PRINCIPLES OF TRANSDUCER DEVICES AND COMPONENTS

Edited by Sheroz Khan, International Islamic University Malaysia Jalel Chebil, International Islamic University Malaysia Othman O Khalifa, International Islamic University Malaysia

PRINCIPLES OF TRANSDUCER DEVICES AND COMPONENTS

Edited by

Sheroz Khan, International Islamic University Malaysia Jalel Chebil, International Islamic University Malaysia Othman O Khalifa, International Islamic University Malaysia

IIUM Press

Published by: IIUM Press International Islamic University Malaysia

First Edition, 2011 ©IIUM Press, IIUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

Sheroz Khan, Jalal Chebil & Othman Khalifa: Principles of Transducer Devices and Components

ISBN: 978-967-418-172-7

Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)

Printed By: IIUM PRINTING SDN.BHD. No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan Tel: +603-6188 1542 / 44 / 45 Fax: +603-6188 1543 EMAIL: iiumprinting@yahoo.com

CONTENTS

Chapter		Page No.
1	RC CIRCUIT RESPONSE Atika Arshad, Rumana Tasnim, Sheroz Khan, AHM Zahirul Alam	1
2	RL CIRCUIT RESPONSE Rumana Tasnim, Atika Arshad, Sheroz Khan, Musse Mohamod	7
3	RLC CIRCUIT RESPONSE Rumana Tasnim, Atika Arshad, Sheroz Khan, Musse Mohamod	13
4	CAPACITIVE SENSING FOR NON-CONTACT MEANS OF MEASUREMENT Rumana Tasnim, Atika Arshad, Sheroz Khan, Musse Mohamod, Nazmus Saquib	19
5	SENSORS IN ELECTRONIC APPLICATIONS Rumana Tasnim, Atika Arshad, Sheroz Khan, Musse Mohamod	27
6	CONTACT TYPE AND NONCONTACT TYPE GAS FLOW MEASURING SENSORS Rumana Tasnim, Atika Arshad, Nazmus Saquib, Sheroz Khan, Musse Mohamod	33
7	OUTPUT CONTROL DEVICES: ACTUATORS Rumana Tasnim, Atika Arshad, Sheroz Khan, Musse Mohamod	39
8	INDUCTIVE POWER SYSTEM FOR ENERGY HARVESTING Atika Arshad, Rumana Tasnim, Sheroz Khan, AHM Zahirul Alam	45
9	ON THE ELECTRODE ARRANGEMENTS OF CAPACITIVE SENSOR FOR TWO PHASE GAS FLOW MEASUREMENT Rumana Tasnim, Atika Arshad, Sheroz Khan, Musse Mohamod	53
10	BASIC CONCEPT OF INDUCTANCE FOR INDUCTIVE TRANSDUCERS Atika Arshad, Rumana Tasnim, Sheroz Khan, AHM Zahirul Alam	59
11	MAGNETIC PROPERTIES FOR MAGNETIC TRANSDUCER Atika Arshad, Rumana Tasnim, Sheroz Khan, AHM Zahirul Alam	65
12	MAGNETIC, HYSTERESIS THEORY: APPLICATION PERSPECTIVE Atika Arshad, Rumana Tasnim, Sheroz Khan, AHM Zahirul Alam	71

13	THE PRINCIPLE OF RESISTIVE SENSING Atika Arshad, Rumana Tasnim, Sheroz Khan, AHM Zahirul Alam	75
14	SPIKES BLOCKING AND SURGE PROTECTION Ahmad Lutfi Torla, Sheroz Khan, Asan Gani	83
15	VOLTAGE SUPPLY AND VOLTAGE REGULATION Ahmad Lutfi Torla, Sheroz Khan, Asan Gani	89
16	FULL-WAVE RECTIFICATION OF A LOW-VOLTAGE SOURCE Ahmad Lutfi Torla, Sheroz Khan, Asan Gani	99
17	DESIGN OF DIFFERENTIAL RESISTIVE MEASURING SYSTEM AND ITS APPLICATIONS Deji Abdulwahab, Sheroz Khan, Jalel Chebil	107
18	LINEARIZING TECHNIQUES FOR SENSOR OUTPUT Mohammad Tahir Siddiqi, Sheroz Khan, Ummer Siddiqi	115
19	SENSOR AND SENSOR RESPONSE-ISSUES AND INTERFACING Syed Masrur Ahmmad, Sheroz Khan, Anis Nurashinkin, Md Rasiuddin Khan	119
20	UWB PULSE GENERATION SHAPING AND ANALYSIS Zeeshan Shahid, Sheroz Khan, AHM Zahirul Alam	133
21	POWER SUPPLY POWER-SUPPLY INTERFERENCE IN SMART SENSORS-TO-MICRONROLLER INTERFACE FOR BIOMEDICAL SIGNALS Mohammad Ashraful, Sheroz Khan, Muhammad Ibrahimy	139
22	RESPONSE AND INACCURACY ISSUES OF SENSORS Mohammad Ashraful, Sheroz Khan, Muhammad Ibrahimy	165
23	PERFORMANCE IMPROVEMENT OF SENSORS RESPONSE USING PIECE-WISE NON-LINEAR (PWL) A/D AND PULSE- WIDTH MODULATION (PWM) A/D TECHNIQUES Ismaila Tijani, Sheroz Khan	175
24	POWER SUPPLY INTERFERENCE IN SMART SENSOR MICROCONTROLLER INTERFACE Ismaila Tijani, Sheroz Khan	185

25	2.45 GHz PASSIVE RFID TAG ANTENNA MOUNTING ON VARIOUS PLATFORMS Abubeker A. Yussuf, Md Rafiqul Islam, Sheroz Khan, Othman O. Khalifa, AHM Zahirul Alam	201
26	ANALYSIS OF HYBRID STEPPER MOTOR PERFORMANCE UNDER THE INFLUENCE OF VOLTAGE SUPPLY INTERFERENCE Abdulazeez F. Salami, Wahab A. Lawal, Sheroz Khan, Teddy Surya Gunawan, Sigit Puspito Wigati Jarot	217
27	PC SOUND CARD BASED INSTRUMENTATION AND CONTROL Teddy Surya Gunawan	229
28	PIECE-WISE LINEAR ANALOG TO DIGITAL (PLADC) CONVERTER PROCESS Abdulazeez F. Salami, Wahab A. Lawal, Sheroz Khan, AHM Zahirul Alam	239
29	DESIGN AND IMPLEMENTATION OF AN OPTIMAL FUZZY LOGIC CONTROLLER USING EGENTIC ALGORITHM Salami Femi Abdulazeez, Lawal Wahab Adetunji, Sheroz Khan, AHM Zahirul Alam, Momoh Jimoh E. Salami, Shihab Ahmed Hameed, Aisha Hasan Abdalla and Mohd Rafiqul Islam	249
30	DESIGN AND HARDWARE IMPLEMENTATION OF CONDITIONING CIRCUIT FOR ACCURATE READING FROM TRANSDUCERS WITH NONLINEAR RESPONSES Khairul Hasan, Aliza Aini Md Ralib, Ma Li Ya, Atika Arshad, Sheroz Khan	265
31	TRANSDUCERS-TO-MICROCNTROLLER INTERFACES- SOFTWARE SOLUTION APPROACH Lawal Wahab Adetunji, Salami Femi Abdulaziz, Sheroz Khan, AHM Zahirul Alam, Mohammad Rafiqul Islam, Shihab A. Hameed and Aisha Hasan Abdalla	277
32	WAVELET ANALYSIS OF THE ECG SIGNALS FOR THREE COMMON HEART DISEASES IN JORDAN Jalel Chebil, Jamal Al Nabulsi	291
33	FUNCTIONAL ELECTRICAL STIMULATION SYSTEM AND PROFILE FOR WALKING Noreha Abdul Malik	303

34	FUZZY LOGIC BASED TEMPERATURE CONTROL OF THERMOELECTRIC COOLER FOR SINGLE PHOTON	
	AVALANCHE DIODE APPLICATION	311
	Nurul Izzati Samsuddin, Salmiah Ahmad, Nurul Fadzlin Hasbullah	
35	SPECTRUM SENSING FOR COGNITIVE RADIOS	317
	Izyan Munyanti Abu Hanifah, Siti Natrah Che Rus, Sigit Puspito	
	Wigati Jarot	
36	COGNITIVE RADIO VS INTELLIGENT ANTENNA	327
	Siti Rabani Mat Nawi, Nurul Farhah Toha, Khaizuran Abdullah, M.	
	Rafiqul Islam, Sheroz Khan	
37	APPLICATION AND CASE STUDIES OF MAGNETIC	
	INDUCTION	341
	Atika Arshad, Rumana Tasnim, Sheroz Khan, A H M Zahirul Alam	

Chapter 24

POWER SUPPLY INTERFERENCE IN SMART SENSOR MICROCONTROLLER INTERFACE

ISMAILA TIJANI, SHEROZ KHAN

24.0 INTRODUCTION

Signal conditioning circuits otherwise referred to as sensor interface play important roles in data acquisition systems especially with microcontroller based systems. They are employed for signals conversion or translations to squeeze the acquired signal into a desirable range easily acceptable for the microcontroller. Many interfaces (signal conditioning circuits) have been proposed in the recent times in this regards, [1-3]; for instance, it is been employed to convert the measurand into a periodic modulated output signal which can be directly process by the microcontroller without needing an extrinsic A/D converter [3]. In [1], relaxation oscillator based conditioning circuit was proposed for proper transmission of sensor output to microcontroller.

Also the outputs of most biomedical sensors (passive or active) are very small voltages, currents, or resistance changes, thus signal conditioning circuits incorporate an amplifier for amplification of the signal for proper detection, [5]. Generally, amplification, level translation, impedance transformation, linearization, and filtering are fundamental signal conditioning functions which may be required and often incorporated in the design of appropriate signal conditioning circuit.

Furthermore, in an attempt to reduce cost and simplify the configuration of a dataacquisitions system, direct interfacing of the sensor to the microcontroller has been proposed [7]. This interface relies on measuring the charging and discharging time of RC/RLC circuit that includes the sensor. However, one of the major problems arising from this is 'trigger noise' due to power supply interference generated as a result of the oscillations from the RC circuit interface [7]. For instance, in compact systems, quasidigital sensors often share supply rails with digital processors whose internal switching results in a noisy supply voltage.

The need thus arise to analyze the effects of power supply interference on direct sensorto-microcontroller interfaces. This work is aimed at proposing appropriate technique of modelling and analyzing the effect of power supply interference on the direct interface of sensor-to-microcontroller. A mixed modeling approach is hereby proposed based on the previous work employing relaxation oscillator based sensor response conditioning circuit [1] and simple RC transistorized circuit for charging and discharging operation.