Advances in Aircraft Structures Editor Jaffar Syed Mohamed Ali Erwin Sulaema # Published by: **IIUM Press** International Islamic University Malaysia First Edition, 2011 ©HUM Press, HUM All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher. Perpustakaan Negara Malaysia Cataloguing-in-Publication Data ISBN: 978-967-418-148-2 Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council) Printed by: HUM PRINTING SDN. BHD. No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan # CONTENTS | | Preface | i | |----|--|------| | | Contents | ii | | | Contributing Author | iv | | | Aircraft Structural Design and Testing | | | 1 | Design of HUM Aircraft Fuselage Using Composite Material (5169/20218) | 1 | | 2 | Fabrication and Testing of HUM Aircraft Fuselage Structure Made of | 8 | | | Composite Laminate Material (5166/20223) | | | 3 | Design and Fabrication of Fuselage Model for Laboratory Purpose (5166/20225 | 16 | | 4 | Simulation of Fuselage Model for Laboratory Purpose (5168/20228) | 24 | | 5 | Propeller Blade Stress Analysis using CATIA (4625/20230) | 30 | | 6 | Lateral Crushing of Composite Fuselages (4625/ 20232) | 37 | | 7 | Corrosion Detection in Aircraft Structures by Ultrasonic Method (49%0/20233) | 45 | | 8 | Fatigue Damage Characterization of Aluminum Alloy Plates (4980/20235) | 55 | | | Composite Structures (51(4/20231) | | | 9 | Determination of Mechanical Properties of Corrugated Hybrid Composite | 63 | | 10 | Composite Failure Mechanism of Corrugated Hybrid Composite Subjected to Bending [5168/20239] | 70 | | 11 | Study of Energy Absorption of Foam-Filled Honeycomb Structure (5/68/2024) | 79 (| | 12 | Experimental Study of Indentation on Composite Structure (5162/20245) | 86 | | 13 | Simulation Study of Composite Structure Subjected to 3 Points Bending | 93 | | | Load (5168/20246) | | | 14 | Experimental Study of the Strength of Sandwich Structure with Honeycomb | 101 | | | Core (5169/20248) | | | 15 | Buckling of Composite Columns (4625/20244) | 107 | | 16 | Buckling of Composite Perforated Plates (4625/20253) | 117 | | 17 | Structural Analysis of an Active Beam (4625/20254) | 125 | | 18 | Characterization of Composite Materials using Full Field Data (6377/2025) | 131 | | 19 | (6377/20262) Application of Virtual Fields Method to Composite Plate Bending Problem | 137 | |----------------|--|-------------------| | 20 | Mode I Delamination Simulation using LS-DYNA (3563/20263) | 143 | | | Structural Instability | | | 21 | Buckling of Long Column (4625/20264) | 150 | | 22 | Buckling of Thin Walled Sections (4625 / 20265) | 158 | | 23 | Effect of Boundary Conditions on the Buckling Behavior of Perforated | 167 | | 24
25
26 | Plates (4675/20266) Effect of Cutout Shape on the Critical Buckling Load of Perforated Plates. (4675/20266) Experimental Determination of Critical Buckling Load for a Perforated Plate (2427/20269) Accurate Geometric Stiffness Matrix Formulation of Beam Finite Element | 174
182
190 | | | Structure Analytical Methods | | | 27 | The Constitutive Equation Gap Method (6377/20270) | 198 | | 28 | The Equilibrium Gap Method (6377/2027) | 202 | | 29 | The Reciprocity Gap Method (6377/20272) | 206 | | 30 | The Virtual Fields Method (6377/ 20273) | 210 | | 31 | Numerical Construction of Piecewise Virtual Fields (6377/26774) | 215 | | 32 | Numerical Model of Noise Effect in Full Field Data (6377/20274) | 221 | | 33 | Optimized Virtual Fields with Noise Minimization (6377/20276) | 227 | | 34 | Axial Stiffness Matrix of Non-Uniform Bernoulli-Euler Bar Elements | 233 | | 35 | Finite Element Model Updating (6377/20277) | 240 | | | | | # Chapter 1 # Design of IIUM Aircraft Fuselage Using Composite Material Y. Aminanda, Mir Amirul Shah Bin Esa, Said Hamadi Said Mohamed ### **Abstract** The main objective of this chapter is to structurally design a minimum weight fuselage which has enough strength to overcome loads while flying or on ground. Structure is related not only to the safety but also to the cost and to the performance of an airplane. Due to these reasons, a proper steps need to be taken during the whole process. In this chapter a complete structural design calculation of the IIUM made aircraft's fuselage will be discussed. The design process discussed in this chapter is a standard practice applied in aircraft manufacturing industries. Step-by-step procedures are included whenever possible. The stress calculation and sizing of the structures is carried out using hand calculations throughout this chapter.. Keywords: Composite, fuselage, stress, design, optimum sizing ## 1. Introduction Fuselage is one of the important components of an airplane. Generally it is use to protect airplane payloads. Payloads here may include human, cargoes and aircraft system components. Since the applications of the fuselage are huge and significant, appropriate tasks are needed to build a fuselage. The requirement of this project is to structurally design a fuselage which has minimum weight. It