# ELECTRICAL AUTOMATION SYSTEMS TOWARDS INTELLIGENT AND ENERGY EFFICIENCY APPLICATIONS **Musse Mohamud Ahmed** **IIUM PRESS** INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA ## ELECTRICAL AUTOMATION SYSTEMS TOWARDS ### INTELLIGENT AND ENERGY EFFICIENCY APPLICATIONS #### Musse Mohamud Ahmed Electrical and Computer Engineering Department, The Faculty of Engineering, IlUM #### Published by: IIUM Press International Islamic University Malaysia First Edition, 2011 © HUM Press, HUM All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher. Perpustakaan Negara Malaysia Cataloguing-in-Publication Data ISBN: 978-967-418-170-3 Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council) Printed by: **HUM PRINTING SDN.BHD.** No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan Tel: +603-6188 1542 / 44 / 45 Fax: +603-6188 1543 EMAIL: iiumprinting@yahoo.com #### **CONTENTS OF THE BOOK** | <u>Chapter</u> | <u>Title &amp; Author</u> <u>P</u> | age No | |----------------|--------------------------------------------------------------------------------------------------|--------| | PART I: ELEC | CTRICAL DISTRIBUTION AUTOMATION SYSTEMS | | | CHAPTER 1: | ELECTRICAL DISTRIBUTION SYSTEM | 2 | | CHAPTER 2: | ELECTRIC DISTRIBUTION EQUIPMENT FAULTS | 6 | | CHAPTER 3: | FAULTS FROM TRADITIONAL TO AUTOMATION TECHNIQUES Musse Mohamud Ahmed and Soo Wai Lian | 15 | | CHAPTER 4: | SCADA SYSTEM FOR ELECTRICAL DISTRIBUTION SYSTEM | 22 | | CHAPTER 5: | SCADA SOFTWARE DEVELOPMENT—INDUSOFT CASE STUDY Musse Mohamud Ahmed and Soo Wai Lian | 25 | | CHAPTER 6: | PROTECTION SYSTEM FOR ELECTRICAL DISTRIBUTION Musse Mohamud Ahmed and Soo Wai Lian | 37 | | CHAPTER 7: | RELAYS Musse Mohamud Λhmed and Soo Wai Lian | 43 | | CHAPTER 8: | REMOTE TERMINAL UNIT (RTU) | 49 | | CHAPTER 9: | INTELLIGENT AUTOMATION SYSTEM: AUTOMATION HARDWARE | 60 | | | DEVELOPMENT Musse Mohamud Ahmed and Soo Wai Lian | | | CHAPTER 10: | SCHEMATIC DIAGRAMS OF AUTOMATED SUBSTATION PANELS Musse Mohamud Ahmed and Soo Wai Lian | 69 | | CHAPTER 11: | SOFTWARE AUTOMATION DEVELOPMENT | 78 | | CHAPTER 12: | DEVELOPMENT OF MODBUS TCP/IP SETTING | 87 | | CHAPTER 13: | POWER LINE CARRIER COMMUNICATION SYSTEM Musse Mohamud Ahmed and Soo Wai Lian | 96 | | CHAPTER 14: | WIRELESS COMMUNICATIONS FOR ELECTRIC SYSTEM AUTOMATION Othman O. Khalifa and Musse Mohamud Ahmed | 103 | | CHAPTER 15: | DEVELOPMENT OF AUTOMATION SYSTEM FOR SMALL/MEDIUM | | | | SCALE BIOMASS BASED RENEWABLE POWER PLANTS 1 Musse Mohamud Ahmed and Sheroz Khan | 08 | |-----------------------------|---------------------------------------------------------------------------------------------------------------|-----------| | Chapter | Title & Author Page 1 | <u>No</u> | | PART II: INTI | ELLIGENT SYSTEMS USING COMMUNICATION AND ELECTRONICS | | | SYST | TEMS | | | CHAPTER 16: | MODELING OF LOW VOLTAGE POWER LINE FOR DATA COMMUNICATION: SIMULATION RESULTS | 18 | | CHAPTER 17: | LOW VOLTAGE POWERLINE ANALYSIS AND SIMULATION RESULTS | 25 | | CHAPTER 18; | ZIGBEE APPLICATIONS TO WIRELESS COMMUNICATION SYSTEMS | 33 | | CHAPTER 19: | | 38 | | CHAPTER 20: | PIC 16F877A FOR HYBRID VEHICLE CONTROLLER | 44 | | CHAPTER 21: | FPGA-BASED HARDWARE MODELING OF LIGHT RAIL TRANSIT FARE CARD CONTROLLER | 55 | | CHAPTER 22: | DEVELOPMENT OF A METHOD TO MAINTAIN TEMPERATURE AND HUMIDITY IN AN OPEN COMPOUND RESTAURANT | 66 | | PART III: ENE<br>FAN MOTORS | ERGY EFFICIENCY <b>APPLICATIONS TO ELECTRIC MOTORS AND</b> | | | CHAPTER 23: | ELECTRIC MOTOR | 76 | | CHAPTER 24: | LOSSES OF ELECTRIC MOTORS1 Musse Mohamud Ahmed, Noor Zatil Amali Bt Muhammad Hanapi and Che Fazilah Bt Fathil | 80 | | CHAPTER 25: | ELECTRIC MOTOR EFFICIENCY | 85 | | | and Che Fazilah Bt Fathil | | |----------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------| | CHAPTER 26: | ENERGY EFFICIENCY IMPLEMENTATION OF PERMANENT MAGNET SYNCHRONOUS MOTOR | 191 | | <u>Chapter</u> | Title & Author | Page No | | CHAPTER 27: | ENERGY CALCULATIONS | 195 | | CHAPTER 28: | MODELING, RESULT AND ANALYSIS | 203 | | CHAPTER 29: | AIR BLOWING EQUIPMENT Musse Mohamud Ahmed, Rafizah Rahmatullah and Syarifah Nur Zati Abdul Rashid | 210 | | CHAPTER 30: | ENERGY USAGE IN MALAYSIA | 214 | | CHAPTER 31: | FAN MOTOR EFFICIENCY REQUIREMENT Musse Mohamud Ahmed, Rafizah Rahmatullah and Syarifah Nur Zati Abdul Rashid | 217 | | CHAPTER 32: | APPLICATION OF FAN MOTOR ENEGY EFFICIENCY Musse Mohamud Ahmed, Rafizah Rahmatullah and Syarifah Nur Zati Abdul Rashid | 220 | | CHAPTER 33: | FAN EFFICIENCY GRADE (FEG) DEVELOPMENT STAGES | 223 | | CHAPTER 34: | FEG AND FMEG PRACTICAL CONSIDERATIONS – FAN<br>SELECTIONS GUIDE<br>Musse Mohamud Ahmed, Rafizah Rahmatullah<br>and Syarifah Nur Zati Abdul Rashid | 227 | | CHAPTER 35: | RESULTS AND DISCUSSIONS Musse Mohamud Ahmed, Rafizah Rahmatullah and Syarifah Nur Zati Abdul Rashid | 232 | #### **CHAPTER 19** ### MODELING OF AN ENVIRONMENT FRIENDLY HYBRID ELECTRIC VEHICLE (HEV) Musse Mohamud Ahmed<sup>1</sup>, M. Habib Ullah<sup>1</sup>, Teddy S. Gunawan<sup>1</sup>, M. Raihan Sharif<sup>1</sup>, and Riza Muhida<sup>2</sup> <sup>1</sup>Department of Electrical and Computer Engineering, Faculty of Engineering International Islamic University Malaysia > <sup>2</sup>STKIP Surya, Surya Research and Education Center Serpong, Tangerang, Indonesia #### 19.1 Introduction The automobile industry continues to grow by leaps and bounds, and due to the increase in the number of vehicle worldwide, air-pollution continues to increase. Though the automobile manufacturers have reduced the greenhouse gases such as hydro-carbons, carbon monoxide, carbon dioxide, etc., from the vehicle, they cannot produce a zero-emission vehicle unless they produce an electric vehicle (EV). An electric vehicle is an emission free, environmental friendly vehicle. However, the electric vehicles remain unpopular among the consumers due to their lack of performance and their inability to travel long distances without being recharged. So, vehicle that embraces both the performance characteristics of the conventional automobile and the zero-emission characteristics of the electric vehicles are greatly being anticipated by the general consumers and the environmentalists alike. When emission regulations tightened in the last quarter of the 20th century and engineers made breakthroughs in hybrid and electric vehicle technology, automobile manufacturers began to look more seriously into vehicles with alternative power sources. These lead manufacturers to come up with a vehicle that is acceptable by the consumers and also meets the performance of the conventional vehicle with much less emissions. Such vehicles are branded as Hybrid Electric Vehicle (HEV), the name being derived from their ability to run in either gasoline mode or electric mode or both. The electric motor in the hybrid electric vehicle assists the gasoline engine during acceleration and receives its power from a dedicated battery pack. The beauty of the HEV is that energy can be fed back into the battery for storage, e.g., during regenerative braking (which is otherwise wasted as heat in a conventional vehicle). Leading car manufacturers like Toyota and Honda have already started mass producing HEV cars, Prius and Insight respectively, which are now becoming very popular among the consumers for their incredible mileage and less emissions. Aside from that, a number of automotive manufacturers are marketing hybrid vehicles for the general population, examples are DaimlerChrysler, Mitsubishi, Nissan, Fiat, Renault, Ford, GM, and Subaru [1]. Although the number for alternative electric vehicles is not significantly higher when efficiency is