Advances in Aircraft Structures

Editor

Jaffar Syed Mohamed Ali

Erwin Sulaema

Published by: **IIUM Press** International Islamic University Malaysia

First Edition, 2011 ©HUM Press, HUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia Cataloguing-in-Publication Data

ISBN: 978-967-418-148-2

Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)

Printed by:

HUM PRINTING SDN. BHD.

No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan

CONTENTS

	Preface	i
	Contents	ii
	Contributing Author	iv
	Aircraft Structural Design and Testing	
1	Design of HUM Aircraft Fuselage Using Composite Material (5169/20218)	1
2	Fabrication and Testing of HUM Aircraft Fuselage Structure Made of	8
	Composite Laminate Material (5166/20223)	
3	Design and Fabrication of Fuselage Model for Laboratory Purpose (5166/20225	16
4	Simulation of Fuselage Model for Laboratory Purpose (5168/20228)	24
5	Propeller Blade Stress Analysis using CATIA (4625/20230)	30
6	Lateral Crushing of Composite Fuselages (4625/ 20232)	37
7	Corrosion Detection in Aircraft Structures by Ultrasonic Method (49%0/20233)	45
8	Fatigue Damage Characterization of Aluminum Alloy Plates (4980/20235)	55
	Composite Structures (51(4/20231)	
9	Determination of Mechanical Properties of Corrugated Hybrid Composite	63
10	Composite Failure Mechanism of Corrugated Hybrid Composite Subjected to Bending [5168/20239]	70
11	Study of Energy Absorption of Foam-Filled Honeycomb Structure (5/68/2024)	79 (
12	Experimental Study of Indentation on Composite Structure (5162/20245)	86
13	Simulation Study of Composite Structure Subjected to 3 Points Bending	93
	Load (5168/20246)	
14	Experimental Study of the Strength of Sandwich Structure with Honeycomb	101
	Core (5169/20248)	
15	Buckling of Composite Columns (4625/20244)	107
16	Buckling of Composite Perforated Plates (4625/20253)	117
17	Structural Analysis of an Active Beam (4625/20254)	125
18	Characterization of Composite Materials using Full Field Data (6377/2025)	131

19	(6377/20262) Application of Virtual Fields Method to Composite Plate Bending Problem	137
20	Mode I Delamination Simulation using LS-DYNA (3563/20263)	143
	Structural Instability	
21	Buckling of Long Column (4625/20264)	150
22	Buckling of Thin Walled Sections (4625 / 20265)	158
23	Effect of Boundary Conditions on the Buckling Behavior of Perforated	167
24 25 26	Plates (4675/20266) Effect of Cutout Shape on the Critical Buckling Load of Perforated Plates. (4675/20266) Experimental Determination of Critical Buckling Load for a Perforated Plate (2427/20269) Accurate Geometric Stiffness Matrix Formulation of Beam Finite Element	174 182 190
	Structure Analytical Methods	
27	The Constitutive Equation Gap Method (6377/20270)	198
28	The Equilibrium Gap Method (6377/2027)	202
29	The Reciprocity Gap Method (6377/20272)	206
30	The Virtual Fields Method (6377/ 20273)	210
31	Numerical Construction of Piecewise Virtual Fields (6377/26774)	215
32	Numerical Model of Noise Effect in Full Field Data (6377/20274)	221
33	Optimized Virtual Fields with Noise Minimization (6377/20276)	227
34	Axial Stiffness Matrix of Non-Uniform Bernoulli-Euler Bar Elements	233
35	Finite Element Model Updating (6377/20277)	240

Chapter 9

Determination of Mechanical Properties of Corrugated Hybrid Composite

Y.Aminanda, N. Ismail

Abstract

In this chapter, behaviors of composite corrugated plates subjected to three-point bending tests will be explained. The fabrication process of Jute/epoxy, glass/epoxy and hybrid jute/glass/epoxy plates using hand lay-up method will be detailed. Two types of composites corrugated plates are proposed which are in form of rectangular and trapezoidal. Load-displacement relations will be drawn for the mentioned specimens. As a result, the composite with the best stiffness and excellent performance can be determined and the advantages of having corrugated form will be drawn as well.

Keywords: Corrugated form, composite, hybrid, natural fiber, bending stiffness.

1. Introduction

Numerous studies have shown that composite materials have superior structural performance in high specific strength (strength to density ratio) and high specific stiffness (modulus to density ratio). However, composites also have some limitations that conventional monolithic do not have. The purpose of this chapter is to investigate the mechanical properties that exhibit by the composites materials such as jute/epoxy, glass/epoxy and hybrid jute/glass. Those specimens are tested under three point bending test. Since, the interest of the study is to study the