PRINCIPLES OF TRANSDUCER DEVICES AND COMPONENTS

Edited by Sheroz Khan, International Islamic University Malaysia Jalel Chebil, International Islamic University Malaysia Othman O Khalifa, International Islamic University Malaysia

PRINCIPLES OF TRANSDUCER DEVICES AND COMPONENTS

Edited by

Sheroz Khan, International Islamic University Malaysia Jalel Chebil, International Islamic University Malaysia Othman O Khalifa, International Islamic University Malaysia

IIUM Press

Published by: IIUM Press International Islamic University Malaysia

First Edition, 2011 ©IIUM Press, IIUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

Sheroz Khan, Jalal Chebil & Othman Khalifa: Principles of Transducer Devices and Components

ISBN: 978-967-418-172-7

Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)

Printed By: IIUM PRINTING SDN.BHD. No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan Tel: +603-6188 1542 / 44 / 45 Fax: +603-6188 1543 EMAIL: iiumprinting@yahoo.com

CONTENTS

Chapter		Page No.
1	RC CIRCUIT RESPONSE Atika Arshad, Rumana Tasnim, Sheroz Khan, AHM Zahirul Alam	1
2	RL CIRCUIT RESPONSE Rumana Tasnim, Atika Arshad, Sheroz Khan, Musse Mohamod	7
3	RLC CIRCUIT RESPONSE Rumana Tasnim, Atika Arshad, Sheroz Khan, Musse Mohamod	13
4	CAPACITIVE SENSING FOR NON-CONTACT MEANS OF MEASUREMENT Rumana Tasnim, Atika Arshad, Sheroz Khan, Musse Mohamod, Nazmus Saquib	19
5	SENSORS IN ELECTRONIC APPLICATIONS Rumana Tasnim, Atika Arshad, Sheroz Khan, Musse Mohamod	27
6	CONTACT TYPE AND NONCONTACT TYPE GAS FLOW MEASURING SENSORS Rumana Tasnim, Atika Arshad, Nazmus Saquib, Sheroz Khan, Musse Mohamod	33
7	OUTPUT CONTROL DEVICES: ACTUATORS Rumana Tasnim, Atika Arshad, Sheroz Khan, Musse Mohamod	39
8	INDUCTIVE POWER SYSTEM FOR ENERGY HARVESTING Atika Arshad, Rumana Tasnim, Sheroz Khan, AHM Zahirul Alam	45
9	ON THE ELECTRODE ARRANGEMENTS OF CAPACITIVE SENSOR FOR TWO PHASE GAS FLOW MEASUREMENT Rumana Tasnim, Atika Arshad, Sheroz Khan, Musse Mohamod	53
10	BASIC CONCEPT OF INDUCTANCE FOR INDUCTIVE TRANSDUCERS Atika Arshad, Rumana Tasnim, Sheroz Khan, AHM Zahirul Alam	59
11	MAGNETIC PROPERTIES FOR MAGNETIC TRANSDUCER Atika Arshad, Rumana Tasnim, Sheroz Khan, AHM Zahirul Alam	65
12	MAGNETIC, HYSTERESIS THEORY: APPLICATION PERSPECTIVE Atika Arshad, Rumana Tasnim, Sheroz Khan, AHM Zahirul Alam	71

13	THE PRINCIPLE OF RESISTIVE SENSING Atika Arshad, Rumana Tasnim, Sheroz Khan, AHM Zahirul Alam	75
14	SPIKES BLOCKING AND SURGE PROTECTION Ahmad Lutfi Torla, Sheroz Khan, Asan Gani	83
15	VOLTAGE SUPPLY AND VOLTAGE REGULATION Ahmad Lutfi Torla, Sheroz Khan, Asan Gani	89
16	FULL-WAVE RECTIFICATION OF A LOW-VOLTAGE SOURCE Ahmad Lutfi Torla, Sheroz Khan, Asan Gani	99
17	DESIGN OF DIFFERENTIAL RESISTIVE MEASURING SYSTEM AND ITS APPLICATIONS Deji Abdulwahab, Sheroz Khan, Jalel Chebil	107
18	LINEARIZING TECHNIQUES FOR SENSOR OUTPUT Mohammad Tahir Siddiqi, Sheroz Khan, Ummer Siddiqi	115
19	SENSOR AND SENSOR RESPONSE-ISSUES AND INTERFACING Syed Masrur Ahmmad, Sheroz Khan, Anis Nurashinkin, Md Rasiuddin Khan	119
20	UWB PULSE GENERATION SHAPING AND ANALYSIS Zeeshan Shahid, Sheroz Khan, AHM Zahirul Alam	133
21	POWER SUPPLY POWER-SUPPLY INTERFERENCE IN SMART SENSORS-TO-MICRONROLLER INTERFACE FOR BIOMEDICAL SIGNALS Mohammad Ashraful, Sheroz Khan, Muhammad Ibrahimy	139
22	RESPONSE AND INACCURACY ISSUES OF SENSORS Mohammad Ashraful, Sheroz Khan, Muhammad Ibrahimy	165
23	PERFORMANCE IMPROVEMENT OF SENSORS RESPONSE USING PIECE-WISE NON-LINEAR (PWL) A/D AND PULSE- WIDTH MODULATION (PWM) A/D TECHNIQUES Ismaila Tijani, Sheroz Khan	175
24	POWER SUPPLY INTERFERENCE IN SMART SENSOR MICROCONTROLLER INTERFACE Ismaila Tijani, Sheroz Khan	185

25	2.45 GHz PASSIVE RFID TAG ANTENNA MOUNTING ON VARIOUS PLATFORMS Abubeker A. Yussuf, Md Rafiqul Islam, Sheroz Khan, Othman O. Khalifa, AHM Zahirul Alam	201
26	ANALYSIS OF HYBRID STEPPER MOTOR PERFORMANCE UNDER THE INFLUENCE OF VOLTAGE SUPPLY INTERFERENCE Abdulazeez F. Salami, Wahab A. Lawal, Sheroz Khan, Teddy Surya Gunawan, Sigit Puspito Wigati Jarot	217
27	PC SOUND CARD BASED INSTRUMENTATION AND CONTROL Teddy Surya Gunawan	229
28	PIECE-WISE LINEAR ANALOG TO DIGITAL (PLADC) CONVERTER PROCESS Abdulazeez F. Salami, Wahab A. Lawal, Sheroz Khan, AHM Zahirul Alam	239
29	DESIGN AND IMPLEMENTATION OF AN OPTIMAL FUZZY LOGIC CONTROLLER USING EGENTIC ALGORITHM Salami Femi Abdulazeez, Lawal Wahab Adetunji, Sheroz Khan, AHM Zahirul Alam, Momoh Jimoh E. Salami, Shihab Ahmed Hameed, Aisha Hasan Abdalla and Mohd Rafiqul Islam	249
30	DESIGN AND HARDWARE IMPLEMENTATION OF CONDITIONING CIRCUIT FOR ACCURATE READING FROM TRANSDUCERS WITH NONLINEAR RESPONSES Khairul Hasan, Aliza Aini Md Ralib, Ma Li Ya, Atika Arshad, Sheroz Khan	265
31	TRANSDUCERS-TO-MICROCNTROLLER INTERFACES- SOFTWARE SOLUTION APPROACH Lawal Wahab Adetunji, Salami Femi Abdulaziz, Sheroz Khan, AHM Zahirul Alam, Mohammad Rafiqul Islam, Shihab A. Hameed and Aisha Hasan Abdalla	277
32	WAVELET ANALYSIS OF THE ECG SIGNALS FOR THREE COMMON HEART DISEASES IN JORDAN Jalel Chebil, Jamal Al Nabulsi	291
33	FUNCTIONAL ELECTRICAL STIMULATION SYSTEM AND PROFILE FOR WALKING Noreha Abdul Malik	303

34	FUZZY LOGIC BASED TEMPERATURE CONTROL OF THERMOELECTRIC COOLER FOR SINGLE PHOTON	
	AVALANCHE DIODE APPLICATION	311
	Nurul Izzati Samsuddin, Salmiah Ahmad, Nurul Fadzlin Hasbullah	
35	SPECTRUM SENSING FOR COGNITIVE RADIOS	317
	Izyan Munyanti Abu Hanifah, Siti Natrah Che Rus, Sigit Puspito	
	Wigati Jarot	
36	COGNITIVE RADIO VS INTELLIGENT ANTENNA	327
	Siti Rabani Mat Nawi, Nurul Farhah Toha, Khaizuran Abdullah, M.	
	Rafiqul Islam, Sheroz Khan	
37	APPLICATION AND CASE STUDIES OF MAGNETIC	
	INDUCTION	341
	Atika Arshad, Kumana Tasnim, Sheroz Khan, A H M Zahirul Alam	

Chapter 29

DESIGN AND IMPLEMENTATION OF AN OPTIMAL FUZZY LOGIC CONTROLLER USING EGENTIC ALGORITHM

SALAMI FEMI ABDULAZEEZ, LAWAL WAHAB ADETUNJI, SHEROZ KHAN, AHM Zahirul Alam, Momoh Jimoh E. Salami, Shihab Ahmed Hameed, Aisha Hasan Abdalla and Mohd Rafiqul Islam

29.0 INTRODUCTION

Most control systems suffer from problems related to undesirable overshoot, longer settling times and vibrations while going from one state to another state. Works so far reported techniques which are on how to overcome or reduce the effects of these issues for ensuring smoother and finely tuned controlling process. The devised solution is software-based which employs an algorithmic approach for programming a PIC16F877A microcontroller, thus eliminating altogether the parametric dependence issues while adding the benefits of easier modification to suit a given control system for varying operational conditions. The approach is first simulated using MATLAB/and the simulated results are verified by programming the PIC16F877A microcontroller with the algorithm and using it on a temperature control system where a fan is regulated in response to variations in the ambient system temperature. The results justify the effectiveness of the approach implemented in this study and they further prove that the optimized Fuzzy Logic Controller is functioning better than the conventional PID Controller.

29.1 APPLICATIONS

Over the years, control of processes and systems in the industry is customarily done by experts through the conventional PID control techniques. This is as a result of its simplicity, low cost design and robust performance in a wide range of operating conditions. Although the PID controllers have gained widespread usage across technological industries, it must also be pointed out that the unnecessary mathematical rigorosity, preciseness and accuracy involved with the design of the controllers have been a major drawback [1]. This has made it difficult if not impossible for designers, engineers and technology experts to design intelligent complex systems, nonlinear systems higher order and time-delayed linear systems that can satisfactorily behave as expected while operating in the human-machine interface. However, various techniques and modifications to the conventional PID controllers have been employed in order to overcome these