ANTENNAS AND AND PROPAGATION

Modeling, Simulation & Measurements

Edited by

MD. RAFIQUL ISLAM B.Sc., M.Sc., Ph.D., MIEEE International Islamic University Malaysia

JALEL CHEBIL B.Sc., M.Sc., Ph.D., MIEEE International Islamic University Malaysia

IIIIM PRESS

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

ANTENNAS

AND

PROPAGATION:

Modeling, Simulation & Measurements

Edited by

MD. RAFIQUL ISLAM B.Sc., M.Sc., Ph.D., MIEEE International Islamic University Malaysia

JALEL CHEBIL B.Sc.,M.Sc.,Ph.D.,MIEEE International Islamic University Malaysia

Published by: IIUM Press International Islamic University Malaysia

First Edition, 2011 ©IIUM Press, IIUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

Md. Rafiqul Islam & Jalel chebil: Antennas and Propogation: Modeling, Simulation & Measurements

Bibliography p. Includes Index ISBN

ISBN: 978-967-418-138-3

Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)

Printed By: IIUM PRINTING SDN.BHD.

NO. 1, JALAN INDUSTRI BATU CAVES 1/3
TAMAN PERINDUSTRIAN BATU CAVES
BATU CAVES CENTRE POINT
68100 BATU CAVES
SELANGOR DARUL EHSAN

TEL: +603-6188 1542 / 44 / 45 FAX: +603-6188 1543

EMAIL: iiumprinting@yahoo.com

Table of Content

Preface

Part I	Microstrip Antenna Design	Page
Chapter 1	Ultra Wideband Antennas Muhammad Feroze Akbar J. Khan, Shaker MM. Al-Karaki, Md. Rafiqul Islam	1
Chapter 2	Patch Antenna Parameters For Ultra Wideband Design Muhammad Feroze Akbar J. Khan, Shaker MM. Al-Karaki, Md. Rafiqul Islam	6
Chapter 3	Design Procedure for Microstrip Patch Antenna Shaker MM. Al-Karaki, Muhammad Feroze Akbar J. Khan, Md. Rafiqul Islam	13
Chapter 4	Design of Symmetrical Fed Patch UWB Antenna Using Partial Ground and Stairs Md. Rafiqul Islam, AHM Zahirul Alam, Muhammad Feroze Akbar J. Khan and Shaker MM. Al-Karaki	22
Chapter 5	Design of Symmetrical Fed Patch UWB Antenna Using Slotted Partial Ground And Stairs Md. Rafiqul Islam, AHM Zahirul Alam, Muhammad Feroze Akbar J. Khan and Shaker MM. Al-Karaki	33
Chapter 6	Design of Symmetrical Fed Patch UWB Antenna With Tuning Stub And Symmetrical Slotted Ground Md. Rafiqul Islam, AHM Zahirul Alam, Muhammad Feroze Akbar J. Khan and Shaker MM. Al-Karaki	40
Chapter 7	Design of Unsymmetrical Fed Patch UWB Antenna With Unsymmetrical Slotted Ground Md. Rafiqul Islam, AHM Zahirul Alam, Shaker MM. Al-Karaki and Muhammad Feroze Akbar J. Khan	49
Chapter 8	Ultra Wideband Antenna With Band Notch Using Asymmetrical Feedline AHM Zahirul Alam and Md. Rafiqul Islam	56
Chapter 9	Multi-Band Reconfigurable Antenna Using RF MEMS Switch AHM Zahirul Alam and Md. Rafiqul Islam	63
Chapter 10	Multi-Band Planar Patch Antenna AHM Zahirul Alam and Md. Rafiqul Islam	69
Chapter 11	Tuning Fork Type Planar Antenna AHM Zahirul Alam and Md. Rafiqul Islam	76
Chapter 12	Leaky-Wave Array Antenna Mimi Aminah Wan Nordin, Hany E. Abd El-Raouf, AHM Zahirul Alam, Md. Rafiqul Islam	83

Chapter 13	Overview of Smart Antenna System Ibrahim A. Haji, Md. Rafiqul Islam, A.H. M. Zahirul Alam, Othman O. Khalifa Khaizuran Abdullah,	
Chapter 14	Direction of Arrival Algorithms For Array Antenna Design Ibrahim A. Haji, Md. Rafiqul Islam, A.H. M Zahirul Alam. Othman O. Khalifa, Khaizuran Abdullah	97
Chapter 15	Analysis of Beamforming Algorithms Ibrahim A. Haji, Md. Rafiqul Islam, A.H. M Zahirul Alam, Othman O. Khalifa and Khaizuran Abdullah	108
Chapter 16	Design of Linear Array Antenna For Smart Antenna Application Md. Rafiqul Islam, A.H. M Zahirul Alam, Othman O. Khalifa, Khaizuran Abdullah, Ibrahim A. Haji	121
Part II	Propagation Measurements and Modeling	
Chapter 17	Propagation Path Loss Modeling For Wireless Applications Ali Khadim, Jalel Chebil and Md Rafiqul Islam	137
Chapter 18	Comparison between Measured and Predicted Path Loss For Mobile Communication in Malaysia Jalel Chebil, Md Rafiqul Islam and Ali Khadim	152
Chapter 19	Proposed Path Loss Models For Suburban Area in Kuala Lumpur Jalel Chebil, Md Rafiqul Islam and Ali Khadim	157
Chapter 20	Rain Rate Distribution For Microwave Link Design in Malaysia Jalel Chebil and Tharek Abd. Rahman	164
Chapter 21	Rain Rate Conversion Factor in Malaysia Jalel Chebil and Tharek Abd. Rahman	171
Chapter 22	A Matlab Program for Prediction of Rain Rate and Rain Attenuation Distributions in Malaysia Jalel Chebil and Tharek Abd. Rahman	180
Chapter 23	Time-Delay Neural Network For Rainfall Forecasting Kyaw Kyaw Htike, Othman O. Khalifa and Md. Rafiqul Islam	186
Chapter 24	Development of One-Minute Rain Rate Contour Maps For Radiowave Propagation in Malaysia Jalel Chebil and Tharek Abd. Rahman	193
Chapter 25	Rain Attenuation Measurements in Malaysia Jalel Chebil and Tharek Abd. Rahman	201
Chapter 26	Propagation Study on Rain Attenuation at 18 GHz in Malaysia Jalel Chebil and Tharek Abd. Rahman	206
Chapter 27	Investigation Of Rain Attenuation At 38 GHz	214

	Ahmad Fadzil Ismail and Khairayu Badron	220
Chapter 28	Rain Attenuation Prediction Models For Earth-Space Link Ahmad Fadzil Ismail and Khairayu Badron	220
Chapter 29	Development of A Modified Rain Attenuation Prediction Model Ahmad Fadzil Ismail and Khairayu Badron	226
Chapter 30	Antenna Losses Due To Rainfall And Its Effect On The Rain Attenuation Measurements Jalel Chebil and Tharek Abd. Rahman	233
Chapter 31	Modeling Of Wet Antenna Losses For Frequencies 15-38 GHz Md. Rafiqul Islam, Jalel Chebil and Tharek Abdul Rahman	239
Chapter 32	Path Length Reduction Factor For Rain Attenuation Prediction In Malaysia Md. Rafiqul Islam, Jalel Chebil, Ahmad Fadzil Ismail and Tharek Abdul Rahman	248
Chapter 33	Frequency Scaling Methods For Rain Attenuation Prediction Md. Rafiqul Islam, Jalel Chebil, Ahmad Fadzil Ismail and Tharek Abdul Rahman	256
Chapter 34	Proposed Frequency Scaling Method Based On Measured Rain Attenuation Data Md. Rafiqul Islam. Jalel Chebil and Tharek Abdul Rahman	269
Chapter 35	Analyses Of Rain Fade Characteristics For A 38 GHz Link In The Tropics Ahmad Fadzil Ismail and Khairayu Badron	278
Chapter 36	Worst-Month Statistics Modeling Based on Measured Data Md. Rafigul Islam, Jalel Chebil and Tharek Abdul Rahman	285
Chapter 37	Worst-Month Rain Fade Statistics at 38 GHz Ahmad Fadzil Ismail and Khairayu Badron	298
Chapter 38	Rain Fade Slope Prediction Model Based On Satellite Data Measured In Malaysia Md. Rafiqul Islam, Khalid Al-Khateeb, Sheroz Khan and Hassan Dao	303
Chapter 39	Effects Of Rain On Free Space Optical Propagation Suriza A.Z., Md. Rafiqul Islam, Wajdi Al-Khateeb and A.W. Naji	310
Chapter 40	Investigation Of Solar Environment Effects On Space Assets & Satellite Signals Othman O. Khalifa. Md. Rafiqul Islam. Jalel Chebil, Saad Bashir and Sivamohan A/L V.Shunmugam	318

Chapter 22

A Matlab Program for Predicting Rain Rate and Rain Attenuation Distributions in Malaysia

Jalel Chebil¹ and Tharek Abd. Rahman²

22.1 Introduction

The advancement in information technology has now become an integral part in the socioeconomic development of countries. The development of the Malaysia's Multimedia Super corridor is the country recognition of this fact in the light of the current information explosion. Updating and maintaining an advanced telecommunications infrastructure is one of the key point in the development of information technology. One of the major problems faced by many communication systems operating at frequencies above 10 GHz in Malaysia is the degradation of the radiowave propagation because of the high intensity rainfall in this region. This restricts the path length of microwave system and the use of higher microwave frequencies for line-of-sight and satellite communication. The knowledge of the rain attenuation at the frequency of operation is extremely required for the design of a reliable communication system at a particular location. Although many predicting models were described in the literature, they may not be applicable to the Malaysian environment due to the lack of rainfall and rain attenuation data with oneminute integration time in this region. The Universiti Teknologi Malaysia (UTM) had started a compaign to collect rainfall and rain attenuation data in Malaysia for several years. In this chapter, the collected data with the appropriate analytical conversions are used to develop a MATLAB program for predicting the one-minute rain rate and rain attenuation values at any location in Malaysia for any frequency above 10 GHz.

22.2 BACKGROUND INFORMATION

This section reviews the fundamental theories used in the prediction of rain rate and rain attenuation distribution.

22.2.1 ITU-R Rain Attenuation Model

At frequency range above 10 GHz, radio waves propagating through rain are attenuated because of absorption and scattering of transmitted energy. Some energy is absorbed by water, which is a lossy dielectric medium, and the other is scattered by the rain droplets in all direction [1]. This results in the attenuation of the transmitted energy. The development

¹ Department of Electrical and Computer Engineering, Kulliyyah of Engineering International Islamic University Malaysia (IIUM)

² Wireless Communication Centre, Faculty of Electrical Engineering, University of Technology Malaysia, Locked bag 791, 80990 Johor Bahru, Malaysia