MECHATRONICS BOOK SERIES SYSTEM DESIGN AND SIGNAL PROCESSING VOLUME 1 Editors Asan G. A. Muthalif Amir Akramin Shafie Siti Fauziah Toha Iskandar Al-Thani Mahmood **IIUM PRESS** INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA ## MECHATRONICS BOOK SERIES: SYSTEM DESIGN AND SIGNAL PROCESSING - VOLUME 1 ### **Editors** Asan G. A. Muthalif Amir Akramin Shafie Siti Fauziah Toha Iskandar Al-Thani Mahmood #### Published by: IIUM Press International Islamic University Malaysia First Edition, 2011 ©IIUM Press, IIUM All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher. Perpustakaan Negara Malaysia Cataloguing-in-Publication Data ISBN: 978-967-418-173-4 Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council) ## Printed by: IIUM PRINTING SDN.BHD. No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan Tel: +603-6188 1542 / 44 / 45 Fax: +603-6188 1543 EMAIL: iiumprinting@yahoo.com ## **CONTENTS** | | Editorial Notes | ٧. | |---|--|-----| | | About the Editors | vi | | | Contents | vii | | | | | | | | | | 1 | Energy Harvesting For Wide Area Sensor Networks | 1 | | L | Nahrul Khair Alang Md Rashid and Mohamad Ghazali Ameer Amsa | | | | | | | 2 | Besign and Bevereparent extraction and a series of the ser | 8 | | | Md Mozasser Rahman, Anwar Hussain bin Mohamed Rasied and Ahmad
Zulkamal Ismail | | | | Zurkamat Ismati | | | 3 | Intelligent Shoe Guard System | 20 | | | M. J. E. Salami,, A. M. Aibinu, Siti Sarah binti Mohd Sufian | | | | Applications of Mechatronics Engineering In Modern Agriculture | 29 | | 4 | | 2) | | | Nahrul Khair Alang Md Rashid | | | 5 | Mathematical Modeling of Counter Flow Scrubber Using Eulerian- | | | | Lagrangian Approach | 34 | | | Bashir Ahmed Danzomo and Momoh Jimoh E. Salami | | | 6 | Auto Landmarks Generation For SLAM Algorithm | 42 | | | Nahrul Khair Alang Md Rashid and Imama Karim Manba Usama | | | | | | | 7 | Automatic Intelligent Ordering System Design and Tools Selection | 46 | | | Siti Fauziah Toha and Rosdiazli Ibrahim | | | 8 | Design And Development of a Sorting Machine Using Multiple Sensory | | | | System | 52 | | | Md Mozasser Rahman1. Siti Fatimah binti Abdul Rahim | | #### Contents | 9 | Design And Development Of Intelligent Wiper For Vehicle Windshield: Mechanical Design | 58 | |-----|--|-----| | | Shuhrul Na'im Sidek, Abd Rahman Ibrahim | | | 10 | Design and Development of Intelligent Wiper for Vehicle Windshield: Electrical Design | 63 | | | Shahrul Na'im Sidek, Mohammad Afhamuddin Ab Aziz | | | 11 | Design and Development of Intelligent Wiper for Vehicle Windshield: Final Assembly And Results | 68 | | | Shahrul Na'im Sidek, Mohammad Afhamuddin Ab Aziz | | | 12 | Design and Prototyping of Inertia Wheel | 73 | | | W. Astuti, A. R. Kasim, M. I. Solihin, A.M. Aibinu, Momoh Jimoh E.Salami and Wahyudi | | | 13 | Design and Implementation of Instant Noodles Vending Machine | 80 | | 14 | Mathematical Model for Three Tank System | 88 | | | W. Astuti, R. Alimuddin, A.M. Aibinu, Momoh Jimoh E.Salami and Wahyudi
Martono | | | 15 | Design of Software Tool to Detect QRS Complex from ECG Signal | 98 | | 16 | Development of a Jet Powered Floating Platform (In Air) | 104 | | 17 | Development of Experimental Station for Earthquake Prediction | 109 | | - / | A. M. Aibinu, M. J. E. Salami, Asan Gani Muthalif, Sumaiyah Mior Badri, Sarah Khalidah and Nuruleeman Saat | | | 18 | Development of Robotic Manipulator to Assist Human by Using Brain Signal | 117 | | | Rodhiah, Raisuddin Khan and Masum Billah | | | 19 | Development of Unmanned Aerial Vehicle – Part 1 | 123 | | | Shahrul Na'im Sidek, M. Ismail Mohtar, A Mushawwir M Khalil | | #### Contents | 20 | Development of Unmanned Aerial Vehicle – Part 2 | 129 | |----|--|-----| | 21 | Earthquake Prediction And Monitoring Using Unusual Animal Behavior A. M. Aibinu, W. Astuti, M. J. E. Salami, R. Akmelawati and Asan Gani Muthalif | 134 | | 22 | Development of Automatic Rocking Baby Cradle | 141 | | 23 | Electrooculograghy (EOG)-Controlled Wheelchair | 149 | | 24 | Conceptual Design of an Intelligent Coconut Dehusking | 155 | | 25 | An Electrooculogram (EOG) Signal for Wheelchair Motion Control | 163 | | 26 | A conceptual Paper on Intelligent Car Battery Monitoring System | 171 | | 27 | GIS-Based Vehicle Traffic Simulation | 177 | | 28 | Intelligent Postal Mails Sorter | 183 | | 29 | Intelligent Wet Scrubber System for Industrial Air Pollution Control Bashir Ahmed Danzomo and Momoh Jimoh E. Salami | 188 | | 30 | Leveraging on Nature for Systems Design Nahrul Khair Alang Md Rashid and Safinaz Kader Mohideen | 194 | | 31 | Natural Ventilation of Yam Storage System | 199 | | 32 | Self-Repair Capability in Engineering Systems | 208 | #### _ontents | 33 | Simulation of Airflow and Temperature Distribution in Yam Storage System | 213 | |----|---|-----| | | Murtala Abdulazeez, M.J.E. Salami, Md. Raisuddin Khan, Nabeel Adeyemi | | | 34 | Sound Identification in Noisy Environment | 218 | | | Nahrul Khair Alang Md Rashid, Nor Hidayati Diana Nordin and Alim
Sabur Ajibola | | | 35 | Intelligent CCTV-Based Monitoring System for Kulliyyah of Engineering, IIUM | 225 | | | M. J. E. Saslami,, A. M. Aibinu and Nur Syahrain binti Mohd Jahini | | | 36 | Virtual Modeling of Two-Wheeled Wheelchair using Msc Visual Nastran 4D | 231 | | | Salmiah Ahmad. M. O. Tokhi | | #### **CHAPTER 25** ### An Electrooculugram Signal Acquisition for Wheelchair Motion Control Salmiah Ahmad^{1, a}, Nurul Muthmainnah Mohd Noor^{1,b} ¹Department of Mechatronics Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, Jalan Gombak, 53100 Kuala Lumpur, Malaysia asalmiah@iium.edu.my, bnurul.muth@gmail.com #### 25.1 Introduction Tetraplegia - the paralysis that is caused by serious injuries or illness to a human that lead to a partial or total loss of lower limb as well as the torso. People who are categorized as tetraplegia are having difficulties in their mobility though wheelchair can be used due to the impairment of most of the main part of the body that generate power for mobility such as lower limb and torso. Nevertheless their parts like eyes, ears, noses, etc. are still normally working thus can be fully utilized. Therefore to help them to be independent in mobility, this paper seeks to use the eyemovement signals of tetraplegia to control the wheelchair. The signal from eye that is called Electrooculogram (EOG) is generated at different eye movement's directions. An eye movement is detected by processing the EOG signal and this signal will be further used to control the wheelchair. In this research, g. USBamp from G.TEC Medical Engineering GMBH is used to collect the eye movement signal data by using Ag/AgCl electrodes. The eye movement signal data is passed to Matlab/Simulink software for data acquisition. Different directions and level of strengths of the signal output is fed to a virtual wheelchair model in MSc Visual Nastran 4D software to study the effect of the EOG to the distanc/rotation travelled by wheelchair using different levels of eye movement. This paper has investigated that different EOG signals obtained which then leading to different distance/rotation travelled by the wheelchair detected from 4 different places (right, left, up and bottom) directions. Those four EOG signals are correspond to right and left steer, and forward backward, which will provide the different result for distances travelled and also steering. A simulation example verifies the eye movement signals could be manipulated and processed for helping tetraplegia in mobility using wheelchair at different strength of signal levels. ### 25.2 Wheelchair for Mobility Over the past several years, there has been increasing interest in the wheelchair among inventors, design engineers, and the general public. The suitable wheelchair design may facilitate their ability to be out of sick bed, continuing their life, pick and place things, manoeuvre in narrow spaces and partaking of human experience [1]. The use of wheelchair has become very important for mobility among disabled as well as the quadriplegics, which may cause by road accident, falling from high position or diseases. The initial purpose of the wheelchair is aimed to give more freedom for these people to do basic things on their own, such as carrying items from one place to another and manoeuvre [2]. The mobility of the wheelchair users can be aided according to the level of injuries of a user has, or depending on the capability of the user to handle the wheelchair. There are several techniques used to aid the disabled peoples based on the communication between the human and machine such as mouse, keyboard and joystick [3]. In addition, biopotential signal also is one of the examples of human—machine interface using of nonverbal information such as electrooculargraphic (EOG), electromyographic (EMG), and electroencephalographic (EEG) signals [4-5]. The EOG and EMG signals are caused by physiological changes; many studies have