Alternative Energy Edited by A.K.M. Mohiuddin Asif Hoda ## Published by: IIUM Press International Islamic University Malaysia First Edition, 2011 ©IIUM Press, IIUM All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher. Perpustakaan Negara Malaysia Cataloguing-in-Publication Data A.K.M. Mohiuddin and Asif Hoda Alternative Energy A.K.M. Mohiuddin and Asif Hoda Include index Bibliography: p. ISBN 978-967-418-158-1 Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council) Printed by : IIUM PRINTING SDN. BHD. No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan # **Table of Contents** | Table of Contentsv | |--| | Prefaceviii | | Chapter 1 | | The Impact of energy utilization on environment | | M.N.A. Hawlader | | Chapter 2 | | Desalination of Seawater to provide fresh water9 | | M.N.A. Hawlader | | Chapter 3 | | A solar assisted desalination system using heat pump | | M.N.A. Hawlader, Leong Chiing Yang | | Chapter 4 | | An experimental study of a phase change storage system | | M.N.A. Hawlader and Smita Panga | | Chapter 5 | | Moisture migration in a grain column subjected to drying | | M.N.A. Hawlader and Md. Shafique J. Chowdhury | | Chapter 6 | | Solar Drying of Guavas, Papayas and Apples38 | | M.N.A. Hawlader and Lee Hwee Peng | | Chapter 7 | | Drying under inert environment: the quality of Mango and Rockmelon47 | | M.N.A. Hawlader and Pan Jiahe | | Chapter 8 | | A low temperature flat plate solar collector | | M.N.A. Hawlader, M. Zakir Ullah and Maung Than Htut | | Chapter 9 | | Optimization of an integrated solar heat-pump system | | M N A Hawlader and Ye Shaochun | | Chapter 10 | | Comparative study of performance characteristics using Jatropha Oil Methyl Esters | | Biodiesel and Diesel 69 | | A.K.M. Mohiuddin and Azan Mohd | | Chapter 11 | | Comparative Study of Emission Characteristics using Jatropha Oil Methyl Esters Biodiesel | | and Diesel | | A.K.M. Mohiuddin and Azan Mohd | | Chapter 12 | | Waste Cooking Oil Utilization for Biodiesel Production | | A.K.M. Mohiuddin and Nabeel Adeyemi | | Chapter 13 | | Flow Characteristic of Mixing Impeller for Liquid-Liquid Mixing | | A.K.M. Mohiuddin and Nabeel Adeyemi | | Chapter 14 | | Solar Energy Management for Poverty Alleviation and Income Generating Activities 91 | | A.K.M. Mohiuddin | | Chapter 15 | | |--|-----| | Turbulence model for axial mixing impeller in unbaffled vessel | 97 | | A.K.M. Mohiuddin, Nabeel Adeyemi and Muhamad Husaini | | | Chapter 16 | | | Optimization and economic analysis of a solar assisted heat pump drying system 10 | 03 | | M.N.A. Hawlader, S. M. A. Rahman and K.A. Jahangeer | | | Chapter 17 | | | A solar heat pump water heater for rural hospitals | 17 | | M.N.A. Hawlader and M. Zakir Ullah | | | Chapter 18 | | | A solar heat-pump system for air-conditioning, water heating and drying | 26 | | M N A Hawlader, K A Jahangeer, Ye Shaochun and Choy Tack Hoon | | | Chapter 19 | | | Engineering design – An approach to the development of creativity | 32 | | M.N.A. Hawlader | | | Chapter 20 | | | Analysis of Engine Performance with NGV | 40 | | Sany Izan Ihsan, Nabila Sulaiman, AKM Mohiuddin and Maizirwan Mel | •• | | Chapter 21 | | | Analysis of Engine Performance with Enhanced Fuel | 47 | | Sany Izan Ihsan, Khairussani Farid, Maizirwan Mel, and AKM Mohiuddin | • ' | | Chapter 22 | | | CFD analysis of an evacuated solar still. | 56 | | Ahmad F. Ismail, Mirghani I. Ahmed, Yousif A. Abakr | | | Chapter 23 | | | Developments on Solar Operated Water Desalination | 63 | | Mirghani I. Ahmed, Yousif A. Abakr and Ahmad F. Ismail | | | Chapter 24 | | | Theoretical and experimental evaluation of LPG as refrigerant for domestic refrigerators | | | and freezers | | | M.M. El-Awad, M.I. Ahmed | - | | Chapter 25 | | | Preliminary investigation of biodiesel reactor optimization using combine CFD-Taguchi | | | method | | | A.K.M. Mohiuddin and Nabeel A Adeyemi | | | Chapter 26 | | | Alternative mixing strategy for biodiesel production: mixed flow impeller characterization | n | | | | | A.K.M. Mohiuddin and Nabeel Adeyemi | | | Chapter 27 | | | Experimental Investigation of a Multistage Evacuated Solar Still | 97 | | Yousif, A. Abakr, Ahmad F. Ismaill and Mirghani I. Ahmed | | | Chapter 28 | | | Modelling of electronics heat sink – Influence of the wake function generation on the | | | accuracy of CFD analysis20 | 03 | | M. I. Ahmed, A. F. Ismail, Y. A. Abakr | | | Chapter 29 | | | The effect of the operating conditions on the apparent viscosity of crude palm oil during | | | • | 13 | | Sulaiman Al-Zuhair, Yousif A. Abakr and Mirghani I. Ahmed | |--| | Chapter 30 | | Thermal analysis of a micro device used for detection of colorectal cancer | | Mirghani I. Ahmed, Meftah Hrairi | | Chapter 31 | | Performance of different photovoltaic cells operating under the meteorological conditions | | of Singapore229 | | M.N.A Hawlader, Lee Poh Seng and Chua Kok Kiang | | Chapter 32 | | Analyses of motion and drag coefficient of water droplets in a natural draught cooling | | tower | | Liu Baomin and M. N. A. Hawlader | | Chapter 33 | | A solar assisted heat pump system for desalination | | Zakaria Mohd. Amin, M. N. A. Hawlader and Azharul Karim | | Chapter 34 | | Comparative study of combustion characteristics using Jatropha oil methyl esters biodiese | | and diesel | | A.K.M. Mohiuddin and Azan Mohd | | Chapter 35 | | Performance of evaporator collector and air collector in a solar assisted heat pump dryer. | | | | S. M. A. Rahman and M. N. A. Hawlader | ### Chapter 17 #### A solar heat pump water heater for rural hospitals #### M.N.A. Hawlader and M. Zakir Ullah* *Department of Mechanical Engineering, National University of Singapore Department of Mechanical Engineering, International Islamic University Malaysia #### Abstract For the meteorological condition of Singapore, a solar heat pump water heater for rural hospitals was designed, fabricated and tested. In this project, the potential of using solar heat pump for water heating has been investigated. A simulation model has been developed to predict the thermal performance of the system under the meteorological condition of Singapore for different load requirements. Also, a series of parametric studies have been performed to identify important variables that affect the system performance. Refrigerant 134a is used as a working fluid both in simulation and experiment. The results have been compared with those obtained from experiments and a good agreement was found. It was observed that solar irradiation, speed of the compressor, storage volume and collector area have a significant effect on the thermal performance of the system. Average values of COP ranged from about 4 to 9, and solar collector efficiency was found to vary between 40 and 75 percent. From the economic analysis of the system, it was found that the system could provide 70% of the designed water heating load required for a rural hospital with a collector area of about 8 m2 and a minimum pay back period of 21/2 was obtained. Keywords: Solar heat pump, simulation model, performance, economic analysis, rural hospital. ## INTRODUCTION Singapore is located near the equator and it has abundant supply of solar energy with high ambient temperature throughout the year [1]. Among the alternative energy sources, solar energy is considered cheap, readily available, and nonpolluting. It is also considered suitable for low temperature thermal applications. Solar energy systems and heat pumps are, therefore, promising means of reducing the consumption of nonrenewable energy resources. To increase the evaporation temperature, the unglazed solar collectors can act as an evaporator to increase the thermal performance. Chaturvedi and Abazeri [2] found a variation of the evaporator temperature from 0 to 10°C above the ambient temperature under favourable solar conditions. Morgan [3] reported that, for the ambient temperature of above 25°C, the evaporator could be operated at an elevated temperature. It was discovered that proper matching between collector/evaporator load with compressor size is very important, as found