INTERFACING ELECTRONIC FOR MEASUREMENT, SIGNAL PROCESSING AND WIRELESS COMMUNICATION Edited by Sheroz Khan, International Islamic University Malaysia AHM Zahirul Alam, International Islamic University Malaysia Anis Nurashikin Nordin, International Islamic University Malaysia # INTERFACING ELECTRONIC FOR MEASUREMENT, SIGNAL PROCESSING AND WIRELESS COMMUNICATION Edited by Sheroz Khan, International Islamic University Malaysia AHM Zahirul Alam, International Islamic University Malaysia Anis Nurashikin Nordin, International Islamic University Malaysia ## Published by: IIUM Press International Islamic University Malaysia First Edition, 2011 ©IIUM Press, IIUM All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher. Perpustakaan Negara Malaysia Cataloguing-in-Publication Data Sheroz Khan, AHM Zahirul Alam & Anis Nurashikin Nordin: Interfacing Electronic for Measurement, Signal Processing and Wireless Communication. ISBN: 978-967-418-171-0 Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council) # Printed By: **IIUM PRINTING SDN.BHD.** No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan Tel: +603-6188 1542 / 44 / 45 Fax: +603-6188 1543 EMAIL: iiumprinting@yahoo.com ## **CONTENTS** | Chapter | Title | Page | |---------|---|------| | 1 | INDUCTIVE SENSOR | 1 | | | Atika Arshad, RumanaTasnim, Sheroz Khan, AHM Zahirul | | | | Alam | | | 2 | WIRELESS TRANSFER OF LOW-POWER TO IMPLANTED | 8 | | | BIOMEDICAL DEVICES: INTRODUCTION AND 2-D COIL | | | | PARAMETERS | | | | Imran M. Khan, Sheroz Khan, Othman O. Khalifa | | | 3 | WIRELESS TRANSFER OF POWER TO LOW-POWER | 14 | | | IMPLANTED BIOMEDICAL DEVICES: 3-DIMENSIONAL | | | | COIL DESIGN CONSIDERATIONS | | | | Imran M. Khan, Sheroz Khan, Othman O. Khalifa | | | 4 | WIRELESS TRANSFER OF LOW-POWER TO IMPLANTED | 22 | | | BIOMEDICAL DEVICES: INDUCTIVE LINK DESIGN | | | | Imran M. Khan, Aminullah Khan, Sheroz Khan, Othman O. | | | | Khalifa | | | 5 | WIRELESS TRANSFER OF LOW-POWER TO IMPLANTED | 28 | | | BIOMEDICAL DEVICES: RECTIFIER DESIGN | | | | Imran M. Khan, Sheroz Khan, Othman O. Khalifa | | | 6 | DATA CONVERSION BASIC CONCEPTS | 36 | | | Ma Li Ya, Sheroz Khan, Anis Nurashikin | | | 7 | NYQUIST-RATE ANALOG-TO-DIGITAL CONVERTER | 41 | | | Ma Li Ya, Sheroz Khan, Anis Nurashikin | | | 8 | OVERSAMPLING ANALOG-TO-DIGITAL CONVERTER | 47 | | | Ma Li Ya, Sheroz Khan, Anis Nurashikin | | | 9 | SWITCHED-CAPACITOR INTEGRATOR DESIGN | 53 | | | Ma Li Ya, Sheroz Khan, Anis Nurashikin | | | 10 | CMOS OPERATIONAL AMPLIFIER DESIGN | 60 | | | Ma Li Ya, Sheroz Khan, Anis Nurashikin | | | 11 | DIGITAL-TO-ANALOG CONVERTER | 68 | |----|--|-----| | | Ma Li Ya, Sheroz Khan, Anis Nurashikin | | | 12 | CONVETERS RESULTS VERIFICATIONS | 73 | | | Ma Li Ya, Sheroz Khan, Anis Nurashikin | | | 13 | DEVELOPMENT OF WEARABLE REFLECTANCE PULSE | 77 | | | OXIMETRY FOR TELEHEALTH MONITORING SYSTEM | | | | Muhammad Arham, Syed Zulfauzi, Othman O. Khalifa | | | 14 | DESIGN OF CAPACITIVE MEASURING SYSTEM FOR HIGH | 83 | | | FREQUENCY BAND TRANSDUCER | | | | Nurul Arfah binti Che Mustapha, AHM Zahirul Alam, Sheroz | | | | Khan | | | 15 | PRINCIPLE OF CAPACITANCE TO VOLTAGE CONVERTER | 89 | | | Nurul Arfah binti Che Mustapha, AHM Zahirul Alam, Sheroz | | | | Khan | | | 16 | CMOS OPERATIONAL AMPLIFIER TESTING FOR | 95 | | | CAPACITIVE TO VOLTAGE CONVERTER | | | | Nurul Arfah binti Che Mustapha, AHM Zahirul Alam, Sheroz | | | | Khan | | | 17 | MATHEMATICAL MODEL FOR CONTACTLESS | 102 | | | MEASUREMENT | | | | Nurul Arfah binti Che Mustapha, AHM Zahirul Alam, Sheroz | | | | Khan | | | 18 | FREQUENCY RESPONSE OF A CONTACTLESS | 107 | | | MEASUREMENT | | | | Nurul Arfah binti Che Mustapha, AHM Zahirul Alam, Sheroz | | | | Khan | | | 19 | A MATHEMATICAL STUDY OF A THERMISTOR ASTABLE | 113 | | | MULTIVIBRATOR IN A LINEARIZATION TECHNIQUE | | | | Nurul Arfah binti Che Mustapha, AHM Zahirul Alam, Sheroz | | | | Khan | | | 20 | A STUDY OF LINEARIZATION TECHNIQUE USING A | 117 | |----|--|-----| | | NONLINEAR THERMISTOR | | | | Nurul Arfah binti Che Mustapha, AHM Zahirul Alam, Sheroz | | | | Khan | | | 21 | COGNITIVE RADIO VS INTELLIGENT ANTENNA | 123 | | | Siti Rabani Mat Nawi, Nurul Farhah Toha, Khaizuran Abdullah, | | | | M. Rafiqul Islam, Sheroz Khan | | | 22 | UWB PULSE GENERATION AND MODULATION CIRCUITS | 134 | | | FOR BIOMEDICAL IMPLANTS | | | | Mokhaled M., Mohammed, Sheroz Khan, Jalel Chebil, Khaled | | | | A. S. Al-Khateeb, Imran Moez Khan | | | 23 | UWB COMMUNICATIONS FOR BIOMEDICAL IMPLANTS | 141 | | | Mokhaled M. Mohammed, Sheroz Khan, Jalel Chebil, Khalid A. | | | | S. Al-Khateeb, Imran Moez Khan | | | 24 | UWB PULSE GENERATION FOR BIOMEDICAL IMPLANTS | 145 | | | Mokhaled M., Mohammed, Sheroz Khan, Jalel Chebil, Khaled | | | | A. S. Al-Khateeb, Imran Moez Khan | | | 25 | ULTRA-WIDE BAND TECHNOLOGY | 149 | | | Mokhaled M., Mohammed, Sheroz Khan, Jalel Chebil, Khaled | | | | A. S. Al-Khateeb, Imran Moez Khan | | | 26 | MVL ADC DESIGN AND SIMULATION | 153 | | | Soheli Farhana, AHM Zahirul Alam, Sheroz Khan | | | 27 | MVL DESIGN AND CURRENT MODE CIRCUIT ELEMENTS | 159 | | | Soheli Farhana, AHM Zahirul Alam, Sheroz Khan | | | 28 | NOISE MODULATED CRYPTOGRAPHIC GENERATION FOR | 164 | | | USE IN UWB WIRELESS COMMUNICATION | | | | Siti HazwaniYaacob, Sigit Puspito Wigati Jarot, Sheroz Khan | | | 29 | UWB PULSE GENERATION AND SHAPING: ANALYSIS | 173 | | | AND SIMULATION RESULTS | | | | Zeeshan Shahid, Sheroz Khan, AHM Zahirul Alam | | | 30 | SIMULATIONS OF RESISTANCE VARIATIONS TO PULSE | 177 | |----|---|-----| | | GENERATOR CIRCUITS | | | | Zeeshan Shahid, Sheroz Khan, AHM Zahirul Alam | | | 31 | PULSE OXIMETRY DESIGN USING ARDUINO BOARD | 184 | | | Muhammad Arham, Syed Zulfauzi and Othman O. Khalifa | | # Chapter 10 ### CMOS OPERATIONAL AMPLIFIER DESIGN ### Ma Li Ya, Sheroz Khan, Anis Nurashikin In this chapter, we will describe CMOS operational amplifier design which is an important component in the data converter. The fundamental design principle, design procedures, as well as the properties of a traditional operational amplifier (or two-stage op amp) are elaborated in this chapter. (A CMOS 0.13µm two-stage op amp using low power supplies, is specified, designed and simulated with verifying at the same time.) The properties of the op amp can directly control the properties of the integrator and affect the characteristics of the converter. The op amp which serves in the integrator requires a large input-output swing, large DC gain and a high slew rate. The followings are the steps to design an op amp with the user-defined conditions. - i) Specifying the op amp requirements. - ii) Choosing the op amp topology to meet the specifications. - iii) Calculating the devices' size and bias to meet the requirements. - iv) Circuit simulations to verify that the op amp designed met with the user-defined specifications. ### 10.1. DESIGN SPECIFICATIONS The design specifications normally contain the CMOS technology, power supplies, input and output voltages' range, frequency band, open loop gain, power consumption, and so on. Here we give an example to design the simplest op amp topology which is based on $0.13\mu m$ CMOS technology and ± 1.2 V power supplies working in low frequency range, with small power consumption, together with the following design specifications as given in Table 10.1. Table 10.1: Two-stage op amp design specifications | Specifications | Design Value | |---|--------------| | Power Supply (V _{dd} and V _{ss}) | ±1.2V | | Signal Bandwidth | 10kHz | | Phase Margin | 75° | | Open Loop Gain | ≥100 | | Input Signal Range | -0.7V~0.7V |