
BONE GRAFTS AND BONE SUBSTITUTES

Basic Science and Clinical Applications

This page is intentionally left blank

BONE GRAFTS AND BONE SUBSTITUTES

Basic Science and Clinical Applications

Edited by

Aziz Nather

National University of Singapore, Singapore

Published by

World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

BONE GRAFTS AND BONE SUBSTITUTES Basic Science and Clinical Applications

Copyright © 2005 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 981-256-089-0

Typeset by Stallion Press

Email: enquiries@stallionpress.com

Contents

Preface		ix
Introducti A Nat		xi
Contributors		
SECTION	I: BASIC SCIENCE OF BONE	
Chapter 1	Structure of Bone A Nather, HJC Ong and Z Aziz	3
Chapter 2	Fracture Healing A Nather, MCB Feng and Z Aziz	19
Chapter 3	An Introduction to Biomechanics of Bone B P Pereira and A Thambyah	31
SECTION	NII: AUTOGRAFTS	
Chapter 4	Autogenous Bone Grafting in Orthopaedic Surgery KL Pan and S Ibrahim	59
Chapter 5	Vascularised Pedicular Bone Grafts PB Chacha	71
Chapter 6	Vascularised Autograft: Basic Sciences and Clinical Applications YK Kang and YG Chung	95
Chapter 7	Healing of Large, Non-Vascularised, Cortical Autologus Bone Transplants: An Experimental Study in Adult Cats A Nather	119

SECTION I	II: ALLOGRAFTS	
-	cole of Bone Allografts in Orthopaedic Surgery Nather and Z Aziz	139
-	etting Up a Tissue Bank Nather and LH Wang	155
Chapter 10	Quality Control Issues in Tissue Banking N Hilmy	173
Chapter 11	Is the Irradiation Dose of 25 kGy Enough to Sterilise Tissue Grafts? N Yusof	189
Chapter 12	Diploma Course Training of Tissue Bank Operators: 7 Years of Experience A Nather, WY Teo and LH Wang	213
Chapter 13	Healing of Large Diaphyseal Deep-Frozen Cortical Allografts A Nather	227
Chapter 14	Bone Allotransplantation: Future Directions SM Kumta, PC Leung and LK Fu	243
SECTION	IV: GENOMICS	
Chapter 15	The Human Genome S Aziz, BC Lin and A Nather	257
Chapter 16	Genomics in Orthopaedics A Nather, S Aziz and F Kagda	269
Chapter 17	Gene Therapy and New Bone Formation LHC Tsai, SYE Neo and A Nather	277
SECTION	V: BONE TISSUE ENGINEERING	
Chapter 18	Stem Cell Technology and its Commercial Potential S Rauff and RE Oakley	297

E Damien and PA Revell

Chapter 19 Setting Up a Tissue Engineering Laboratory

Contents

vii

313

Chapter 30	Fabrication of Granular Hydroxyapatite F Fazan	489
Chapter 31	Role of Corals and Coralline Ceramics in Orthopaedic Surgery V David, A Nather and KA Khalid	501
Chapter 32	Biomedical Use of Corals and Coralline Hydroxyapatite in Hard Tissue Replacement E Damien and PA Revell	513
Chapter 33	Coral as Bone Graft Substitute SA Hamid, AR Samsudin, R Salim and N Omar	533
SECTION	VIII: PROSTHESES	
Chapter 34	Rapid Prototyping in Orthopaedics: Principles and Applications J Abdullah and AY Hassan	547
Chapter 35	Custom Mega Prosthesis for Bone Reconstruction in Orthopaedic Surgery MV Natarajan, M Paraskumar and G Rajkumar	563
Index		591

Preface

This book discusses Bone Grafting using autografts from non-vascularised grafts to pedicled ones and free vascularised bone grafts and the various options to bone grafting ie. the use of bone substitutes. The latter ranges from Allografts, Genomics in Orthopaedic Practice with particular reference to Bone Formation, Tissue Engineering including all 3 elements of the triad — Cells, Scaffolds and Signalling Molecules to Ceramics and Prostheses. The section of Ceramics include some results from the ten million ringgit Multi-Centre Research Project in Malaysia namely the fabrication of Malaysian Hydroxyapatite and the development of Malaysian Coral.

This book is useful to clinicians and clinician scientists in the field of Orthopaedics, Plastic and Reconstructive Surgery and Maxillo-Facial Surgery who are commonly presented with the clinical problem of reconstructing large bone defects. It is also useful to research scientists namely tissue engineers and biomedical engineers pursuing the field of research on bone substitutes in the field of allograft transplantation, genomics of bone, bone tissue engineering and the development of new generation bioceramics and new prostheses.

Associate Professor Aziz Nather

This page is intentionally left blank

Introduction

A Nather

Bone Grafting is one of the commonest operations performed in Orthopaedics. Its indications include non-union, delayed union, packing bone cysts and cavities, elevating depressed articular fractures and reconstruction of large bone defects. Autografting from the iliac crest is the gold standard. However, due to limitations as to amount, size and shape of the graft that could be procured as well as associated donor site morbidity, bone substitutes have become extremely important and useful for Orthopaedic Surgery, Plastic Reconstructive Surgery and Maxillo-Facial Surgery.

Section I first addresses the Basic Science of Bone including the structure of bone and the biomechanics of bone and the repair process that occurs in fracture healing.

Autografts are discussed in detail in Section II including the method of performing autogenous bone grafting and its diverse clinical applications. The ipsilateral pedicled bone graft and also the free vascularised bone graft are covered in detail. The healing of large non-vascularised cortical bone transplants is also described.

Section III deals with a common bone substitute — Allografts. Allografts have served this function very well for the last 5 decades. A useful chapter especially for Universities who have not set up a tissue bank is the chapter on "Setting Up a Tissue Bank" which serves as a useful guide to all wishing to establish a new bone banking facility. Issues of quality control for allografts, value of gamma irradiation to sterilize the bone grafts and the training of tissue bank operators are addressed in detail. Biology

and biomechanics of healing of cortical allografts and the future of bone allotransplantation is also described.

Section IV introduces the field of Genomics and discusses the use of Genomics in Orthopaedic Practice with particular reference to bone formation.

Bone Tissue Engineering is covered in depth in Section V including methodology for culturing Mesenchymal Stem Cells, types of scaffolds used and types of carriers employed for transplantation of cells.

In Section VI the third element of the Tissue Engineering Triad is addressed, namely signalling Molecules or Growth Factors. The role of BMPs and PRP are discussed.

Section VII covers Ceramics. Its scope ranges from the need of new biomaterials to the role of Hydroxyapatite, Coral and Coralline Ceramics as bone substitutes. The fabrication of the Malaysian Hydroxyapatite and the Malaysian Coral recently developed are also described.

Finally, this book on Bone Graft Substitutes would not be complete without discussing one other option, namely Prostheses. Rapid prototyping techniques and the use of Custom MegaProstheses are described in Section VIII.