
MECHATRONICS BOOK SERIES

ROBOTICS AND AUTOMATION

Rini Akmeliawati Wahju Sediono Nahrul Khair Alang Md. Rashid

IIUM PRESS

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

MECHATRONICS BOOK SERIES: ROBOTICS AND AUTOMATION

Editors

Rini Akmeliawati Wahju Sediono Nahrul Khair Alang Md. Rashid

Published by: IIUM Press International Islamic University Malaysia

First Edition, 2011 ©HUM Press, HUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

Rini Akmeliawati, Wahju Sediono & Nahrul Khair Alang Md. Rashid: Mechatronics Book Series Robotics and Automation

ISBN: 978-967-418-152-9

Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)

Printed by:

HUM PRINTING SDN.BHD.

No. 1, Jalan Industri Batu Caves 1/3
Taman Perindustrian Batu Caves
Batu Caves Centre Point
68100 Batu Caves
Selangor Darul Ehsan

Tel: +603-6188 1542 / 44 / 45 Fax: +603-6188 1543 EMAIL: iiumprinting@yahoo.com

TABLE OF CONTENTS

Pro	eface	i
Ac	knowledgement	ii
Ed	Editor	
Table of Content		\mathbf{v}
1.	Visual Tracking for Human Face A.A. Shafie, Iqbal and M.R. Khan	1
2.	Robot Design: A Case Study of Team Learning Experience Outcome A.A. Shafic	and
3.	Development Neck Support for Humanoid Robot Head A. A. Shafie, M.N. Kasyfi and N. I. Taufik Y	14
4.	Development of Cooperative Mini Robot Amir A. Shafie, Siti E.M.Z and Shazeela A	21
5.	Humanoid Robot Arm Amir A. Shafie and Mohd N. Y.	26
в.	Designing Human Robot Interaction for Emotionally Expre Robotic Hear AMIR-III A. Iqbal, A. A. Shafie, and M. R. Khan	essive 32
7.	An Overview of Fuzzy Based Person Following Robot T. Alamgir, I. J. Alfar and M. M. Rashid	38
8.	Mechanical Design of a Person Following Robot Tarik Bin Alamgir, Ibrahim Jawad Alfar and Muhammad Mahbubur Rashid	43

9,	Development of Fuzzy Based Person Following Robot part 2 Tarik Bin Alamgir, Ibrahim Jawad Alfar and Muhammad Mahbubur Rashid	49
10.	Mobile Robot for Fined Tube Inspection Muhammad Mahbubur Rashid	56
11.	Robot Aided Upper Limb Rehabilitation System: Mechanical Do Shahrul Na'im Sidek, Hidayatullah Mohamed Nawi	esign 64
12.	Robot Aided Upper Limb Rehabilitation System: Electronics Sensors and Actuators Shahrul Na'im Sidek, Khairul Anwar Khalid	for 69
13.	Robot Aided Upper Limb Rehabilitation System: Results Analysis Shahrul Na'im Sidek	and 73
14.	Snake Robot Locomation in Narrow Space: A Review Raisuddin Khan, Mitsuru Watanabe and Masum Billah	79
15.	Multiple Hexapod Robot and Collaborative communication Raisuddin Khan, Masum Billah and Mohiuddin Ahmed	86
16.	. Autonomous Unicycle Robot Using Reaction Wheel Pendu Mechanical Design Atika Adrina Teepol, Nur Fadhilah Mohd Fauzey, Shahrul Na'im S Yasir Mohd Mustafah	94
17.	. Autonomous Unicycle Robot Using Reaction Wheel Pendu Controller Design Nur Fadhilah Mohd Fauzey, Atika Adrina Teepol, Shahrul Na'im S Yasir Mohd Mustafah	103

HISTORICAL BACKGROUND AND EDUCATION

19. Develop an Algorithm for Goal Finding Robot using Reinford Learning	ement 118
M. Kamal, R. Khan, S. Bazuhair and M. Billah	
20. Design and Development of 2 Fingers Robotic Hand Actual Active Grasping Data	ted by 126
MdMozasser Rahman ¹ ,MohdZoolfadli B MdSalleh	
21. Design and Development of Interactive Fish Robot	144
MdMozasser Rahman ¹ ,RizaMuhida and Mohammad Zukhair MohdNazmi	b
22. Design and Development of A Digger Robot	154
MdMozasser Rahman, MohdRuzaini Bin AbdRalim and Othe	rs
23. Glass Wall Cleaning Robot: A Review	170
Md Mozasser Rahman, Ahmed Murgab Mohammed Mahil,	
Norsofiana Bt Umar and Nurul Izzati Bt Samsuddin	
24. Glass Wall Cleaning Robot: -Electrical design and control	177
Md Mozasser Rahman, Ahmed Murgab Mohammed Mahil, Norsofiana Bt Umar and Nurul Izzati Bt Samsuddin	
25. Glass Wall Cleaning Robot: -Electrical design and control M. M. Rahman, M. R. b A. Ralim	187
26. Development of Robotic Manipulator to assist human using Signal Mahbuba Hossain, Raisuddin Khan, and Masum Billah	brain 198
27. Glass Wall Cleaning Robot: Mechanical Design Mahbuba Hossain Raisuddin Khan, and Masum Billah	204

28.	Intelligent SCADA Based Monitoring Scheme for Low Vo Distribution System M. J. E. Salami, A. M. Aibinua, Mohd Shafie Bin Sani and Nurfaizal Bin Wahi	ltage 210
	Truffalzar Bin Walli	
29.	Intelligent SCADA Based Monitoring Scheme for Low Vo Distribution System Abdullateef Ayodele Isqeel and Momoh Jimoh Eyiomika Salar	218
30.	Autonomous Goal Finding Robot M. Kamal, Md. R. Khan, Faisal and M. Billah	227
31.	Intelligent SCADA Based Pipe Monitoring System M. J. E. Salami, A. M. Aibinua, Mohd Shafie Bin Sani Nurfaizal Bin Wahi	236 and
32.	Path Tracking of Car Like Mobile Robot A. A. Isqeela and M. J. E. Salami	250
33.	A New Energy Efficient Building System M. J. E. Salami, Md. R. Khan, O. A. Abdulquadric	255
34.	Automatic Car Parking System M. J. E. Salami, Md. R. Khan and O. A. Abdulquadria	262
35.	Anthropomorphic biped robot A. A. Shafie, M. F. Baharudin	267

CHAPTER 32

Path Tracking of Car Like Mobile Robot

W. Astuti^a, K.K. Turahim, A.M. Aibinu^b, M. J. E. Salami and Wahyudi Intelligent Mechatronics System Research Group Department of Mechatronics Engineering, International Islamic University Malaysia P.O. Box 10, 50728 Kuala Lumpur, Malaysia

^awinda1977@gmail.com, ^bmaibinu@iium.edu.my

32.1 Introduction

The aim of this work is designing and developing a path tracking control for a car-like mobile robot. As the first work, this paper applied the conventional method, the car will move in accordance to the condition of the sensor at that particular time. The path to be followed by the car-like mobile robot is a track made up of a black line on a white background. A suitable track was constructed that can satisfy the radius of curvature of the robot.

A car-like mobile robot is a robot with four wheels that is able to turn left and right, move forwards and backwards just like a real car. An example of car-like mobile robot being built by the students in University of Extremadura, Spain, is Speedy (Colin and Wyeth, 2007) as shown in Figure 1.

Speedy is a 1/8 model car based autonomous mobile robot. This robot includes a two-level architecture: a mini-ITX board with a C3 x86 compatible processor and 4 ATMega32 based custom boards designed and built in the lab. Each of these boards take care of a low-level behavior or group of behaviors: PID drive motor control, steering servo control and digital compass for autopilot in one of them, an ultrasound tilt-controlled scanner in another one, a set of 3-axis accelerometers for inclination sensing in the third one, and servo control of a pan-tilt camera.

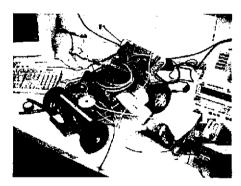


Fig. 1 'Speedy' an example of a car-like mobile robot.

32.2 Conventional Method

The concept used for conventional method is very simple. The car will move in accordance to the condition of the sensor at that particular time. For example, if the middle sensor detects the line, then servo will maintain or move to center position. If the sensor at the most right position detects the line, then servo will move its direction toward THE most left to bring the car back on track. The control algorithm for the conventional method is as shown in Figure 2.