. 4.11 we assess the potential of using our algorithm to reconstruct a
tumor of irregular shape. The results of the study is displayed as in Fig. 4.10.
This figure shows that, when the tumor is big enough (a 10-mm-diameter
tumor in this case), the algorithm is able not only to locate the tumor well
and to characterize its dielectric properties, but also to approximate quite
well its irregular shape. We note that since the tumor is bigger in this
example, one can now guess the presence of the tumor in the ’classical’ pixel-
based reconstruction shown in the center image of the upper row. However,
the quality of our reconstruction, shown in the right image, is superior to the
pixel-by-pixel reconstruction.

4.4.3 Set of experiments III

We show here an example of a complete reconstruction of a breast interior
including the detection and characterization of a small tumor. Now, we do
not assume any ’prior’ knowledge about the interior of the breast (except of
the structural information that the breast consists of skin, fat, fiber, glands
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Figure 4.11: Numerical experiment for testing the capacity of the algorithm to
approximate the irregular shape of the tumor with bigger size. Tumor’s permittiv-
ity value is εtumor

st = 50. First row: reference permittivity profile (left), the pixel
by pixel reconstructed image (center) and the reconstructed profile at the end of
the algorithm (right). Second row: a cross section through the correct tumor po-
sition (dashed line), for the pixel by pixel reconstructed image (solid line) and the
reconstructed image (dashed-dotted line), for constant x coordinate.
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and a possible tumor). Neither the details of the tissue structure nor the
dielectric properties of the breast tissue are assumed to be known. Thus,
in contrast to the previous experiments, the characteristics of the skin layer
have to be reconstructed from the boundary data as well. In order to address
this even more complex problem, we introduce two intermediate steps in our
algorithm that will be called pre-stage 1 and pre-stage 2.

The pre-stage 1 is applied at the beginning of the algorithm (before the
first stage). Assuming a fixed width of the skin layer, it is mainly devoted to
the retrieval of the static permittivity of the skin, contained in κin = κskin. In
the numerical example shown next, we fixed the width of the skin layer to 0.5
mm (typical values range from 0.5 to 3 mm). Since the data gathered on the
boundary is also sensitive to the dielectric properties of the breast interior
we simultaneously search for κin and κout = κinterior. Thus, we start the
algorithm with a fixed skin width and an initial piecewise profile as shown in
the left upper image of Fig. 4.12. The initial values of the static permittivity
inside and outside the skin layer, which regions are denoted by Din and Dout

respectively, are chosen arbitrarily but within the range of the values reported
in the literature (in our case we choose εs,in = 30 and εs,out = 8). To correct
these values we apply a similar formula as (4.21). We extract the following
updates

δκin,out =
∫

Din,out

GJ [κ](x) dx (4.23)

from the boundary data. These updates are successively applied inside (Din)
and outside (Dout) the skin layer until the cost functional is minimized. Since
higher frequencies penetrate less in the breast than lower frequencies, we use
the 5 GHz data to update the static permittivity value inside the skin layer,
and the 1 GHz data to update the value in the breast interior. The result of
the pre-stage 1 is shown in the right upper image of Fig. 4.12.

Note that, so far, we have only estimated the values of the dielectric
properties inside and outside the skin layer. The width of the skin layer has
remained fixed. We postpone this search to the beginning of the third stage
of our algorithm, right after the second stage, once we have found a good
estimate of the shape of the fibroglandular region.

In pre-stage 2 we look for the properties of the skin layer (κskin and the
width γ) along with better estimates of the remaining properties of the breast
interior (except the possibility of a tumor) that would be affected for changes
in κskin and γ. In other words, the unknows during the pre-stage 2 are: ψ,
κfib, κfat, κskin, and γ. As in pre-stage 1 we use the 5 GHz data to estimate
the properties of the skin layer (κskin and γ), and the lower frequencies (from
1 to 4 GHz) to estimate the properties in the interior (ψ, κfib, and κfat). We
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Figure 4.12: Example of two intermediate steps for the skin reconstruction. First
row: arbitrary initial guess for domain and skin layer (left); updated domain and
skin after the first step(right). Second row: static permittivity map as the result
of the second stage of reconstruction(left) and updated reconstruction after the
second step (right) as initial guess for the third stage.
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Figure 4.13: Numerical experiment with skin parameters reconstruction. The
sequence of images is the same as in 4.2. ’Real’static permittivity of tumor is
εtum
s = 48 and the reconstructed is 50 .
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apply (4.23) to update κskin, (4.21) to update κfib and κfat, and (4.18) to
update ψ. Since, according to the literature, the skin width is restricted to
0.5 < γ < 3 mm and our numerical resolution is about 0.5 mm, we apply
a sampling strategy to find its optimal value. The bottom row of Fig. 4.12
shows the permittivity profile before (left image) and after (right) this pre-
stage.

We note, that the computational cost of these two pre-stages is low. Only
a few iterations are needed due to a quick convergence, and the estimates of
the skin properties are generally very good. In this case, the reconstructed
and real permittivities in the skin layer are εskin

s = 37, and the reconstructed
and the ’real’ average skin width is 2 mm.

Figure 4.13 displays the complete reconstruction process of the static
permittivity map for a case in which we insert a small tumor of permittivity
εtum
s = 48 in the fibroglandular region, as it is shown in the top left image.

The arrangement of the images is the same as in Fig. 4.2. It is remarkable
that, even in this case in which all the parameters of the breast interior includ-
ing the non-uniform distribution of the dielectric properties of the healthy
tissues (skin, fat and fibroglandular) and their shapes are reconstructed di-
rectly from the data, our algorithm is able to recover the main features of
the breast interior, including the detection, localization and characterization
of the small tumor.

Finally, a more detailed comparison between a ’classical’ pixel-based re-
construction and our four-stage algorithm is presented in Fig. 4.14. Although
the pixel-based approach gives rise to a good reconstruction of the fibrog-
landular region (see the center image of the top row), there is no indication
of the presence of the tumor in that image. The cross sections shown in the
bottom row show clearly the difference between the estimates obtained from
these two approaches.

4.5 Summary

We have presented a novel shape based algorithm for the early detection and
characterization of breast tumors from microwave data. A level set technique
has been employed in order to free the iterative algorithm from topological
restrictions. We have shown that the task of detecting and locating a hid-
den tumor by our algorithm is very stable and reliable. Once a tumor has
been detected and localized, the algorithm is also able to estimate its size
and correct permittivity value. Therefore, given certain knowledge of static
permittivity values for different classes of tumors (such as benign or malig-
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Figure 4.14: Comparison between the pixel by pixel reconstruction profile and
the result by four-stages reconstruction, assuming unknown all the interior dielec-
tric parameters of breast (from figure4.13). Tumor’s static permittivity value is
εtumor
st = 48. First row: reference permittivity profile (left), the pixel by pixel

reconstructed image (center) and the reconstructed profile at the end of the al-
gorithm (right). Second row: a cross section through the correct tumor position
(dashed line), for the pixel by pixel reconstructed image (solid line) and the re-
constructed image (dashed-dotted line), for constant x coordinate.
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nant tumors), our algorithm can provide reliable information which helps
distinguishing between these different classes. The combination of all reli-
ably estimated characteristics for a given tumor (dielectric properties, size,
shape, etc.) could help the physician in the task of characterizing a detected
tumor as ’benign’ or ’malignant’.

The reconstructed spatial distributions in the microwave images do not
exactly match the true ones, yet the estimations are very good in all cases.
We believe that this study represents an important step in the development
of shape based tomographic imaging strategies. Certainly, not all questions
could be answered in the framework of this thesis. One issue which remains
open is for example the validation against clinical microwave data to de-
termine the potential and limitations of our algorithm in real applications.
We mention, though, that we have tested our algorithm on the experimental
’Marseille data set’ [4] with good success. The results of this study are shown
in the next chapter 5.

Overall, this study shows the potential of our shape based reconstruction
approaches for early breast cancer detection, given that the images were re-
constructed without a priori information of the anatomical structure of the
breast by means of an iterative algorithm of several stages. In particular,
we have shown the inherent benefit of a complete structural inversion for de-
tecting small tumors from microwave data compared to the more traditional
pixel-based approach.

4.6 Publications and presentations

The following publications and presentations have resulted from the research
described in this chapter.

Publications

• Natalia irishina,Miguel Moscoso and Oliver Dorn,’ Microwave Imaging
for Early Breast Cancer Detection Using a Shape-based Strategy, IEEE
Trans.Biomed.Eng. (manuscript No. TBME-00362-2008.R2, accepted
for publication ), 2008.

Presentations

• 2007, October 15-20 Level set techniques for structural inversion in
medical imaging, interdisciplinary workshop on mathematical meth-
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ods in biomedical imaging and intensity-modulated radiation therapy
(IMRT), Centro de Ricerca Matematica Ennio de Giorgi, Pisa, Italy.

• 2008, September 8-13, lecture 4, CIME summer school on Level Set and
PDE based Reconstruction Methods: Applications to Inverse Problems
and Image Processing, Cetraro (Cosenza), Italy.

• 2008, June 23 A level set technique for structural inversion in inverse,
Mathematical Models in Life Sciences & Engineering conference, MIMS
Workshop on New Directions in Analytical and Numerical Methods for
Forward and Inverse Wave Scattering, University of Manchester, UK.
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Chapter 5

Inversion against real data

5.1 Introduction

The inversion against real boundary data can be considered as an important
test for the quality of numerical algorithms, even if these have been tested
successfully already on simulated data. Simulated data have the danger of
favouring the so-called ’inverse crime’, which means that the model of simu-
lating the data has the same complexity as the model used in the inversion.
There are several ’tricks’ which can be used in data simulation for avoiding
this inverse crime (e.g. creating data with a different grid size than the one
used for the reconstruction), but in the end a reconstruction algorithm needs
to show that it works reliably with experimental data as well. Certainly, it
cannot be expected that data from poorly performed physical experiments
with unknown experimental errors can lead to good reconstructions. How-
ever, there have been published in the literature high quality experimental
data from controlled setups which can be used for testing numerical algo-
rithms. We will test our algorithm in this chapter against one of these data
obtained from the data-set of the Marseille group at Institute Fresnel [4].

In this chapter we present the results of the reconstructions from real
data using our novel numerical algorithm for breast cancer detection 4.3.
Here we do not need to reconstruct the internal structure of the breast such
that the basic model introduced in chapter 3 will be sufficient for processing
the data. Certainly, the reconstruction problem is in principle similar to the
tumor detection problem. with a slightly lower degree of complexity. For the
reconstructions of this chapter we use the mathematical techniques described
in chapter 3.

The testing of the algorithm is done by the inversion of the electromag-
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Figure 5.1: Anechoic camera in Institut Fresnel for generating the real data
[4].

netic field scattered from cylindrical objects, as measured by the Institut
Fresnel (http://www.loe.u-3mrs.fr/rf.htm). The experimental data were ob-
tained in the anechoic chamber of the center Commun de Ressourses Micro-
ondes at Marseille, France (see figure 5.1). All details of the free-space camera
used in the recovery from experimental data can be found in [4] and [42].

This chapter is organized as follows. In the following subsections 5.1.1
and 5.1.2 we describe the two setups used for gathering the experimental
data. Section 5.2 describes the numerical model which is used for the recon-
structions, and the calibration details. In section 5.3, we present the results
of our reconstructions for both setups. Section 5.4 gives some conclusions.

5.1.1 First experimental setup

In figure 5.2 the scheme of the first experimental setup is shown. This setup
corresponds to the experiments 1 and 2 described below, and consists of an
anechoic chamber which is 14.5 m long, 6.50 m wide and 6.50 m high. The
emitter is placed at a fixed position on a circular rail, while a receiver is ro-
tating with an arm placed at the domain center. The emitter illuminates the
targets from different positions by TM or TE waves, depending on whether
the electric or magnetic field is parallel to the cylinder axis, respectively.
The range of the frequencies is between 1 and 8 GHz. The receiving an-
tennas are positioned on a circle of radius d = 0.76 m, and the emitter is
located at a distance d = 0.72 m from the center of camera. The targets in all
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Figure 5.2: Scheme of the first experimental setup for the reconstruction
from real data [4].

the experiments are designed to be very long in the direction perpendicular
to the observation plane where the antennas are located. Therefore, a 2D
dimensional configuration can be used for the reconstruction.

In the left image of Fig. 5.4, we illustrate the dielectrical reference profile
for the first experimental setup. We choose the numerical domain to be
a square of size 1.8 m x 1.8 m, such that all emitters and receivers are
captured by the setup. We mention that our FDFD discretization is not
optimal for this setup, due to the relatively large antenna-scatterer distance.
Nevertheless, it can be applied as we show in this section. The size of the
pixels in our setup is 0.01 m. The computational domain includes 8 PML at
the edges in order to avoid numerical reflections from the artifial boundaries.
The targets to be reconstructed are two long filled plastic cylinders with
circular cross sections of radius r = 0.015 m and permittivity εi = 3.0± 0.3.

The data for the TM illumination at 1 and 2 GHz, corresponding to the
36 emitter positions and 49 receiver positions used in our reconstructions,
are obtained from the datafile twodielTM-8f.exp [4].

5.1.2 Second experimental setup

In figure 5.3 we present the second experimental setup. It corresponds to
the experiments 3 and 4 shown below. The same faradized anechoic chamber
as in the first experimental setup is used in these experiments (see [42] for
more details), but the dimension of the circular rail used to generate the
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Figure 5.3: Scheme of the second experimental setup for the reconstruction
from real data [42].

data is different and the emitting antenna can rotate around the object. The
emitting and the receiving antennas are now placed at a distance of d = 1.67
from the the center of the domain. The receiver rotates around the center
of the domain gathering data at 241 equidistant positions for each of the 8
emitter positions. In these experiments, the frequency of the illuminating
waves ranges from 2 to 10 GHz.

In the left image of Fig. 5.6 we illustrate the configuration of this sec-
ond experimental setup. Now, the targets to be reconstructed are a 8-cm-
diameter foam cylinder (with permittivity εi1 = 1.45 ± 0.15) and a 3.1-cm-
diameter plastic cylinder (with permittivity εi2 = 3.0± 0.3) embedded inside
the foam cylinder. See the zoom at the top right corner of the left image of
Fig. 5.6. We choose the size of the square domain being equal to 3.62 m x
3.62 m.

The data for the TM illumination at 2 GHz used in our reconstructions,
corresponding to 8 emitter positions and 81 receiver positions, are obtained
from the datafile FoamDielIntTM [42].

5.2 Numerical model and calibration

As mentioned, the targets in all these experiments are designed very long in
the direction perpendicular to the plane in which the antennas are located,
such that a 2D approximation can be used for the reconstruction. Since we
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Figure 5.4: First reconstruction: two plastic cylinders of diameter 3.0 cm,
separated 9.0 cm from each other. The permittivity values of the cylinders are
assumed to be known. Left: ’true’ permittivity profile. Right: reconstructed
profile. The zooms at the upper right corners show the areas of interest.

only consider TM polarized illumination, the scalar Helmholtz equation

∇2u + κ(x)u = − q(x) in Ω, (5.1)

with the standard Sommerfeld radiation condition approximates well the
non-zero component of the electric field u. Here, κ(x) is the complex wave

number given by κ(x) = ω2µ0ε0

[
εr(x) + iσ(x)

ωε0

]
, where εr(x) is the relative

permittivity and σ(x) is the conductivity. q is the source.

Since in our model we use (unitary) point sources to generate the incident
fields, and in the experiments these fields are generated by horn antennas,
we first need to calculate the calibration factor for each frequency and source
position in order to compare the simulated and the ’true’ measured fields. To
find the calibration factor we compute the ratio between these fields, and we
multiply the simulated data by this factor [6]. It is obvious that this crude
approximation of the highly directive antennas by a uniformly radiating line
source reduces the quality of the reconstructions. We believe that better
reconstructions would be possible with our reconstruction technique when
using a more adapted numerical forward solver. Here, we have to assume
that this modelling error adds to the data error as additional modelling noise.
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5.3 Reconstruction results

5.3.1 First experimental setup

In the first two experiments our purpose is to detect and estimate the key
properties of a pair of plastic cylinders within the medium. The number of
cylinders is not known a priori in our reconstructions. In the first experiment,
the average permittivity of the two cylinders is assumed to be known (εi = 3),
while in the second experiment it is unknown. The results are shown in
Fig. 5.4 and Fig. 5.5, respectively.

Since in the first experiment we assume prior information about the di-
electric properties of the objects, the inversion reduces to a shape optimiza-
tion problem. We start our reconstruction with an initially positive level set
function (equal to 1) in the entire domain, meaning that we do not assume
any initial object within the medium. In the first update of our algorithm
the possible objects are created automatically by lowering the initial level set
function to negative values using the sensitivity structure of the data. This
typically creates small objects very close to the correct locations, and only a
few more iterations, as explained in [50], are needed to refine the details of
their shapes. Fig. 5.4 shows the ’true’ (left image) and reconstructed (right
image) permittivity distributions. We also show the zoom of the area of in-
terest at the top right corner of both images. We note that the reconstructed
objects are well located and their sizes are well approximated.

In the second experiment, we consider the same experimental setup and
dataset as in the previous case, but we do not assume the permittivity of
the cylinders to be known. Therefore, we have generalized the algorithm in
order to simultaneously (i) locate the objects, (ii) estimate their sizes, and
(iii) estimate their dielectric properties. With this purpose, we monitor the
minimized cost functional for a series of assumed permittivity values at the
end of our algorithm in order to determine the value which yields the global
minimum of the combined search for size and permittivity. The results of
this reconstruction are displayed in Fig. 5.5 in a panel of four images. The
top left image shows the ’true’ permittivity profile, and the bottom left image
shows the reconstructed profile at the end of our algorithm. The top right
image shows the reconstructed profile at the end of an intermediate stage of
our algorithm during which we only look for the locations and shapes of the
objects, choosing an arbitrary permittivity value inside them. This value is
chosen to be slightly bigger than the value for the background medium, so
there is some contrast between the objects and the surrounding medium. Fi-
nally, the bottom right image shows the minimal values of the cost functional
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Figure 5.5: Second reconstruction: we consider the same objects as in the
first experiment. However, we do not assume knowledge of the permittivity
of the objects. Top left: ’true’ profile. Top right: reconstruction at the end
of the intermediate stage of the algorithm. Bottom left: finally reconstructed
profile. Bottom right: minimal cost value for each permittivity value inside
the cylinders.
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Figure 5.6: Third reconstruction: a non-homogeneous object consisting of a
3-cm-diameter plastic cylinder embedded in a 8-cm-diameter foam cylinder.
From left to right the images illustrate: the ’true’ profile, the reconstructed
profile at the end of the intermediate stage of the algorithm, and the finally
reconstructed profile. The zooms at the upper right corners show only the
areas of interest.

achieved during the last stage of the algorithm, where we simultaneously look
for the shapes and permittivities of the detected objects. We observe that
in this case, the reconstructed objects are also well located and their sizes
are well approximated. Moreover, the estimated permittivity value inside the
cylinders (here 3.25) is within the range of the values given in the experiment.

5.3.2 Second experimental setup

In the third and the fourth experiments we reconstruct a more complex
object: a plastic cylinder embedded in a foam cylinder (see the left image in
Fig. 5.6). In the third experiment we assume the permittivity average values
of these two parts of the object to be known. Therefore, εi1 = 1.45 and
εi2 = 3.0 are known and fixed during this reconstruction. The results of this
reconstruction are displayed in Fig. 5.6. The left image corresponds to the
’true’ permittivity profile. The central image is the result at the end of the
intermediate stage of the algorithm where we only search for a homogeneous
object, with permittivity εi1 = 1.45, using the first level set function. The
right image of Fig. 5.6 shows the final reconstruction achieved at the end of
the second stage of the algorithm, where we introduce the second level set
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Figure 5.7: Fourth reconstruction: the same object as in the third experi-
ment. However, we do not assume to know the piecewise constant permit-
tivity distribution. Top left: ’true’ profile. Top right: reconstructed profile
at the end of the first stage of our algorithm. Bottom left: reconstructed
profile at the end of the second stage of our algorithm. Bottom right: finally
reconstructed profile.

function searching for an additional region with a possibly higher contrast
value εi2 = 3.0. As it can be observed in this image, the object is well located
and its structure is well estimated.

In the next experiment, shown in Fig. 5.7, we do not assume the knowl-
edge of the piecewise constant permittivity distribution of the object. The
’true’ permittivity profile is depicted in the top left image of Fig. 5.7. We
start the reconstruction by considering only one level set function (initially
equal to 1 in the entire domain) that will define an object with a permittivity
value slightly higher than the background medium (here, εi1 = 1.15) once it
is lowered to negative values at the first iterations of the algorithm. A few
more iterations lead to the result at the end of this first stage presented in the
top right image of Fig. 5.7. Since the ’true’ object has a higher average per-
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mittivity value than the one assumed during this stage, this is compensated
by the algorithm by reconstruction a slightly bigger object at this stage. At
the beginning of the second stage of the algorithm, we introduce a second
level set function (also, initially equal to 1 in the entire domain) to look for
a higher contrast region. The second level set function will define a region
with permittivity εi2 = 2.0. After a few more iterations, we find the result
presented in the bottom left image. During the third, and final, stage of the
algorithm we gradually change the permittivities inside the two recovered re-
gions. We define a parameter grid over the two-dimensional parameter space
εi1− εi2 and we carry out a shape optimization problem for each node of the
parameter grid. We monitor the minimized cost values for each node, and
we choose the reconstruction corresponding to the global minimum of this
two-dimensional graph as our final reconstruction. The result of this two di-
mensional search is displayed in the bottom right image of the Fig. 5.7. The
estimated values of the permittivities in the final reconstruction are εi1 = 1.25
and εi2 = 2.5, which are slightly lower than the real ones.

5.4 Summary

In this chapter we presented the results of testing a novel nonlinear inversion
algorithm based on level sets and designed for the early detection of breast
cancer, as described in this thesis, against the experimental ’Marseille data’.
This study shows that our algorithm gives good reconstructions when it is
used with experimental data. It also shows the potential of a shape based
reconstruction approach for detecting and imaging dielectric objects from
real data.

5.5 Publications and presentations

The following publications and presentations have resulted from the research
described in this chapter.

Publications

• (2008) Detecting and imaging dielectric objects from real data: a shape
based approach, Irishina N, Alvarez D, Dorn O and Moscoso M, Math-
ematical and Computer Modelling (submitted)
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Presentations

• Detecting and imaging dielectric objects from real data: a shape based
approach, XI JORNADAS Mathematical Models in Medicine, Business
& Engineering Valencia, September 8th-11th, 2008
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Chapter 6

Conclusions and future work

In this thesis the image reconstruction method from the microwave bound-
ary data was discussed. We have presented a novel shape based numerical
algorithm for the early detection and characterization of breast tumors from
microwave data. As the regularization tools, the prior information of the
typical ranges of the dielectric permittivity values for the breast tissues com-
ponents and the existence of the well shaped interfaces between the different
breast tissues have been used. These prior data restrict the space of possible
solutions of the ill-posed inverse problem. A level set technique has been em-
ployed in order to represent implicitly the interfaces of the different breast
components and to free the iterative algorithm from topological restrictions.
We have shown that the task of detecting and locating a hidden tumor by
our algorithm is very stable and reliable. Once a tumor has been detected
and localized, the next stages of the algorithm are able to estimate its cor-
rect permittivity value simultaneously with its size and location. Therefore,
given certain knowledge of static permittivity values for different classes of
tumors (such as benign or malignant tumors), our algorithm can provide re-
liable information which helps distinguishing between these different classes.
The combination of all reliably estimated characteristics for a given tumor
(dielectric properties, size, shape, etc.) could help the physician in the task
of characterizing a detected tumor as ’benign’ or ’malignant’.

In chapter 1 we have overviewed the main directions in the scientific
research concerning the breast cancer detection, between them the microwave
imaging, which is the object of this thesis. Afterwards, in chapter 2 we have
defined the direct problem in microwave imaging and our mathematical and
numerical 2D model for the case of the early breast cancer detection.

In chapter 3 we have presented the general theoretical framework for the
novel reconstruction algorithm. In this thesis we have followed an optimiza-
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tion approach when iteratively reconstructing the distribution of dielectric
parameters structure of the breast interior. The objective to reduce and,
eventually, to minimize the least squares cost functional, has been under-
taken by its evolution in the decreasing direction, using the level set functions
for the reconstruction of the object shapes, since it solves the problem of the
topological changes during the reconstruction and stabilizes the inversion.

In the next chapter 4 we have discussed the application of the novel
algorithm to the realistic breast models, based on the real magnetic resonance
images.

Finally, in chapter 5 we have presented the numerical results after suc-
cessfully proved our numerical algorithm against the real database obtained
in the anechoic chamber of the center Commun de Ressourses Micro-ondes
at Marseille, France.

Overall, this study shows the potential of shape based reconstruction
approaches for early breast cancer detection using microwaves. The dis-
tributions of the dielectric parameters were reconstructed without a priori
information of the anatomical structure of the breast through an iterative
algorithm. The reconstructed spatial distributions in the microwave images
do not exactly match the true ones, yet the estimations are very good in
all cases. We believe that this study represents an important step in the
development of shape based tomographic imaging strategies. Although, fur-
ther questions remain as to the validation against clinical microwave data to
determine its real potential and limitations.

In our future investigations we are planning to reconstruct not only the
static permittivity of tumor but more dielectric parameters as well. In our
future research we plan to extend our algorithm to a 3D situation. Another
way for the future investigation is to use the statistical Bayesian approach: to
estimate the posterior probability distribution of the unknown parameters,
given the data and the prior information about the sought solution. the
reconstructions using the statistical approach [55], [56], [63].

In lately appeared work of A. Carpio and M-L. Rapn the method of
topological derivative was used for the reconstruction of objects shapes [19].
We are looking forward in using this method in our future work as well.
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