Research Issues in Wireless

Communications and Networking

Farhat Anwar Wajdi Al-Khateeb

IIUM Press INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

Research Issues in Wireless Communications Networking

Farhat Anwar & Wajdi Al-Khateeb

Published by: **HUM Press** International Islamic University Malaysia

First Edition, 2011 ©HUM Press, HUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopving, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia Cataloguing-in-Publication Data

Farhat Anwar & Wajdi Al-Khateeb: Research Issues in Wireless Communications Networking

ISBN: 978-967-418-149-9

Member of Majlis Penerbitan Ilmiah Malaysia - MAPIM (Malaysian Scholarly Publishing Council)

Printed by :

HUM PRINTING SDN.BHD. No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan Tel: +603-6188 1542 / 44 / 45 Fax: +603-6188 1543 EMAIL: iiumprinting@yahoo.com

CHAPTER 19

STATE-OF-THE-ART THEORETICAL MODELS FOR OPTIMIZING PROTOCOL PERFORMANCE IN WIRELESS SENSOR NETWORKS

Abdulazeez F. Salami^{1.a}, Farhat Anwar^{2.b}, Abiodun M. Aibinu^{3.c}, Muktar Hussaini^{4.d}, Habeeb

Bello-Salau^{5,e}

^{1.2.3.4.5}ECE Dept, Fac. of Eng., International Islamic Univ. Malaysia (IIUM) Jalan Gombak, 53100 Kuala Lumpur, Malaysia ^akermkerm1@gmail.com, ^bfarhat@iium.edu.my, ^cmaibinu@gmail.com, ^dbellosalau@gmail.com, ^cintaijum@gmail.com

19.1 CONVEX OPTIMIZATION BASED TECHNIQUES

Theoretical models for effective resource allocation have attracted a lot of research interests since the development of Lagrange duality and convex optimization. Current research works in this area are based on designing theoretical frameworks for Network Utility Maximization (NUM) [1, 2]. The efficiency of the NUM theoretical model has been critically examined by researchers to examine its capability for effective resource allocation and congestion control in wired and wireless networks [3, 4]. In order to foster better understanding of the NUM framework, a logical presentation of the research issues in different layers of WSN is given in Table 19.1 to highlight the importance and interdependence of the issues.

Layer	Research Issues
Data Link (MAC)	Power Control/Topology Control Channel Assignment/Bandwidth Allocation/Medium Access
	Link Error Control
Network	Routing
	Mobility Management
Transport	Retransmission
	Congestion Control (Flow Control/Adaptive Rate Control)
Others	Placement Control/Layout Optimization
	Clustering Control
Cross Layer	Joint Rate and Power
	Joint Routes and Flows
	Joint Link Scheduling and Power
	Joint Congestion and MAC

Table 19.1: Layers and Corresponding Research Areas in a Generic WSN

19.1.1 NUM and Rate Control