ADVANCED MACHINING TOWARDS IMPROVED MACHINABILITY OF DIFFICULT-TO-CUT MATERIALS

Edited by: A.K.M. Nurul Amin (Chief Editor) Dr. Erry Yulian Triblas Adesta Dr. Mohammad Yeakub Ali

IIUM PRESS

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

ADVANCED MACHINING TOWARDS IMPROVED MACHINABILITY OF DIFFICULT-TO-CUT MATERIALS

Edited by: A.K.M. Nurul Amin (Chief Editor) Dr. Erry Yulian Triblas Adesta Dr. Mohammad Yeakub Ali

Published by: IIUM Press International Islamic University Malaysia

First Edition, 2011 ©IIUM Press, IIUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

Advanced Machining Towards Improved Machinability of Difficult-To-Cut Materials: A.K.M. Nurul Amin, Erry Yulian Triblas Adesta & Mohammad Yeakub Ali

ISBN: 978-967-418-175-8

Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)

Printed by:

HUM PRINTING SDN.BHD.

No. 1, Jalan Industri Batu Caves 1/3
Taman Perindustrian Batu Caves
Batu Caves Centre Point
68100 Batu Caves
Selangor Darul Ehsan

Tel: +603-6188 1542 / 44 / 45 Fax: +603-6188 1543 EMAIL: iiumprinting@yahoo.com

		Dist of Contents
SEC	CTION A: HEAT ASSISTED MACHINING	1
1.	CHAPTER 1: INFLUENCE OF WORKPIECE PREHEATING ON CHATTER AND MACHINABILITY OF TITANIUM LOY - TIGA	AL4V 1
2.	CHAPTER 2: MACHINABILITY IMPROVEMENT IN END OF MILLING TITANIUM ALLOY TI-6AL-4V THROUGH PREHEATING	9
3.	CHAPTER 3: SOME ASPECTS OF IMPROVED MACHINABILITY PREHEATED MACHININING OF TITANIUM ALLOY TI-6AL-4V	IN 19
4.	CHAPTER 4: MACHINABILITY ASPECTS IN HEAT ASSISTED MACHINING OF HARDENED STEEL AISI H13 USING COATED CARBIDE TOOL	27
5	CHAPTER 5: TOOL WEAR AND SURFACE ROUGHNESS ASPECTS IN HEAT ASSISTED END MILLING OF AISI D2 HARDENED STEEL	35
6	CHAPTER 6: MODELING IN PREHEATED MACHINING OF AISI HARDENED STEEL	D2
		43
7	CHAPTER 7: RELATIVE PERFORMANCES OF PREHEATING, CRYOGENIC COOLING AND HYBRID TURNING OF STAINLESS STEEL AISI 304	49
SEC	CTION B: CHATTER AND SELECTED METHODS OF	
	CHATTER SUPPRESSION	57
8	CHAPTER 8: ROLE OF THE FREQUENCY OF SECONDARY SERRATED TEETH IN CHATTER FORMATION DURING TURNIS OF CARBON STEEL AISI 1040 AND STAINLESS STEEL	NG 57
9	CHAPTER 9: INFLUENCE OF THE ELASTIC SYSTEM AND CUTTING PARAMETERS ON CHATTER DURING MACHINING OF MILD STEEL	65
10	CHAPTER 10: INFLUENCE OF CHATTER ON TOOL LIFE DURING END MILLING OF ALUMINIUM AND ALUMINIUM	
	ALLOY ON VMC	75

	Advanced Machining	List of Contents
11	CHAPTER 11: A NEW METHOD FOR CHATTER SUPPRESSION AND IMPROVEMENT OF SURFACE ROUGHNESS IN END MILLING OF MILD STEEL	83
12	CHAPTER 12: APPLICATION OF PERMANENT ELECTROMA GNET FOR CHATTER CONTROL IN END MILLING OF MEDIUM CARBON STEEL	91
13	CHAPTER 13: APPLICATION OF PERMANENT ELECTROMA GNET FOR CHATTER CONTROL IN END MILLING OF TITANIUM ALLOY - TI6AL4V	99
14	CHAPTER 14: CHATTER SUPPRESSION IN END MILLING OF TITANIUM ALLOY TI6AL4V APPLYING PERMANENT MAGNET CLAMPED ADJACENT TO THE WORKPIECE	107
SE(CTION C: MODELING AND OPTIMIZATION IN MACHINING	117
15	CHAPTER 15: A COUPLED ARTIFICIAL NEURAL NETWORK AND RSM MODEL FOR THE PREDICTION OF CHIP SERRATION FREQUENCY IN END MILLING OF INCONEL 718	117
16	CHAPTER 16: APPLICATION OF RESPONSE SURFACE METHODOLOGY COUPLED WITH GENETIC ALGORITHM FOR SURFACE ROUGHNESS OF INCONEL 718	123
17	CHAPTER 17: DEVELOPMENT OF A MATHEMATICAL MODEL FOR THE PREDICTION OF SURFACE ROUGHNESS IN END MILLING OF STAINLESS STEEL SS 304	133
18	CHAPTER 18: DEVELOPMENT OF AN ARTIFICIAL NEURAL NETWORK ALGORITHM FOR PREDICTING THE CUTTING FORCE IN END MILLING OF INCONEL 718 ALL	OY 143
19	CHAPTER 19: DEVELOPMENT OF AN ARTIFICIAL NEURAL NETWORK ALGORITHM FOR PREDICTING THE SURFACE	149

ii

CHAPTER 20: DEVELOPMENT OF TOOL LIFE

UNCOATED WC INSERTS

PREDICTION MODEL OF TIAIN COATED TOOLS DURING

PART C: HIGH SPEED HARD MILLING OF AISI H13 STEEL

CHAPTER 21: MODELING FOR SURFACE ROUGHNESS IN END-MILLING OF TITANIUM ALLOY Ti-6Al-4V USING

20

21

155

161

Advanced Machining

r ·	c	a
List	01	Contents

		Bisi of Contents
22	CHAPTER 22: MODELING OF SURFACE ROUGHNESS DURING END MILLING OF AISI H13 HARDENED TOOL STEEL	167
23	CHAPTER 23: MODELING OF TOOL LIFE USING RESPONSE SURFACE METHODOLOGY IN HARD MILLING OF AISI D2 TOOL STEEL	175
24	CHAPTER 24: OPTIMIZATION OF SURFACE ROUGHNESS IN HIGH SPEED END MILLING OF TITANIUM ALLOY Ti-6AI-4V UNDER DRY CONDITION	181
25	CHAPTER 25: COMPARISON OF SURFACE ROUGHNESS IN END-MILLING OF TITANIUM ALLOY TI-6AL-4V USING UNCOATED WC-CO AND PCD INSERTS THROUGH GENERATION OF MODELS	189
26	CHAPTER 26: ASSESSMENT OF PERFORMANCE OF UNCOATED AND COATED CARBIDE INSERTS IN END MILLING OF TI–6AL–4V THROUGH MODELLING	195
	CTION D: CRYOGENIC AND HIGH SPEED MACHINING OF TALS AND NON METALS	203
27	CHAPTER 27: THE EFFECT OF CRYOGENIC COOLING ON MACHINABILITY OF STAINLESS STEEL DURING TURNING	203
28	CHAPTER 28: COMPARISON OF MACHINABILITY OF CERAMIC INSERT IN ROOM TEMPERATURE AND CRYOGENIC COOLING CONDITIONS DURING END MILLING INCONEL 718	209
29	CHAPTER 29: HIGH SPEED END MILLING OF SINGLE CRYSTAL SILICON SING DIAMOND COATED TOOL	L 217
30	CHAPTER 30: IMPLEMENTATION OF HIGH SPEED OF SILICON USING DIAMOND COATED TOOLS WITH AIR BLOWIN	IG 225
31	CHAPTER 31: ELIMINATION OF BURR FORMATION DURING END MILLING OF POLYMETHYL METHACRYLATE (PMMA) THROUGH HIGH SPEED MACHINING	233
32	CHAPTER 32: WEAR MECHANISMS IN END MILLING OF INCONEL 718	239

Advanced Machining

		List of Contents
33	CHAPTER 33: PERFORMANCE OF UNCOATED WC-CO INSERTS IN END MILLING OF ALUMINUM SILICON	
	CARBIDE (ALSiC)	247
34	CHAPTER 34: APPLICATION OF PCD INSERTS IN END MILLING OF ALUMINUM SILICON CARBIDE (ALSIC)	253
35	CHAPTER 35: EFFECTS OF SCRIBING WHEEL DIMENSIONS ON LCD GLASS CUTTING	259

Advanced Machining

Section B: Chatter and Selected Methods of Chatter Suppression in Machining

Chapter 7

Relative Performances of Preheating, Cryogenic Cooling and Hybrid Turning of Stainless Steel AISI 304

A.K.M. Nurul Amin², Kok, Md. Asif Mahmud³

1.2.3 Faculty of Engineering – International Islamic University Malaysia (IIUM)

Corresponding author's e-mail number: akamin@iium.edu.my

1.0 INTRODUCTION:

Chatter is an unwanted phenomenon in machining due to its adverse effects on the product quality, operation cost, machining accuracy, tool life, machine-tool bearings, and machine-tool life. The term defines the self-excited violent dynamic motion between the cutting tool and work piece [1]. During high speed machining of steel, large amount of energy is used in shearing process and substantial energy is converted to heat. Heat generation becomes more intensified in machining of high strength materials because the machining process requires more energy than that in cutting a low strength material. The rapid escalation of temperature at the cutting zone is the primary cause accountable for high diffusion wear rate leading to shorter tool life. High tool wear rate leads to high degree of chatter and poor surface finish. It is therefore essential to design effective cooling systems to bring down the temperature at the cutting zones. Cryogenic cooling is being looked at as a potential replacement of conventional mineral oil based coolants because the latter is being rejected on grounds on serious environmental and health problems that it causes [2]. Cryogenic cooling is the cooling approach to replace conventional coolant by liquefied gas in machining process [3]. The impact of cryogenic cooling on chip breaking and tool wear intensity during end milling and turning has been investigated by various researchers [3-7], but there has not been any study on the impact of cryogenic cooling on chip formation and chatter. Tungsteninert-gas (TIG) plasma heating could be used to replace Laser Beam heating and high frequency heating since TIG plasma heating also offers high heating capacity and at the same time the use of inert gas would be able to protect the work surface against oxidation during machining. In this research the TIG or tungsten-arc welding machine would therefore be used as an well controlled and precise heat source to preheat the uncut layer of the work material before it enters into the shearing zone. The major advantages of the plasma preheating are increased metal removal rates, results in no metallurgical damage to the work piece and increase in tool life [8]. Similarly there has been some works [9] on the influence of workpiece preheating using induction heating on machinability of work materials and chatter during end milling operation, the application of preheating technique in turning should be explored further to confirm its effectiveness of different heating process. It was found that preheating resulted in substantial lowering down of