Advanced Machining Process Editors Mohammad Yeakub Ali AKM Nurul Amin Erry Yulian Triblas Adesta IIUM PRESS INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA # Advanced Machining Process ### **Editors** Mohammad Yeakub Ali AKM Nurul Amin Erry Yulian Triblas Adesta ### Published by: IIUM Press International Islamic University Malaysia ### First Edition, 2011 ©IIUM Press, IIUM All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher. Perpustakaan Negara Malaysia Cataloguing-in-Publication Data Mohammad Yeakub Ali, AKM Nurul Amin & Erry Yulian Triblas Adesta: Advanced Machining Process ISBN: 978-967-418-162-8 Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council) ## Printed By: IIUM PRINTING SDN.BHD. No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan Tel: +603-6188 1542 / 44 / 45 Fax: +603-6188 1543 EMAIL: iiumprinting@yahoo.com # **Advanced Machining Process** ## **Table of Contents** | Preface | Ī | |---|----| | Acknowledgement | ii | | Copyright | is | | PART 1: ELECTRO DISCHARGE MACHINING | 1 | | Chapter 1 | 2 | | Tool Wear rate during Electrical Discharge Machining (EDM) with Eccentric Electrode | | | Ahsan Ali Khan, Affendi Bin Saad and Mohd Zulfadli Isma Bin Mohd Isa | | | Chapter 2 | 7 | | Wear Ratio and Work Surface Finish during Electrical Discharge Machining (EDM) with Eccentric Electrode | | | Ahsan Ali Khan, Affendi Bin Saad and Mohd Zulfadli Isma Bin Mohd Isa | | | Chapter 3 | 12 | | Role of Current, Voltage and Spark on-time on Electrode Material Migration during EDM | | | Ahsan Ali Khan, Nurul Shima Mohd Noh | | | Chapter4 | 18 | | A Study on Material Removal Rate during EDM with Tantalum | | | Carbide-Copper Compacted Electrode Ahsan Ali Khan, Mohammad Azhadi Bin Mohammad Hambiyah and Mohd Faiz Bin Nazi Nadin | | | Chapter 5 | 23 | | Features of EDM of Mild Steel with Ta-Cu Powder Compacted Electrodes | | | Ahsan Ali Khan, Mohammad Azhadi Bin Mohammad Hambiyah and
Mohd Faiz Bin Nazi Nadin | | | Chapter 6 | 28 | | Relationship between Machining Variables and Process Characteristics during Wire EDM | | | Ahsan Ali Khan, M. B. M. Ali and N. B. M. Shaffiar | | | Chapter 7 | 33 | |---|------------| | Influence of Machining Parameters on Surface Roughness during EDM of Mild Steel | | | Ahsan Ali Khan, Erry Y.T. Adesta and Mohammad Yeakub Ali | | | Chapter 8 | 38 | | Machining of Ceramic Materials: A Review Abdus Sabur, Md. Abdul Maleque and Mohammad Yeakub Ali | | | Chapter 9 | 4 4 | | Formation of Micro-cracks and Recast Layer during EDM of Mild Steel using Copper Electrodes | | | Ahsan Ali Khan, Erry Y.T. Adesta and Mohammad Yeakub Ali | | | Chapter 10 | 49 | | Features of Electrode Wear during EDM of Mild Steel with TaC-Cu
Powder Compacted Electrodes | | | Ahsan Ali Khan, Mohd Faiz Bin Nazi Nadin and
Mohammad Azhadi Bin Mohammad Hambiyah | | | Chapter 11 | 54 | | Influence of Current, Spark On-time and Off-time on Electrode Wear during EDM of Mild Steel | | | Ahsan Ali Khan, Mohd Faiz Bin Nazi Nadin and
Mohammad Azhadi Bin Mohammad Hambiyah | | | Chapter 12 | 59 | | A Comparative study on Work Surface Hardness EDMed by Ta-C Powder Compacted and Copper Electrodes | | | Ahsan Ali Khan, Mohd Faiz Bin Nazi Nadin and
Mohammad Azhadi Bin Mohammad Hambiyah | | | Chapter 13 | 65 | | An Introduction to Electrical Discharge Machining Ahsan Ali Khan and Mohammed Baha Ndaliman | | | Chapter 14 | 70 | | Developments in EDM Process Variables Ahsan Ali Khan, Mohammed Baba Ndaliman and Mohammad Yeakub Ali | | | PART 2: MICROMACHINING | 76 | |---|-----------| | Chapter 15 Focused Ion Beam Micromachining: Technology and Application Israd Hakim Jaafar, Nur Atiqah, Asfana Banu, Mohammad Yeakub Ali | 77 | | Chapter 16 Finish Cut of Titanium Alloy using Micro Electro Discharge Milling for Nano Surface Finish Mohammad Yeakub Ali, Muhamad Faizal, Asfana Banu, and Nur Atikah | 83 | | Chapter 17 Investigation of MRR for Finish Cut of Titanium Alloy using Micro Electro Discharge Milling Mohammad Yeakub Ali, Mohd Saifuddin, Nur Atiqah, and Asfana Banu | 89 | | Chapter 18 Investigation of TWR for Finish Cut of Titanium Alloy using Micro Electro Discharge Milling Mohammad Yeakub Ali, Mohd Saifuddin, Nur Atiqah, and Asfana Banu | 95 | | Chapter 19 Investigation of Chip Formation and Minimum Chip Thickness in Micro/Meso Milling: Methodology and Design of Experiment Mohammad Yeakub Ali, Noor Adila Mansor and Siti Hamizah Mass Duki | 101 | | Chapter 20 Micro/Meso Milling of Aluminium Alloy 1100: Analysis and Modelling of Minimum Chip Thickness | 107 | | Mohammad Yeakub Ali, Noor Adila Mansor and Siti Hamizah Mass Duki Chapter 21 Effect of Micro End Milling Tool Diameter on Minimum Chip Thickness | 113 | | Mohammad Yeakub Ali, Noor Adila Mansor and Siti Hamizah Mass Duki Chapter 22 Micro Wire Electrical Discharge Machining of Tungsten Carbide: Methodology and Procedure Mohammad Yeakub Ali, Ahmad Chaaban Elabtah and Musab Jamal Alrefaie | 119 | | Chapter 23 Micro Wire Electrical Discharge Machining of Tungsten Carbide: Analysis of Surface Roughness Mohammad Yeakub Ali, Ahmad Chaaban Elabtah and Musab Jamal Alrefaie | 124 | | Chapter 24 Micro Wire Electrical Discharge Machining of Tungsten Carbide: Analysis of Material Removal Rate | 130 | | Mohammad Yeakub Ali, Musab Jamal Alrefaie and Ahmad Chaaban Elabtah Chapter 25 Micro Electro Discharge Machining of Micro Pillar Array: Process | 136 | | Chapter 25 Micro Electro Discharge Machining of Micro Pillar Array: Process | 136 | |---|-----| | Development Mohammad Yeakub Ali, Wan Emira Azaty and Nor Suriza | | | Chapter 26 | 142 | | Micro Electro Discharge Machining of Micro Pillar Array: Analysis of Surface Finish | | | Mohammad Yeakub Ali, Wan Emira Azaty and Nor Suriza | | | Chapter 27 | 148 | | Micro Electro Discharge Machining of Micropillar Array: Analysis of Material Removal Rate | | | Mohammad Yeakub Ali, Nor Suriza and Wan Emira Azaty | | | Chapter 28 | 154 | | Vibration Issue in Micro End Milling Mohammad Yeakub Ali, Muhamad Lutfi and Mohamad Ismail Fahmi | | | Chapter 29 | 159 | | Fabrication of Micro Filter by Electro Discharge Machining Abdus Sabur and Mohammad Yeakub Ali | | | PART 3: | PRECISION MACHINING | 165 | |-----------------|---|-----| | Chapter 30
I | High Speed Milling of Mould Steel using 1.5mm-diameter End-mills Mohamed Konneh, Khairunnisa Ahmad and Rose Fazleen | 166 | | | Precision Grinding of Silicon Carbide using 46 µm Grain Diamond Tup Wheel Mohamed Konneh and Ahmad Fauzan | 172 | | | Precision Grinding of Silicon Carbide using 76 µm Grain Diamond Cup Wheel Mohamed Konneh and Mohd Shukur Zawawi | 178 | | | Precision Grinding of Silicon Carbide using 107 µm Grain Diamond
Cup Wheel Mohamed Konneh and Mohd Fadzil | 184 | | | Investigation of Surface Integrity during Precision Grinding of Silicon Carbide using Diamond Grinding Pins Mohamed Konneh, Mohamad Lutfi and Mohamad Shahrilnizam | 190 | | | A Comparative Study on Flank Wear and Work Surface Finish during ligh Speed Milling of Cast Iron with Different Carbide Tools Ahsan Ali Khan, Zuraida Aman Nor Rasid and Izausmawati Yusof | 196 | ### Relationship between Machining Variables and Process Characteristics during Wire EDM Ahsan Ali Khan⁻³, M. B. M. Ali and N. B. M. Shaffiar Faculty of Engineering – International Islamic University Malaysia ⊠: aakhan@iium.edu.my Keywords: Wire EDM; Surface roughness; Microstructure; Wire breakage Abstract. Wire EDM is in use for a long time for cutting punches and dies, shaped pockets and other machine parts. Surface finish of the machined surface mainly depends on current and voltage used during machining. In the present work experimental investigations have been conducted to establish relationships job surface finish with current and voltage. Brass wires of diameters 0.3 mm, 0.25 mm, 0.20 mm and 0.15 mm were used. Work materials tested were mild steel, aluminium, cemented carbide, copper and stainless steel. After machining each material with specific current and voltage the hardness and the job surface roughness were measured and their surfaces were observed under a scanning- electron microscope. Results of the experiments show that in general the machined surface becomes rougher with increase in current and voltage. Microstructures of the specimens also show that craters on the finished surface become larger as a result of using higher current and voltage. It was also found that wires of smaller diameters give smoother surface than those cut with larger diameters. It has been established that machining of carbides should be limited to wires with diameter equal to or less than 0.15 mm. Use of wires of greater diameters causes frequent wire breakage. #### Introduction Wire EDM, a modification of EDM, is widely used for cutting complex profiles on conductive work materials. For Wire EDM consumable electrode is mostly used since non-consumable wires are expensive. Precision dies and profiles require smooth surface finish. As a result of each spark during cutting process a tiny volume of material is vaporized, which leaves a cavity on the machined surface. Thus smoothness of the machined surface depends on the depth of cavities produced during a series of sparks. The depth and size of these cavities depend on the intensity of the sparks and the intensity of the sparks mainly depends on current and voltage used during cutting process. Surface smoothness also depends on the characteristics of the work materials, wire tension, electrode wire material, dielectric fluid, etc. Different authors like Brown, Kalpakjian, Panday, Tlusty, Trend, and others have analyzed the wire EDM process and have shown the relationship between surface smoothness and different cutting parameters. They have also given recommendations on cutting parameters to be used during cutting different work materials. ### Methodology The machine used for cutting different work materials was model FX-K with a maximum capacity of work dimension 800x575x215 mm. The dielectric material used during