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Abstract  

The present work deals with free vibration 

analysis of laminated composite plates using 

a present higher order displacement model. 

The present model is tested on the 

evaluation of free vibration of laminated 

composite plates in order to illustrate the 

deficiency of the classical plate theory and 

the first order shear deformation theory. The 

present work is also aimed at conducting a 

parametric study to investigate the 

frequency response of laminated composite 

plates for different material properties, 

number of layers, fiber orientations, 

boundary conditions and side to thickness 

ratios. A finite element computer code was 

developed and implemented to carry out the 

work. 

 

Introduction 
Engineering structures are generally 

designed on the basis of stress sustaining 

capacity, that is strength of the structural 

components. Other than strength of the 

elements, stability and vibration are also 

very important, especially when structural 

elements are thin and subjected to dynamic 

loads.  

 

Since weight is a crucial factor in aircraft 

structures, the use of conventional isotropic 

material gives very little room for weight 

savings. Unlike the isotropic materials, the 

properties of composite materials can be 

tailored to have very high strength and yet 

being very light. As the strength-to-weight 

ratio of composite materials is high, 

structures made of composites often become 

very thin. In case of a structure made of 

isotropic material, the natural frequency is 

high if the element is thin. Adjustment in the 

natural frequency of such an element can be 

made either by changing the thickness or 

adjusting the boundary conditions. But, in 

case of composite materials there lies an 

additional feature of adjusting the natural 

frequency by designing lamination scheme.  

 

Design of suitable lamination scheme can 

help to optimize the design of engineering 

structures. But as the kinematics and 

kinetics of composite materials are very 

much complicated, it is very difficult to even 

develop appropriate mathematical model for 

their analysis. So far some theories and 

models have been developed by different 

researchers and being applied for stress and 

vibration analysis of composite materials but 

still there lies lot of discrepancies in their 

results. As such the present work is aimed at 

applying a new mathematical model, 

deformation theory, for vibration analysis of 

laminated composite plates to study the 

suitability of the new model.  

 

Literature Review 
Many theories have been developed over the 

years to accurately predict the response of 

laminated composite plates. The earliest 

plate theory suggested was the Kirchhoff 

plate theory (CPT). In this theory the normal 

of the plane is assumed to be straight and 

normal in the deformed configuration. Such 

an assumption neglects the transverse shear 

effects, which have significant impact on the 

behavior of laminated composite plates. This 
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limits the usage of the theory for thin plates 

where the transverse shear effects are 

negligible.  

 

Since there are many structural applications 

using thick laminated composite plates with 

very high elasticity modulus to shear 

modulus ratio, the CPT becomes inadequate. 

Mindlin [1] further refined the CPT by 

including the transverse shear effects in his 

model and this theory is called the first order 

shear deformation theory (FSDT). In this 

model, the normal of the plane is assumed to 

be straight but no longer normal in the 

deformed configuration. This assumption 

makes the transverse shear strains and 

stresses to be constant in the thickness 

direction of the laminated plate. Since the 

assumption is very crude, a shear correction 

factor was introduced for a more realistic 

prediction of the transverse shear effects. 

Determining the value of the shear 

correction factor is problem dependent thus 

makes it cumbersome. Many improved 

models have been suggested by various 

researchers to overcome the deficiency of 

the FSDT model. In the present work a 

higher order model (HSDT) suggested by 

Pervez [2] has been used to investigate the 

applicability and suitability of the model.      

 

Finite element modeling         
The generalized two-dimensional 

displacement field of a plate at any time, t, is 

given as: 

  

( ) ( ) xxo zztyxutzyxu ζαθα 3
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where (u, v, w) are the displacement of a 

generic point (x, y, z) in a laminated 

anisotropic plate at time, t, (uo, vo, wo) are 

the displacements of the middle plane of the 

laminated plate. θx(x, y, t) and θy(x, y, t) are 

the rotations of the normals of the reference 

plane about y and x axis respectively. ζx(x, 

y, t) and ζy(x, y, t) are the additional higher 

order functions that describes the warping 

behavior of the plate. Equation (1) 

corresponds to α1=1 and α2=0 for the FSDT 

model whereas the HSDT model 

corresponds α1=1 and α2=1.  

 

For an undamped free vibration problem of 

laminated composite plate the equilibrium 

equation is given as: 

 

0}]{[}]{[
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=+ DKDM   (2) 

 

where [K] is the assembled stiffness 

matrix, [M] is the assembled mass 

matrix and {D} is the assembled degrees 

of freedom. Equation (2) is solved using 

the inverse vector iteration scheme [3] to 

obtain the fundamental frequency and its 

corresponding mode shapes.  
 

Results and discussion  
The dimensionless physical parameters of 

typical graphite-epoxy are summarized in 

table 1. 

 
Material Properties Values 

E1 40.0 

E2 1.0 

G12 0.6 

G13 0.6 

G23 0.5 

ν 0.25 

ρ 1.0 

Table 1: Dimensionless orthotropic property 

of graphite epoxy 

 

Table 2 and 3 compare the results of the 

present HSDT model with the results of 

other models. 

 
Model Side to thickness ratio 

5 10 20 50 100 

CPT [4] 10.584 

(24.12%) 

11.011 

(6.52%) 

11.125 

(0.80%) 

11.158  

(-0.94%) 

11.163  

(-1.19%) 

Wu and 

Chen [4] 

8.527 10.337 11.037 11.264 11.297 

Reddy 

and Phan 

9.010 

(5.66%) 

10.449 

(1.80%) 

10.968  

(-0.63%) 

11.132  

(-1.17%) 

11.156  

(-1.25%) 
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[4] 

FSDT 9.087 

(6.57%) 

10.582 

(2.37%) 

11.114 

(0.70%) 

11.282 

(0.16%) 

11.311 

(0.12%) 

HSDT 9.024 

(5.83%) 

10.552 

(2.08%) 

11.114 

(0.70%) 

11.282 

(0.16%) 

11.311 

(0.12%) 

Table 2: Dimensionless fundamental 

frequency of simply supported 2 layered 

anti-symmetric square cross-ply laminate. 

Percentage of error in reference to Wu and 

Chen [4]. 

 

    
Model Side to thickness ratio 

4 10 20 50 100 

CPT [4] 17.907 

(95%) 

18.625 

(24%) 

18.767 

(6.4%) 

18.799 

(0.7%) 

18.804 

(-0.16%) 

Wu and 

Chen [4] 

9.193 15.069 17.636 18.670 18.835 

Reddy 

and Phan 

[4] 

9.497 

(3.31%) 

15.270 

(1.33%) 

17.668 

(0.18%) 

17.606 

(-5.7%) 

18.755 

(-0.42%) 

FSDT 9.734 

(5.88%) 

15.588 

(3.44%) 

17.848 

(1.20%) 

18.716 

(0.25%) 

18.857 

(0.12%) 

HSDT 9.399 

(2.24%) 

15.286 

(1.44%) 

17.736 

(0.57%) 

18.697 

(0.14%) 

18.851 

(0.08%) 

Table 3: Dimensionless fundamental 

frequency of simply supported 4 layered 

symmetric square cross-ply laminate. 

Percentage of error in reference to Wu and 

Chen [4]. 

 

The results clearly show that the present 

HSDT model predicts the frequency very 

close to the results of Wu and Chen [4]. In 

table 1, the CPT was found to predict the 

fundamental frequency about 24% higher as 

compared to the solution of Wu and Chen 

[4], whereas the HSDT model gives 

percentage error of only 5.83%. In the 

symmetric lamination, table 3, the CPT was 

found to predict the fundamental frequency 

as high as 95% and the present model gives 

an error of 2.24% which is better than the 

solution of Reddy and Phan [4].     

     

Conclusions 

The complicated behavior of laminated 

plates has shown the need for further 

developments of efficient numerical tools 

for free vibration study of laminated plates. 

The present work was aimed to apply a new 

mathematical model to overcome the 

inadequacy of the CPT and the FSDT. The 

finite element model developed based on the 

present HSDT model has proven to give 

accurate results when compared to other 

alternative models. Though other higher 

order models can provide better solutions, it 

cannot be done without the expense of 

computational time. The present model not 

only gives better results but also saves the 

computational time and effort.  
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