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Prediction of Surface Roughness in Hard Milling of AISI D2 Tool Steel
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Abstract:
This paper presents a study of the development of a surface roughness model in end milling of hardened
steel AISI D2 using PVD TiAIN coated carbide cutting tool. The hardness of AISI D2 tool lies within the
range of 56-58 HRe. The independent variables or the primary machining parameters selected for this
experiment were the cutting speed, feed, and depth of cut. First and second order models were developed
using Response Surface Methodology (RSM). Experiments were conducted within specified ranges of the
parameters. Design-Expert 6.0 software was used to develop the surface roughness equations as the
predictive models. Analysis of variance (ANOV A) with 95% confidence interval has indicated that the
models are valid in predicting the surface roughness of the part machined under specified condition.

Keywords: Surface roughness, Response surface methodology, Hard milling, Coated carbide

1. Introduction
Surface roughness is widely used as an indicator for

product quality. This is a very important criterion
concerning mold and die making. Machining hard
material used for die and mold commonly results in high
tool wear with less material removal rate. Securing the
high quality of surface finish of the die material
followed by machining at high metal removal rate is a
great challenge for the manufacturers. High metal
removal rate is intended to reduce the manufacturing
costs and operation time. But despite having the target of
achieving optimum superficial finishing with the
shortest possible time one must take into account the
consideration of tool life, so that the complete finishing
operation can be carried out with just one tool, avoiding
the intermediate stops in order to change the tool due to
its wear [1].

There are various methodologies and strategies that
were adopted by researchers in order to predict surface
roughness in milling and turning. Four major categories
were created to classify the methodologies. These are: (i)
approaches that are based on machining theory to
develop analytical models and/or computer algorithms to
represent the machined surface; (ii) approaches that
examine the effects of various factors through the
execution of experiments and analysis of the results; (iii)
approaches that use designed experiments; and (iv) the
artificial intelligence (AI) approaches [2].

Response surface methodology (RSM) which is
classified into designed experiments approach seems to
be the most wide-spread methodology for the surface
roughness prediction. RSM is an important methodology
used in developing new processes, optimizing their
performance, and improving the design and/or
formulation of new products. It is often an important
concurrent engineering tool in which product design,
process development, quality, manufacturing
engineering, and operations personnel often work
together in a team environment to apply RSM [3]. It is a

dynamic and foremost important tool of design of
experiment (DOE), wherein the relationship between
responses of a process with its input decision variables is
mapped to achieve the objective of maximization or
minimization of the response properties.

Many researchers have used RSM for their
experimental design and analysis of the results in end
milling [4-8], but very few of them were engaged in
machining hard material which is commonly known as
hard milling. J. Vivancos et. al. [9] presented a model
for the prediction of surface roughness in high-speed
side milling of hardened die steels. He identified the
factors and interactions that are statistically more
significant for modelling the surface roughness (R.). The
development of a surface roughness model for end
milling EN32 casehardening carbon steel (160 BRN
steel) using design of experiments and RSM was
discussed by A. Mansor et al [10].

In this paper, the RSM has been applied to develop a
mathematical model to predict the surface roughness for
end milling of hardened steel AISI D2 tool steel which is
categorized as a difficult to cut material. Machining was
conducted using PVD TiAlN carbide coated SANDVIK
1030 inserts. The predicted surface roughness results
are presented in terms of both l" and 2nd order equations
with the aid of a statistical design of experiment
software called Design-Expert version 6.0.

2. Mathematical model by RSM

The relationship between surface roughness and other
independent variables is modelled as follows:

(1)

where 'C' is a model constant and k, I and m are model
parameters. The above function (1) can be represented in
linear mathematical form as follows:

IuRa = In C + k In V + Zln d + m In! (2)
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The first-order linear model of the above Eq. (2) can
be represented as follows:
.h = Y-E: = boxo +b1xI +b2x2 +b3x3 (3)

where, Y I is the estimated response based on first-
order equation and y is the measured surface roughness
on a logarithmic scale, Xo = 1 (dummy variable), X1, X2,
X3 are logarithmic transformations of speed, depth of cut
and feed respectively. The parameters bo, b: b2, and b,
are to be estimated where € the experimental error. The
second-order model can be extended from the first-order
equation as follows:

Y2 =Y - E:=. boxo+ b.x, + b2x2 + b3X3 + bl1X~+ b22X;

+b33X; +b12x1X2 + b13x1X3 +b23X2X3
(4)

where Y2 is the estimated response based on the
second-order model. Analysis of variance (ANOV A) is
used to verify and validate the model.

3. Experimental design and methodology
Experimental works were carried out on CNC

Vertical Milling Center (VMC) Excell PMC-lOT24
with 40 mm diameter tool holder. End milling operation
was performed under dry cutting conditions with a 5 mm
constant radial depth of cut. Down milling method was
employed to secure the advantageous outcomes such as
better surface finish, less heat generation, larger tool life,
better geometrical accuracy and compressive stresses
favorable for carbide edges [11]. In this experiment only
one insert was used for each set of experimental
conditions so that the variation due to the wear of cutting
tool edge is minimized among the trials, leaving no
scope of ambiguity due to the effect in variation of
cutting tool geometry. Surface roughness was measured
by Mitutoyo SURFTEST SV-500 with cut-offlength 0.8
mm and sampling length 4.0 mm.

The cutting conditions were selected by considering
the recommendations of the cutting tool's manufacturer
(Sandvik Tools) and the knowledge of practices,
gathered through contemporary literatures on hard
machining. Few trial runs were, however, conducted to
augment the selection of parameters. The tool life and
the material removal rate were actively considered
without limiting the choice oriented to the hardness of
the material to be studied. The hardness of AISI D2 steel
used for these experiments was measured using
Hardness Rockwell tester and the values were found to
be between 56-58 HRC. The three main selected
parameters: cutting speed, depth of cut and feed were
then coded to the levels using the following
transformations:.

X, = (In V = ln 56.57)/(ln 72.28 -In 56.57),
X2 = (In d -In 1.00)/(ln 1.63 -In 1.00), and
X3 = (In F -In 0.044)/(ln 0.079 -In 0.044) (5)

The independent variables with their corresponding
selected levels of variation and coding identification are
presented in Table 1.

Table 1: Independent variables with levels and coding
id tifi atioen IC n

Levels in Coded Form

Independent
Variables

->/2 -1 0 +1 +>/2
(lowest) (low) (centre) (high) (highest)

Cutting
speed (V) 40 44.27 56.57 72.28 80(rn/min)

(XI!
Depth of cut

(d) 0.50 0.61 1.00 1.63 2.00(rnrn)
(X2)

Feed (F)
0.10(rnrn!tooth) 0.02 0.025 0.044 0.079

(X3)

A well-planned design of experiment can
substantially reduce the number of experiments and for
this reason a small CCD with five levels was selected to
develop the first order and second order models. This is
the most popular class of designs used for fitting these
models and has been established as a very efficient
design for fitting the second order model [12]. The
analysis of mathematical models was carried out using
Design Expert version 6.0 package for both the first and
second order models. The machining process carried out
in random manner in order to reduce the error due to
noise. The overall cutting conditions and the
corresponding values of surface roughness are presented
in Table 2.

4. Results and Discussion
The surface roughness values have been presented in

the last column of Table 2. Significant variation is
observed in surface finish of the milled face of the work-
piece. The maximum value of Ra is O.l6? ~ w~ereas
the minimum value is 0.055 urn, ThIS significant
variation in surface roughness cannot be explained in a
simple way as there are main individual and interactive
effects of the cutting parameters.

4.1 Development of first and second order models
Using the experimental results as obtained in the

form of surface roughness values against' all the set
experimental conditions, the following surface
roughness prediction model has been developed.

In R. = 1.704 - 0.778 In X, + 0.382 X2 + 0.328 X3 (6)

This is a first order model. By substituting Eq.(5)
into Eq.(6), the model finally can be expressed as :

R, = 5 .49V -0.78 d 0.38 f 0.33 (7)
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Table2' Cuttingconditionsand surfaceroughnessresults

observed data at the 95% confidence level. Fig. 1,2, and 3
show the 3D contour of predicted surface roughness
results generated by the quadratic CCD model. The
graphs demonstrated that by machining at high feed with
low cutting speed and low depth of cut surface roughness
values will be lower and vice versa.

Std. Location CodedForm ActualForm Response
order inCCD Cutting Depth of feed Surface

XI X2 X3 speed cut (rnmItoo Roughness
(rn/min) (rnm) th) (urn)

1 Factorial +1 +1 -I 72.28 1.63 0.025 0.055

2 Factorial +1 -1 +1 72.28 0.61 0.079 0.065

3 Factorial -1 +1 +1 44.27 1.63 0.079 0.160

4 Factorial -1 -I -1 44.27 0.61 0.025 0.070

5 Center 0 0 0 56.57 1.00 0.044 0.080

6 Center 0 0 0 56.57 1.00 0.044 0.070

7 Center 0 0 0 56.57 1.00 0.044 0.080

8 Center 0 0 0 56.57 1.00 0.044 0.070

9 Center 0 0 0 56.57 1.00 0.044 0.075

10 Axial -1.414 0 0 40.00 1.00 0.044 0.105

11 Axial +1.414 0 0 80.00 1.00 0.044 0.080

12 Axial 0 -1.414 0 56.57 0.50 0.044 0.075

13 Axial 0 +1.414 0 56.57 2.00 0.044 0.135

14 Axial 0 0 -1.414 56.57 1.00 0.02 0.075

15 Axial 0 0 +1.414 56.57 1.00 0.10 0.110

From this 1st order model (Eq.7) it is apparent that
higher cutting speed will lower the Ra values whereas the
effects of depth of cut and feed are opposite leading to the
adverse surface roughness. This equation is valid for
cutting speed (40~V~80), depth of cut (0.5~d~2) and feed
(0.02~f~O.l). Since the second-order model is very
flexible, easy to estimate the parameters with method of
least square error, and work well in solving real response
surface problems [3], the analysis was extended in
prediction of more robust modeling of surface roughness.
Using the experimental data in Table 2, the second orO&1''''
model is derived with the following equation:

In R. = -2.492 - 0.096X1 + 0.186X2 + 0.135X3 + X22

0.I13XIX2 + O.l89XzX3 (8)

This model takes into account of the interactive and
quadratic effects of the cutting variables. However it does
not contain the terms representing XI

Z
, X32 and XIX)

because the effects are insignificant and/or of lower
coefficients. Both Eq. (7) and (8) representing Ist and 2nd

order CCD models respectively have indicated that depth
of cut would give significant effect on surface roughness
values followed by feed and cutting speed.

4.2 Analysis of Variance
Table 3 showing the ANOVA for 1st order (linear)

CCD model indicates the significant level of each effect
and lack of fit. The model is found to be significant with
F-value less than 0.05. Lack of fit value of 0.0818 implies
that it is not significant at 95% confidence interval leads
to make an inference that the model is significant. In this
case all the independent variables are significant. This
means that since the P value for lack of fit test is greater
than 0.05, the model is appears to be adequate for the
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Figure I: The 3D ResponseSurfaceof The QuadraticCCD
Model at X3= 1.0 or feed = 0.079 mmltooth
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Figure3: The 3DResponseSurfaceof The Quadratic
CCD Modelat X3 = -1.0 or feed = 0.025 mm/tooth

Table 3' ANOVA of 1st order(linear)CCDModel
P>O.I

Sum of DF Mean F Prob>
Source Squares Square Value F model not

significant

Block 0.15 I 0.55

Model 0.86 3 0.29 20.60 0.0001 significant

A 0.29 I 0.29 20.84 0.0010

B 0.28 I 0.28 19.87 0.0012

C 0.29 1 0.29 21.08 0.0010

Residual 0.14 10 0.014

Lack
0.12 6 0.020 4.56 0.0818

not
of Fit significant
Pure
Error 0.Ql8 4 0.0044

Cor US 14Total

Table 4 showing the ANOVA for 2nd order
(Quadratic) CCD model indicates the significant level of
each effect and lack of fit. From the table, it is clear that
the squares of cutting speed and feed (A2

, C2
) and

interaction between cutting speed and feed (AC) have
low influence on the Ra since their P-values are more than
0.1. Hence these terms have been removed from the
equation in order to further analyse the experiment. The
results so obtained are shown in Table 5. It is apparent
that the model is significant with P-value less than 0.1
with the value of lack of fit is more than 0.1. It indicates
that after adjustment the model becomes more
pronounced and reliable. Figure 4 and 5 show a
comparison between experimental values and predicted
values generated by quadratic CCD 2nd order model and
1st linear model. Both of the models are adequate to
predict the surface roughness values quite reliably as the
deviations of the theoretical and experimental values are
very smalL
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Table 4' ANOVA of2nd order (Quadratic) CCD Model

F P>O.I
Sum of Mean Prob>

Source Squares OF
Square Valu

F (model not
e

significant)

Block 0.15 I 0.15

Model 0.99 9 0.11 24.57 0.0037 significant

A 0.037 I 0.037 8.29 0.0450

B 0.17 I 0.17 38.74 0.0034

C 0.073 I 0.073 16.45 0.0154

A2 0.0002 0.0002
not

I 0.064 0.8133
significant

B2 0.021 I 0.021 4.70 0.0961 significant

C2 0.00002 I 0.00002 0.004 0.9494 not
significant

AB 0.026 I 0.026 5.73 0.0749 significant

AC 0.0037 I 0.0037 0.83 0.4149 not
significant

BC 0.072 I 0.072 16.08 0.0160 significant

Pure
0.018 4 0.0044Error

Cor 1.15 14Total

Table 5: ANOVA of 2nd order (Quadratic) CCD Model -
modified

P>O.I

Sum of DF Mean F Prob> (model not
Source Square Square Value F significant

)

Block 0.15 I 0.15

Model 0.98 6 0.16 52.51 0.0001 significant

A 0.037 I 0.037 11.87 Om08

B 0.28 I 0.28 89.16 0.0001

C 0.073 I 0.073 23.54 0.0019

B2 0.021 I 0.021 6.65 0.0365

AB 0.026 I 0.026 8.20 0.0242

BC 0.072 I 0.072 23.01 0.0020

Residual 0.022 7 0.003

Lack of
0.004 3 0.001 0.30 0.08266

not
fit significant

Pure
0.018 4 0.004Error

Cor Total 1.15 14

5. Conclusions
This research work was undertaken to develop a

mathematical relationship between the surface roughness
in end milling of hard material (AISI' D2) and the
machining variables by using the experimental results
obtained through use of the concept of RSM. It has been
possible to develop the first order (linear model) as well
as the second order (quadratic model). Adequacy or
validity of the models has been evaluated by ANOVA
which indicates that the models are reliable. These
models can be safely used to predict the surface
roughness of the machined part of AISI D2 tool steel
under the specified cutting conditions. These models are
valid within the ranges of the cutting parameters in end
milling which for cutting speed range is 40 - 80 mlmin,
for depth of cut range is 0.5 - 2.0 mm and for feed range
is 0.05 - 0.1 mmltooth. Both models linear (I" order) and
CCD quadratic (2nd order) have shown similar trends
indicating that the depth of cut has the most significant
influence on surface roughness followed by feed and
cutting speed. However, the values of depth of cut and
feed are not much different coefficients meaning that
their influences on roughness are very close.
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