
MECHATRONICS BOOK SERIES

ROBOTICS AND AUTOMATION

Rini Akmeliawati Wahju Sediono Nahrul Khair Alang Md. Rashid

IIUM PRESS

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

MECHATRONICS BOOK SERIES: ROBOTICS AND AUTOMATION

Editors

Rini Akmeliawati Wahju Sediono Nahrul Khair Alang Md. Rashid

Published by: IIUM Press International Islamic University Malaysia

First Edition, 2011 ©HUM Press, HUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

Rini Akmeliawati, Wahju Sediono & Nahrul Khair Alang Md. Rashid: Mechatronics Book Series Robotics and Automation

ISBN: 978-967-418-152-9

Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)

Printed by:

HUM PRINTING SDN.BHD.

No. 1, Jalan Industri Batu Caves 1/3
Taman Perindustrian Batu Caves
Batu Caves Centre Point
68100 Batu Caves
Selangor Darul Ehsan

Tel: +603-6188 1542 / 44 / 45 Fax: +603-6188 1543 EMAIL: iiumprinting@yahoo.com

TABLE OF CONTENTS

Pro	eface	i
Ac	knowledgement	ii
Ed	Editor	
Table of Content		\mathbf{v}
1.	Visual Tracking for Human Face A.A. Shafie, Iqbal and M.R. Khan	1
2.	Robot Design: A Case Study of Team Learning Experience Outcome A.A. Shafic	and
3.	Development Neck Support for Humanoid Robot Head A. A. Shafie, M.N. Kasyfi and N. I. Taufik Y	14
4.	Development of Cooperative Mini Robot Amir A. Shafie, Siti E.M.Z and Shazeela A	21
5.	Humanoid Robot Arm Amir A. Shafie and Mohd N. Y.	26
в.	Designing Human Robot Interaction for Emotionally Expre Robotic Hear AMIR-III A. Iqbal, A. A. Shafie, and M. R. Khan	essive 32
7.	An Overview of Fuzzy Based Person Following Robot T. Alamgir, I. J. Alfar and M. M. Rashid	38
8.	Mechanical Design of a Person Following Robot Tarik Bin Alamgir, Ibrahim Jawad Alfar and Muhammad Mahbubur Rashid	43

9,	Development of Fuzzy Based Person Following Robot part 2 Tarik Bin Alamgir, Ibrahim Jawad Alfar and Muhammad Mahbubur Rashid	49
10.	Mobile Robot for Fined Tube Inspection Muhammad Mahbubur Rashid	56
11.	Robot Aided Upper Limb Rehabilitation System: Mechanical Do Shahrul Na'im Sidek, Hidayatullah Mohamed Nawi	esign 64
12.	Robot Aided Upper Limb Rehabilitation System: Electronics Sensors and Actuators Shahrul Na'im Sidek, Khairul Anwar Khalid	for 69
13.	Robot Aided Upper Limb Rehabilitation System: Results Analysis Shahrul Na'im Sidek	and 73
14.	Snake Robot Locomation in Narrow Space: A Review Raisuddin Khan, Mitsuru Watanabe and Masum Billah	79
15.	Multiple Hexapod Robot and Collaborative communication Raisuddin Khan, Masum Billah and Mohiuddin Ahmed	86
16.	. Autonomous Unicycle Robot Using Reaction Wheel Pendu Mechanical Design Atika Adrina Teepol, Nur Fadhilah Mohd Fauzey, Shahrul Na'im S Yasir Mohd Mustafah	94
17.	. Autonomous Unicycle Robot Using Reaction Wheel Pendu Controller Design Nur Fadhilah Mohd Fauzey, Atika Adrina Teepol, Shahrul Na'im S Yasir Mohd Mustafah	103

HISTORICAL BACKGROUND AND EDUCATION

19. Develop an Algorithm for Goal Finding Robot using Reinford Learning	ement 118
M. Kamal, R. Khan, S. Bazuhair and M. Billah	
20. Design and Development of 2 Fingers Robotic Hand Actual Active Grasping Data	ted by 126
MdMozasser Rahman ¹ ,MohdZoolfadli B MdSalleh	
21. Design and Development of Interactive Fish Robot	144
MdMozasser Rahman ¹ ,RizaMuhida and Mohammad Zukhair MohdNazmi	b
22. Design and Development of A Digger Robot	154
MdMozasser Rahman, MohdRuzaini Bin AbdRalim and Othe	rs
23. Glass Wall Cleaning Robot: A Review	170
Md Mozasser Rahman, Ahmed Murgab Mohammed Mahil,	
Norsofiana Bt Umar and Nurul Izzati Bt Samsuddin	
24. Glass Wall Cleaning Robot: -Electrical design and control	177
Md Mozasser Rahman, Ahmed Murgab Mohammed Mahil, Norsofiana Bt Umar and Nurul Izzati Bt Samsuddin	
25. Glass Wall Cleaning Robot: -Electrical design and control M. M. Rahman, M. R. b A. Ralim	187
26. Development of Robotic Manipulator to assist human using Signal Mahbuba Hossain, Raisuddin Khan, and Masum Billah	brain 198
27. Glass Wall Cleaning Robot: Mechanical Design Mahbuba Hossain Raisuddin Khan, and Masum Billah	204

28.	Intelligent SCADA Based Monitoring Scheme for Low Vo Distribution System M. J. E. Salami, A. M. Aibinua, Mohd Shafie Bin Sani and Nurfaizal Bin Wahi	ltage 210
	Truffalzar Bin Walli	
29.	Intelligent SCADA Based Monitoring Scheme for Low Vo Distribution System Abdullateef Ayodele Isqeel and Momoh Jimoh Eyiomika Salar	218
30.	Autonomous Goal Finding Robot M. Kamal, Md. R. Khan, Faisal and M. Billah	227
31.	Intelligent SCADA Based Pipe Monitoring System M. J. E. Salami, A. M. Aibinua, Mohd Shafie Bin Sani Nurfaizal Bin Wahi	236 and
32.	Path Tracking of Car Like Mobile Robot A. A. Isqeela and M. J. E. Salami	250
33.	A New Energy Efficient Building System M. J. E. Salami, Md. R. Khan, O. A. Abdulquadric	255
34.	Automatic Car Parking System M. J. E. Salami, Md. R. Khan and O. A. Abdulquadria	262
35.	Anthropomorphic biped robot A. A. Shafie, M. F. Baharudin	267

CHAPTER 4

Development of Cooperative Mini Robots

Amir A. Shafie 1.a, Siti E.M.Z2 and Shazeela A.3,

^{1,2,3} Department of Mechatronics, Kulliyah of Engineering, International Islamic University Malaysia (IIUM), 50728Kuala Lumpur ^a aashafie@iium.edu.my

4.1 Introduction

Many teams of intelligent robots have been developed at different labs for mainly for research issues in specific areas of collaborative and cooperative work. The teams of intelligent robots can also be classified according to the robotic system either homogeneous or non-homogeneous.

Cooperative actions can be defined as to associate with another for mutual, often economic benefit. It also can be defined as joint collaborative behaviour that is directed toward some goal in which there is a common interest or reward, the form of interaction usually based on communication.

Cooperative behaviors enable a team of mobile robots to accomplish missions that cannot be achieved with individual mobile robot. Since each of robots is only responsible for partial fulfillment of the task, the robots can be less complex. Multiple robots can be used for numerous tasks such as foraging and coverage, box pushing and object transportation, exploration and flocking, multi-target observation as well as entertainment purposes such robotic soccer or coordinated dancing robot.

In this paper, a description of the design and structure of a pair of mini robot to be used in cooperative work is presented. The immediate aim of the development is to design and develop a pair of mini robot which has the ability of moving and balancing the long beam at the same time. Each of the robots can be programmed to be a leader or follower, whereby the leader will be instruction to other robots whilst the follower will receive instructions from the leader robot. The robots as presented here are homogeneous multi-robot system as both of the robots are similar with each other (sensor, microcontroller and mechanical components). Implicit communication where the robots communicate through physical interaction is implemented.

4.2 Literature Review

Farinelli et al. [1] classified the works on multi-robot system (MRS) as two group of dimensions; Coordination dimensions and System dimension. Coordination dimension is divided into four level; Cooperation, Knowledge, Coordination and Organization.

The first level, Cooperation level is focused on the ability of the system to cooperate in order to accomplish a specific task. The second level, Knowledge level is concerned with the knowledge the teach robot in the team has about its team mates. In this level, there is aware and unaware robot which the former robot has knowledge of their team mates while the latter robot is in the other way round. The Coordination level is concerned with the mechanism used for cooperation. The final level, Organization level introduces the distinction in the form of coordination, distinguishing centralized approach from distributed ones.