
UNDERSTANDING BRAIN DEVELOPMENTAL DISORDER BASED ON EEG IN SOFT COMPUTING APPROACH

Abdul Wahab Abdul Rahman

IIUM PRESS INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

UNDERSTANDING BRAIN DEVELOPMENTAL DISORDER BASED ON EEG IN SOFT COMPUTING APPROACH

Editors

Abdul Wahab Abdul Rahman

IIUM Press

Published by: IIUM Press International Islamic University Malaysia

First Edition, 2011 ©IIUM Press, IIUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia Data Cataloguing-in-Publication

Abdul Wahab Abdul Rahman: Understanding brain developmental disorder based on EEG in soft computing approach

ISBN: 978-967-418-111-6

Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)

> Printed by : **IIUM PRINTING SDN. BHD.** No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan

TABLE OF CONTENTS

Dedication	v
Table of Contents	vi
Preface	x
Acknowledgement	xii
Introduction	xiii
Viewing emotions from categorical and dimensional perspectives	1
Hamwira Sakti YaacobAbdul Wahab Abdul Rahman	
Emotion recognition based on EEG: Brain waves	14
 Abdul Wahab Abdul Rahman Norhaslinda Kamaruddin Palaniappan L.K 	
Emotion recognition using EEG signals	37
 Normaziah Abdul Aziz Abdul Wahab Abdul Rahman Najwani Razali 	
EEG emotion recognition using features of mel frequency cepstral coefficients	58
 Marini Othman Abdul Wahab Abdul Rahman 	

- Reza Khosrowabadi	
Emotion detection from brain signals based on musical and visual stimuli	77
 Marini Othman Abdul Wahab Abdul Rahman Reza Khosrowabadi 	
Understanding students' emotion while solving	94
mathematical questions using EEG signals	
 Normaziah Abdul Aziz Abdul Wahab Abdul Rahman Marini Othman Najwani Razali 	
Understanding stress by analyzing the brain when solving	111
mathematical task	
Abdul Wahab Abdul RahmanNorzaliza Md. Nor	
Classification of EEG signals for understanding affective	135
face processing impairment in autism	
Abdul Wahab Abdul RahmanMarini Othman	
Detection of autism spectrum disorder based on 2D affective space model (ASM)	155
 Abdul Wahab Abdul Rahman Najwani Razali 	
Detection of autism spectrum disorder (ASD) based on	177
motor imitation	
 Abdul Wahab Abdul Rahman Najwani Razali 	

Critical features among autistic children based on EEG for motor imitation: Dynamic analysis approach	195
 Abdul Wahab Abdul Rahman Najwani Razali 	
Principle component analysis for detecting autism during	215
motor movement	
Abdul Wahab Abdul RahmanWafaa Khazaal	
Understanding human stress and depression with relation to	237
cultural and language differences	
- Abdul Wahab Abdul Rahman	
- Rahnuma K.S	
- Hariyati	
- Bjorn Cruts	
Understanding stragg using EEC MA success	0.50
Understanding stress using EEG-VA approach	252
- Abdul Wahab Abdul Rahman	
- Rahnuma K.S	
Understanding driver behavior based on driver	271
identification and driver's emotion verification	2/1
- Abdul Wahab Abdul Rahman	
- Norzaliza Md. Nor	
Understanding driver behavior according to brain signal	303
and DASS 21 analysis	
 Abdul Wahab Abdul Rahman Norzaliza Md. Nor 	
Post accident analysis by using valence arousal approach	334
(VAA)	
- Abdul Wahab Abdul Rahman	
 Abdul wanab Abdul Ranman Norzaliza Md. Nor 	

- Harıyatı - Norhaslinda Kamaruddin	
 Understanding driver behavior based on the relationship between pre-post accident and pre-cursor emotion Abdul Wahab Abdul Rahman Norzaliza Md. Nor Norhaslinda Kamaruddin Hariyati 	358
Understanding long term memory effect towards driver's pre-emotion by using EEG - Abdul Wahab Abdul Rahman - Norzaliza Md. Nor - Hariyati - Norhaslinda Kamaruddin	383
Classifying users emotions towards the quranic recitation using EEG: A preliminary study - Akram M. Zeki - Ahmed M. Zeki - Daeng A.Z.Z - Rosyuhadah Tahir	404

DETECTION OF AUTISM SPECTRUM DISORDER BASED ON 2D AFFECTIVE SPACE MODEL (ASM) ABDUL WAHAB ABDUL RAHMAN AND NAJWANI RAZALI

9.0 Abstract

Research study using affective space model (ASM) had been used widely since 90s. Currently, ASM has been used in many studies related to emotion and also open up its function for understanding movement. Thus, our study adopted this model in order to detect autism based on motor imitation skills. Experimental results showed that there are potential findings for early detection of autism based on motor imitation using ASM. Data collection consists of both autistic and normal children with the total of 6 children for each group. All subjects were asked to clinch their hand by following video stimuli which presented in 1 minute time. Gaussian mixture model was used as a method of feature extraction for analyzing the brain signals in frequency domain. Then, the extraction data were classified using multilayer perceptron (MLP). According to the verification result, the