Alternative Energy Edited by A.K.M. Mohiuddin Asif Hoda ## Published by: IIUM Press International Islamic University Malaysia First Edition, 2011 ©IIUM Press, IIUM All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher. Perpustakaan Negara Malaysia Cataloguing-in-Publication Data A.K.M. Mohiuddin and Asif Hoda Alternative Energy A.K.M. Mohiuddin and Asif Hoda Include index Bibliography: p. ISBN 978-967-418-158-1 Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council) Printed by : IIUM PRINTING SDN. BHD. No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan ## **Table of Contents** | Table of Contentsv | |--| | Prefaceviii | | Chapter 1 | | The Impact of energy utilization on environment | | M.N.A. Hawlader | | Chapter 2 | | Desalination of Seawater to provide fresh water9 | | M.N.A. Hawlader | | Chapter 3 | | A solar assisted desalination system using heat pump | | M.N.A. Hawlader, Leong Chiing Yang | | Chapter 4 | | An experimental study of a phase change storage system | | M.N.A. Hawlader and Smita Panga | | Chapter 5 | | Moisture migration in a grain column subjected to drying | | M.N.A. Hawlader and Md. Shafique J. Chowdhury | | Chapter 6 | | Solar Drying of Guavas, Papayas and Apples38 | | M.N.A. Hawlader and Lee Hwee Peng | | Chapter 7 | | Drying under inert environment: the quality of Mango and Rockmelon47 | | M.N.A. Hawlader and Pan Jiahe | | Chapter 8 | | A low temperature flat plate solar collector | | M.N.A. Hawlader, M. Zakir Ullah and Maung Than Htut | | Chapter 9 | | Optimization of an integrated solar heat-pump system | | M N A Hawlader and Ye Shaochun | | Chapter 10 | | Comparative study of performance characteristics using Jatropha Oil Methyl Esters | | Biodiesel and Diesel 69 | | A.K.M. Mohiuddin and Azan Mohd | | Chapter 11 | | Comparative Study of Emission Characteristics using Jatropha Oil Methyl Esters Biodiesel | | and Diesel | | A.K.M. Mohiuddin and Azan Mohd | | Chapter 12 | | Waste Cooking Oil Utilization for Biodiesel Production | | A.K.M. Mohiuddin and Nabeel Adeyemi | | Chapter 13 | | Flow Characteristic of Mixing Impeller for Liquid-Liquid Mixing | | A.K.M. Mohiuddin and Nabeel Adeyemi | | Chapter 14 | | Solar Energy Management for Poverty Alleviation and Income Generating Activities 91 | | A.K.M. Mohiuddin | | Chapter 15 | | |--|-----| | Turbulence model for axial mixing impeller in unbaffled vessel | 97 | | A.K.M. Mohiuddin, Nabeel Adeyemi and Muhamad Husaini | | | Chapter 16 | | | Optimization and economic analysis of a solar assisted heat pump drying system 10 | 03 | | M.N.A. Hawlader, S. M. A. Rahman and K.A. Jahangeer | | | Chapter 17 | | | A solar heat pump water heater for rural hospitals | 17 | | M.N.A. Hawlader and M. Zakir Ullah | | | Chapter 18 | | | A solar heat-pump system for air-conditioning, water heating and drying | 26 | | M N A Hawlader, K A Jahangeer, Ye Shaochun and Choy Tack Hoon | | | Chapter 19 | | | Engineering design – An approach to the development of creativity | 32 | | M.N.A. Hawlader | | | Chapter 20 | | | Analysis of Engine Performance with NGV | 40 | | Sany Izan Ihsan, Nabila Sulaiman, AKM Mohiuddin and Maizirwan Mel | •• | | Chapter 21 | | | Analysis of Engine Performance with Enhanced Fuel | 47 | | Sany Izan Ihsan, Khairussani Farid, Maizirwan Mel, and AKM Mohiuddin | • ' | | Chapter 22 | | | CFD analysis of an evacuated solar still. | 56 | | Ahmad F. Ismail, Mirghani I. Ahmed, Yousif A. Abakr | | | Chapter 23 | | | Developments on Solar Operated Water Desalination | 63 | | Mirghani I. Ahmed, Yousif A. Abakr and Ahmad F. Ismail | | | Chapter 24 | | | Theoretical and experimental evaluation of LPG as refrigerant for domestic refrigerators | | | and freezers | | | M.M. El-Awad, M.I. Ahmed | - | | Chapter 25 | | | Preliminary investigation of biodiesel reactor optimization using combine CFD-Taguchi | | | method | | | A.K.M. Mohiuddin and Nabeel A Adeyemi | | | Chapter 26 | | | Alternative mixing strategy for biodiesel production: mixed flow impeller characterization | n | | | | | A.K.M. Mohiuddin and Nabeel Adeyemi | | | Chapter 27 | | | Experimental Investigation of a Multistage Evacuated Solar Still | 97 | | Yousif, A. Abakr, Ahmad F. Ismaill and Mirghani I. Ahmed | | | Chapter 28 | | | Modelling of electronics heat sink – Influence of the wake function generation on the | | | accuracy of CFD analysis20 | 03 | | M. I. Ahmed, A. F. Ismail, Y. A. Abakr | | | Chapter 29 | | | The effect of the operating conditions on the apparent viscosity of crude palm oil during | | | • | 13 | | Sulaiman Al-Zuhair, Yousif A. Abakr and Mirghani I. Ahmed | |--| | Chapter 30 | | Thermal analysis of a micro device used for detection of colorectal cancer | | Mirghani I. Ahmed, Meftah Hrairi | | Chapter 31 | | Performance of different photovoltaic cells operating under the meteorological conditions | | of Singapore229 | | M.N.A Hawlader, Lee Poh Seng and Chua Kok Kiang | | Chapter 32 | | Analyses of motion and drag coefficient of water droplets in a natural draught cooling | | tower | | Liu Baomin and M. N. A. Hawlader | | Chapter 33 | | A solar assisted heat pump system for desalination | | Zakaria Mohd. Amin, M. N. A. Hawlader and Azharul Karim | | Chapter 34 | | Comparative study of combustion characteristics using Jatropha oil methyl esters biodiese | | and diesel | | A.K.M. Mohiuddin and Azan Mohd | | Chapter 35 | | Performance of evaporator collector and air collector in a solar assisted heat pump dryer. | | | | S. M. A. Rahman and M. N. A. Hawlader | #### Chapter 9 Optimization of an integrated solar heat-pump system #### M.N.A. Hawlader and Ye Shaochun* *Department of Mechanical Engineering, National University of Singapore Department of Mechanical Engineering, International Islamic University Malaysia #### Abstract This paper describes a method of economic optimization of an integrated solar heat pump system for space cooling, water heating and drying. The system can serve three functions simultaneously or independently. A simulation model for this system was developed to study the influence different variables. The results were validated by a series of experiments carried out under the meteorological conditions of Singapore. Based on this simulation model, an economic optimization was performed to identify the best collector size for a given load and its distribution, using two methods, life cycle savings (LCS) and payback period. The load pattern is determined based on a typical small hotel with the air-con room area of 500m2, daily hot water demand of 18m3 and daily drying demand of 90 kg. It was seen that the life cycle saving method lead to the prediction of the optimum collector area of 55 m². The payback period analyses predicted the optimum collector area of 50 m2. The minimum payback period is about 1.5 years. Keywords: optimization, solar, heat-pump, evaporator-collector, life cycle savings, payback period ### INTRODUCTION Solar energy is clean and most inexhaustible of all known energy resources. Solar systems are normally characterized by a high initial investment followed by low operating cost. The initial investment and operating cost are dependent upon the system design. Therefore, system optimization is necessary to maximize the economical advantage of solar systems compared with conventional ones. The combination of solar energy and heat pump system can bring various thermal applications. Hawlader et al.[1] used refrigerant 134a in the heat pump for water heating application and the evaporator was used as a solar collector leading to a significant improvement in system COP. Hawlader et al.[2] also developed a solar-assisted heat-pump dryer and water heater. The COP of the system was about 5.0 to 7.0. The first 3-in-1 solar heat pump system for space cooling, water heating and drying was developed by