

Development of Waste Coir-reinforced Aluminum Matrix Automotive Brake Pad Material

Atiqah Afdzaluddin, Md Abdul Maleque and A. R. Zamani Department of Manufacturing and Materials Engineering, Faculty of Engineering, International Islamic University Malaysia Phone: 010-3682595, E-mail: maleque@iium.edu.my

INTRODUCTION

•This work presents a new development of wastereinforced aluminum matrix automotive brake pad materials with a view to replace the use of asbestos whose dust is carcinogenic and has a harmful effect to the human life.

NOVELTY

•Green asbestos-free brake pad using waste coir fibre

•Lighter weight material compared to conventional brake pad

Cost effectiveness

			•Density •Porosity •Hardness •Compressive Stren		
			Vicroscops Nicroscobs SEM & Obtical Nicroscobs Nicroscobs SEM & Obtical Nicroscobs Nicro	Physico- mechanica Surface Morphology	
1) PHYSIC	D-MECH	ANICAL	RESU	LTS AND DISC	USSION (3) OPTICAL MICROSCOPY
Materials	Density (g/cm³)	Porosity (%)	Hardness (HRS)	Compression Force (MPa)	Carbon (dark region) Coir Fibre
NBPM 1	2.099	13.77	63.92	414.76	
NBPM 2	1.974	15.32	52.18	393.12	Alumina Oxide
СВР	3.3	14	76.2	440.00	
	5.5	74	76.2	110.00	4) SFM on wear worn surface
	TION & V		/0.2		4) SEM on wear worn surface Abraded
		VEAR Hot frictio		110.00 Observations/ Remark	
2) FRIC Sample NBPM 1 0	TION & V Normal Friction	VEAR Hot frictio	on Average Thickness	Observations/	Abraded Region

•NBPM 1 with 5% vol. of coir fibre showed better physico-mechanical and tribological properties (both wear and friction)compared to NBPM 2 and CBP as well.

•Hence, natural coir fiber can be used as a candidate fiber or filler material for the mass-scale fabrication of asbestos-free brake pad without any harmful effect.

ACKNOWLEDGEMENT

 Authors are grateful to the International Islamic University (IIUM) and AMREC, SIRIM which made this research possible

IIUM Research, Invention and Innovation Exhibition 2012