Advanced Machining Process Editors Mohammad Yeakub Ali AKM Nurul Amin Erry Yulian Triblas Adesta IIUM PRESS INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA # Advanced Machining Process #### **Editors** Mohammad Yeakub Ali AKM Nurul Amin Erry Yulian Triblas Adesta ### Published by: IIUM Press International Islamic University Malaysia #### First Edition, 2011 ©IIUM Press, IIUM All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher. Perpustakaan Negara Malaysia Cataloguing-in-Publication Data Mohammad Yeakub Ali, AKM Nurul Amin & Erry Yulian Triblas Adesta: Advanced Machining Process ISBN: 978-967-418-162-8 Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council) ### Printed By: IIUM PRINTING SDN.BHD. No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan Tel: +603-6188 1542 / 44 / 45 Fax: +603-6188 1543 EMAIL: iiumprinting@yahoo.com ## **Advanced Machining Process** ## **Table of Contents** | Preface | Ī | |---|----| | Acknowledgement | ii | | Copyright | is | | PART 1: ELECTRO DISCHARGE MACHINING | 1 | | Chapter 1 | 2 | | Tool Wear rate during Electrical Discharge Machining (EDM) with Eccentric Electrode | | | Ahsan Ali Khan, Affendi Bin Saad and Mohd Zulfadli Isma Bin Mohd Isa | | | Chapter 2 | 7 | | Wear Ratio and Work Surface Finish during Electrical Discharge Machining (EDM) with Eccentric Electrode | | | Ahsan Ali Khan, Affendi Bin Saad and Mohd Zulfadli Isma Bin Mohd Isa | | | Chapter 3 | 12 | | Role of Current, Voltage and Spark on-time on Electrode Material Migration during EDM | | | Ahsan Ali Khan, Nurul Shima Mohd Noh | | | Chapter4 | 18 | | A Study on Material Removal Rate during EDM with Tantalum | | | Carbide-Copper Compacted Electrode Ahsan Ali Khan, Mohammad Azhadi Bin Mohammad Hambiyah and Mohd Faiz Bin Nazi Nadin | | | Chapter 5 | 23 | | Features of EDM of Mild Steel with Ta-Cu Powder Compacted Electrodes | | | Ahsan Ali Khan, Mohammad Azhadi Bin Mohammad Hambiyah and
Mohd Faiz Bin Nazi Nadin | | | Chapter 6 | 28 | | Relationship between Machining Variables and Process Characteristics during Wire EDM | | | Ahsan Ali Khan, M. B. M. Ali and N. B. M. Shaffiar | | | Chapter 7 | 33 | |---|------------| | Influence of Machining Parameters on Surface Roughness during EDM of Mild Steel | | | Ahsan Ali Khan, Erry Y.T. Adesta and Mohammad Yeakub Ali | | | Chapter 8 | 38 | | Machining of Ceramic Materials: A Review Abdus Sabur, Md. Abdul Maleque and Mohammad Yeakub Ali | | | Chapter 9 | 4 4 | | Formation of Micro-cracks and Recast Layer during EDM of Mild Steel using Copper Electrodes | | | Ahsan Ali Khan, Erry Y.T. Adesta and Mohammad Yeakub Ali | | | Chapter 10 | 49 | | Features of Electrode Wear during EDM of Mild Steel with TaC-Cu
Powder Compacted Electrodes | | | Ahsan Ali Khan, Mohd Faiz Bin Nazi Nadin and
Mohammad Azhadi Bin Mohammad Hambiyah | | | Chapter 11 | 54 | | Influence of Current, Spark On-time and Off-time on Electrode Wear during EDM of Mild Steel | | | Ahsan Ali Khan, Mohd Faiz Bin Nazi Nadin and
Mohammad Azhadi Bin Mohammad Hambiyah | | | Chapter 12 | 59 | | A Comparative study on Work Surface Hardness EDMed by Ta-C Powder Compacted and Copper Electrodes | | | Ahsan Ali Khan, Mohd Faiz Bin Nazi Nadin and
Mohammad Azhadi Bin Mohammad Hambiyah | | | Chapter 13 | 65 | | An Introduction to Electrical Discharge Machining Ahsan Ali Khan and Mohammed Baha Ndaliman | | | Chapter 14 | 70 | | Developments in EDM Process Variables Ahsan Ali Khan, Mohammed Baba Ndaliman and Mohammad Yeakub Ali | | | PART 2: MICROMACHINING | 76 | |---|-----------| | Chapter 15 Focused Ion Beam Micromachining: Technology and Application Israd Hakim Jaafar, Nur Atiqah, Asfana Banu, Mohammad Yeakub Ali | 77 | | Chapter 16 Finish Cut of Titanium Alloy using Micro Electro Discharge Milling for Nano Surface Finish Mohammad Yeakub Ali, Muhamad Faizal, Asfana Banu, and Nur Atikah | 83 | | Chapter 17 Investigation of MRR for Finish Cut of Titanium Alloy using Micro Electro Discharge Milling Mohammad Yeakub Ali, Mohd Saifuddin, Nur Atiqah, and Asfana Banu | 89 | | Chapter 18 Investigation of TWR for Finish Cut of Titanium Alloy using Micro Electro Discharge Milling Mohammad Yeakub Ali, Mohd Saifuddin, Nur Atiqah, and Asfana Banu | 95 | | Chapter 19 Investigation of Chip Formation and Minimum Chip Thickness in Micro/Meso Milling: Methodology and Design of Experiment Mohammad Yeakub Ali, Noor Adila Mansor and Siti Hamizah Mass Duki | 101 | | Chapter 20 Micro/Meso Milling of Aluminium Alloy 1100: Analysis and Modelling of Minimum Chip Thickness | 107 | | Mohammad Yeakub Ali, Noor Adila Mansor and Siti Hamizah Mass Duki Chapter 21 Effect of Micro End Milling Tool Diameter on Minimum Chip Thickness | 113 | | Mohammad Yeakub Ali, Noor Adila Mansor and Siti Hamizah Mass Duki Chapter 22 Micro Wire Electrical Discharge Machining of Tungsten Carbide: Methodology and Procedure Mohammad Yeakub Ali, Ahmad Chaaban Elabtah and Musab Jamal Alrefaie | 119 | | Chapter 23 Micro Wire Electrical Discharge Machining of Tungsten Carbide: Analysis of Surface Roughness Mohammad Yeakub Ali, Ahmad Chaaban Elabtah and Musab Jamal Alrefaie | 124 | | Chapter 24 Micro Wire Electrical Discharge Machining of Tungsten Carbide: Analysis of Material Removal Rate | 130 | | Mohammad Yeakub Ali, Musab Jamal Alrefaie and Ahmad Chaaban Elabtah Chapter 25 Micro Electro Discharge Machining of Micro Pillar Array: Process | 136 | | Chapter 25 Micro Electro Discharge Machining of Micro Pillar Array: Process | 136 | |---|-----| | Development Mohammad Yeakub Ali, Wan Emira Azaty and Nor Suriza | | | Chapter 26 | 142 | | Micro Electro Discharge Machining of Micro Pillar Array: Analysis of Surface Finish | | | Mohammad Yeakub Ali, Wan Emira Azaty and Nor Suriza | | | Chapter 27 | 148 | | Micro Electro Discharge Machining of Micropillar Array: Analysis of Material Removal Rate | | | Mohammad Yeakub Ali, Nor Suriza and Wan Emira Azaty | | | Chapter 28 | 154 | | Vibration Issue in Micro End Milling Mohammad Yeakub Ali, Muhamad Lutfi and Mohamad Ismail Fahmi | | | Chapter 29 | 159 | | Fabrication of Micro Filter by Electro Discharge Machining Abdus Sabur and Mohammad Yeakub Ali | | | PART 3: | PRECISION MACHINING | 165 | |-----------------|---|-----| | Chapter 30
I | High Speed Milling of Mould Steel using 1.5mm-diameter End-mills Mohamed Konneh, Khairunnisa Ahmad and Rose Fazleen | 166 | | | Precision Grinding of Silicon Carbide using 46 µm Grain Diamond Tup Wheel Mohamed Konneh and Ahmad Fauzan | 172 | | | Precision Grinding of Silicon Carbide using 76 µm Grain Diamond Cup Wheel Mohamed Konneh and Mohd Shukur Zawawi | 178 | | | Precision Grinding of Silicon Carbide using 107 µm Grain Diamond
Cup Wheel Mohamed Konneh and Mohd Fadzil | 184 | | | Investigation of Surface Integrity during Precision Grinding of Silicon Carbide using Diamond Grinding Pins Mohamed Konneh, Mohamad Lutfi and Mohamad Shahrilnizam | 190 | | | A Comparative Study on Flank Wear and Work Surface Finish during ligh Speed Milling of Cast Iron with Different Carbide Tools Ahsan Ali Khan, Zuraida Aman Nor Rasid and Izausmawati Yusof | 196 | ## Tool Wear Rate during Electrical Discharge Machining (EDM) with Eccentric Electrode Ahsan Ali Khan[™], Affendi Bin Saad and Mohd Zulfadli Isma Bin Mohd Isa Faculty of Engineering – International Islamic University Malaysia ☑: aakhan@iium.edu.my Keywords: EDM; Tool wear rate; spindle speed; feed rate **Abstract.** In this chapter the influence of spindle speed and feed rate on electrode wear rate has been described during EDM with an eccentric electrode. It was found that both spindle speed and feed rate causes increase in electrode wear rate. #### Introduction Electrical discharge machining (EDM) is a manufacturing process where electrical discharges are used to get the desired shape of a workpiece. It is a thermal process that removes material with heat energy. The tool (electrode) is brought close to the workpiece surface and the gap is filled with dielectric fluid. When the transistor bank is triggered by the timing control (Fig.1), the potential polarizes a path over which direct current from the power unit (such as a generator or rectifier) flows as spark between the closest points of the electrode and workpiece. Metal is melted and expelled where the spark strikes the workpiece. The tool is given a pulsating motion to avoid dwell of the arc in one spot for too long and help flush away the liquid. This allowed the used of more current and a higher metal removal rate. Instead of being fed straight in, the tool can be orbited on some machines, that the tool is rotated about an eccentric axis to sweep a shape larger than itself. On some machines, the tools can be moved in square or rectangular paths or straight lines as they are fed into the work. Orbiting helps the EDM action by stirring and flushing the electrolyte and distributing wear on the electrode, enhancing accuracy and finish. The fluid bath around the tool and workpiece performs several functions. As a dielectric, it supports the current and voltage to assure a high build-up of energy for each discharge. The fluid and the impurities in it supply ions for the path of the arc. The heat of the spark instantaneously vaporizes and decomposes the fluid in its path. The fluid inertia resists rapid expansion and causes high pressure in the discharge column that intensifies the arc, where temperature are reported in ten thousands of degrees (8000°-20000° C), and expels the molten metal. The dielectric then flushes away the fragments and cools the tool and workpiece. For proper flushing of the debris a numerous flow of fluid is desirable. A common practice is to immerse the tool and workpiece in a bath and pump fluid through holes in the electrode. Light mineral oils, such as kerosene or lubricating oil arc satisfactory fluids for most cases. For particular applications, additives or water compounds have been found helpful. Some impurities are desirable, but filtering is necessary to prevent too much contamination. Zinc-tin, copper, and tungsten alloys, cemented carbides, aluminium, steel, graphite and sometimes other materials are used for electrodes to suit various conditions. One may perform better than others with a certain work material. Electrodes may be machined in