Provided by The International Islamic University Malaysia Reposito # Advances in Mobility Management for IP Networks Editors: Aisha Hassan Abdalla Hashim Othman Khalifa Shihab A. Hameed **IIUM PRESS** INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA # Advances in Mobility Management for IP Networks ## **Editors:** Aisha Hassan Abdalla Hashim Othman Khalifa Shihab A. Hameed #### Published by: #### IIUM Press International Islamic University Malaysia First Edition, 2011 ©IIUM Press, IIUM All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher. Perpustakaan Negara Malaysia Cataloguing-in-Publication Data Aisha Hassan Abdalla Hashim, Othman Khalifa, Shihab A. Hameed: Advances in Mobility Management for IP Networks ISBN: 978-967-418-140-6 Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council) Printed by: HUM PRINTING SDN.BHD. No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan Tel: +603-6188 1542 / 44 / 45 Fax: +603-6188 1543 EMAIL: iiumprinting@yahoo.com # **TABLE OF CONTENTS** | No. | Title | Page
No. | |-----|---|-------------| | | Acknowledgement | V | | | Preface | vi | | | Part 1: Internet Engineering Task Force (IETF) Approaches for
Multicast and Mobility Management | 1 | | 1 | Introduction to Multicast Mobility Management
Aisha Hassan Abdalla Hashim, Shihab A. Hameed, Jamal Ibrahim
Daoud | 2 | | 2 | Research Direction in Mobile IPv6
Azana Hafizah Mohd Aman, Aisha Hassan Abdalla Hashim,
Sellami Ali, Wajdi Al-Khateeb | 9 | | 3 | Operation of Context Transfer Protocol
Aisha Hassan Abdalla Hashim, Othman Khalifa, Azana Hafizah
Mohd Aman, Farhat Anwar, Shihab A. Hameed | 15 | | 4 | The Study of Multicast Hierarchical Mobile IPv6
Azana Hafizah Mohd Aman, Aisha Hassan Abdalla Hashim, Akram
M. Zeki | 21 | | 5 | The Study Of Multicast Listener Discovery
Aisha Hassan Abdalla Hashim, lmad Fakhri Taha Alshaikhli,
Azana Hafizah Mohd Aman, Sellami Ali | 27 | | 6 | MIPv6 Based Approaches for Mobility Management
Azana Hafizah Mohd Aman, Aisha Hassan Abdalla Hashim, Imad
Fakhri Taha Alshaikhli | 32 | | 7 | HMIPv6 Based Approaches for Mobility Management
Aisha Hassan Abdalla Hashim, Wajdi Al-Khateeb, Farhat Anwar,
Azana Hafizah Mohd Aman | 36 | # Part 2: Extensions to Mobile Multicast Schemes | 8 | Introduction to Mobility Multicast Schemes
Aisha Hassan Abdalla Hashim, Azana Hafizah Mohd Aman,
Sellami Ali, Othman Khalifa | 42 | |----|---|-----| | 9 | Qualitative Study of Mobility Management Approaches
Azana Hafizah Mohd Aman, Aisha Hassan Abdalla Hashim, Imad
Fakhri Taha Alshaikhli, Farhat Anwar | 48 | | 10 | Architecture of M-HMIPv6/CXTP
Aisha Hassan Abdalla Hashim, Azana Hafizah Mohd Aman | 53 | | 11 | Intra Domain Movement of M-HMIPv6/CXTP
Azana Hafizah Mohd Aman, Aisha Hassan Abdalla Hashim | 58 | | 12 | Inter Domain Movement of M-HMIPv6/CXTP
Azana Hafizah Mohd Aman, Aisha Hassan Abdalla Hashim | 64 | | 13 | Message Format of M-HMIPv6/CXTP
Aisha Hassan Abdalla Hashim, Azana Hafizah Mohd Aman | 70 | | 14 | Signaling Flow of M-HMIPv6/CXTP
Azana Hafizah Mohd Aman, Aisha Hassan Abdalla Hashim | 76 | | 15 | Development of the Service Recovery Time and Signaling Cost
Function
Aisha Hassan Abdalla Hashim, Azana Hafizah Mohd Aman | 83 | | 16 | Evaluation Methods in Computer Networking
Aisha Hassan Abdalla Hashim, Azana Hafizah Mohd Aman | 88 | | 17 | Ns2 Simulation Environment in M-HMIPv6
Omer Mahmoud, Azana Hafizah Mohd Aman | 93 | | 18 | Service Recovery of Multicast Hierarchical Mobile IPv6 with
Context Transfer
Aisha Hassan Abdalla Hashim, Azana Hafizah Mohd Aman | 101 | | 19 | The Study of Signaling Cost Of M-HMIPv6 with Context Transfer Aisha Hassan Abdalla Hashim, Azana Hafizah Mohd Aman | 106 | | 20 | Simulation Study of HMIPv6 And M-HMIPv6/CXTP Azana Hafizah Mohd Aman, Aisha Hassan Abdalla Hashim | 112 | | 21 | Packet Loss in M-HMIPv6 with Context Transfer Azana Hafizah Mohd Aman, Aisha Hassan Abdalla Hashim | 118 | |----|---|-----| | 22 | Evaluation of Handover Latency in M-HMIPv6 with Context
Transfer
Azana Hafizah Mohd Aman, Aisha Hassan Abdalla Hashim | 124 | | 23 | Future Directions
Azana Hafizah Mohd Aman, Omer Mahmoud, Aisha Hassan
Abdalla Hashim | 128 | | 24 | MIPv6 Extensions
Abdulrhman Mohammed Bin Mahfodh, Abdi Nasir Ahmed, Aisha
Hassan AbdalllaHashim, Omer Mahmoud, Md. Rafiqul Islam | 133 | | 25 | IP Multicast
Abdulrhman Mohammed Bin Mahfodh, Abdi Nasir Ahmed, Aisha
Hassan AbdalllaHashim, Md. Rafiqul Islam, Rashid Abdelhaleem
Saced | 139 | | 26 | Mobility Approaches to Support IP Multicast
Abdulrhman Mohammed Bin Mahfodh, Abdi Nasir Ahmed, Aisha
Hassan AbdalllaHashim, Rashid Abdelhaleem Saeed, Omer
Mahmoud | 144 | | 27 | Hierarchichal Mobile Multicast Context Transfer (HMMCT)
Abdulrhman Mohammed Bin Mahfodh, Abdi Nasir Ahmed, Aisha
Hassan AbdalllaHashim, Omer Mahmood, Rashid Abdelhaleem
Saeed | 152 | | 28 | Simulation Evaluation of HMMCT
Abdulrhman Mohammed Bin Mahfodh, Abdi Nasir Ahmed, Aisha
Hassan AbdalllaHashim, Omer Mahmood, Rashid Abdelhaleem
Saeed | 157 | | 29 | Analytical Study of HMMCT
Abdulrhman Mohammed Bin Mahfodh, Abdi Nasir Ahmed, Aisha
Hassan Abdalla Hashim, Faiz Ahmed Mohamed Elfaki, Rashid Saad | 165 | | | Part 3: QoS Approaches | | | 30 | Introduction to QoS Approaches in Mobile Ad Hoc Networks | 171 | | | Mohammad Qabajeh, Aisha-Hassan A. Hashim, Othman Khalifa,
Liana Qabajeh, Akram M. Zeki | | | 31 | Routing Protocols For Ad Hoc Wireless Networks | 176 | |----|--|-----| | | Mohammad Qabajeh, Aisha-Hassan A. Hashim, Othman Khalifa,
Liana Qabajeh, Gharib Subhi Mahmoud Ahmed | | | 32 | Quality of Service (QoS) Issues In Manets | 181 | | | Mohammad Qabajeh, Aisha-Hassan A. Hashim, Othman Khalifa,
Liana Qabajeh, Jamal Ibrahim Daoud | | | 33 | Supporting QoS Multicast Routing Over Mobile Ad Hoc Networks | 186 | | | Mohammad Qabajeh, Aisha-Hassan A. Hashim, Othman Khalifa,
Liana Qabajeh | | | 34 | Position-Based Routing Protocols For Ad-Hoc Networks | 191 | | | Mohammad Qabajeh, Aisha-Hassan A. Hashim, Othman Khalifa,
Liana Qabajeh | | | 35 | Simulation in Wireless Networks: An Overview | 196 | | | Mohammad Qabajeh, Aisha-Hassan A. Hashim, Othman Khalifa,
Liana Qabajeh , Faiz Ahmed Mohamed Elfaki | | ### POSITION-BASED ROUTING PROTOCOLS FOR AD-HOC NETWORKS # Mohammad Qabajeh 1 , Aisha-Hassan A. Hashim 2 , Othman Khalifa 3 , Liana Qabajeh 4 ECE Dept, Fac. of Eng., International Islamic Univ. Malaysia (IIUM), Jalan Gombak, 53100 Kuala Lumpur, Malaysia. m_qahajeh@yahoo.com¹, aisha@iium.edu.my², Khalifa@iium.edu.my³, liana_tamimi@ppu.edu⁴ #### 34.1 INTRODUCTION The function of a routing protocol in mobile Ad-Hoc network is to establish routes between different nodes. Ad-Hoc routing protocols are difficult to design in general. There are two main reasons for that; the highly dynamic nature of these networks due to high mobility of the nodes, and the need to operate efficiently with limited resources such as network bandwidth and limited memory and battery power of the individual nodes in the network. Moreover, routing protocols in Ad-Hoc networks, unlike static networks, do not scale well due to frequently changing network topology, lack of predefined infrastructure like routers, peer-to-peer mode of communication and limited radio communication range [1]. For the aforementioned reasons, many routing protocols which are compatible with the characteristics of Ad-Hoc networks have been proposed. In general, they can be divided into two main categories: topology-based and position-based. Topology-based routing protocols use information about links that exist in the network to perform packet forwarding. In general, topology-based are considered not to scale in networks with more than several hundred nodes [2]. In recent developments, position-based routing protocols exhibit better scalability, performance and robustness against frequent topological changes [1, 2]. Position-based routing protocols use the geographical position of nodes to make routing decisions, which resultsin improving efficiency and performance. These protocols require that a node be able to obtain its own geographical position and the geographical position of the destination. Generally, this information is obtained via Global Positioning System (GPS) and location services. The routing decision at each node is then based on the destination's position contained in the packet and the position of the forwarding node's neighbors. So the packets are delivered to the nodes in a given geographic region in a natural way. There are different kinds of position-based protocols that are categorized into three main groups: restricted directional flooding, greedy and hierarchical routing protocols[3].