ADVANCED TOPICS IN MECHANICAL BEHAVIOR OF MATERIALS

Edited by

Meftah Hrairi

IIUM PRESS INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

ADVANCED TOPICS IN MECHANICAL BEHAVIOR OF MATERIALS

Edited by

Meftah Hrairi

Published by: IIUM Press International Islamic University Malaysia

First Edition, 2011 ©IIUM Press, IIUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

ISBN: 978-967-418-174-1

Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)

Printed by : IIUM PRINTING SDN. BHD. No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan

Prefa	CeX
Ackno	owledgmentsxii
Editor	rXiv
Contr	ibutorsxvi
Secti	on 1 Buckling
1	Cylindrical Shell Buckling Under Axial Compression Load
2	Experimental Setup of Empty and Water Filled Cylindrical Shell Buckling
3	Experimental Results of Empty and Water Filled Cylindrical Shell Buckling
4	Experimental Results of Empty and Water Filled Cylindrical Shell Buckling for 50mm Stroke 18 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli
5	Experimental Results of Empty and Water Filled Cylindrical Shell Buckling for 60mm Stroke 24 <i>Qasim H. Shah, Hasan M. Abid, Adib B. Rosli</i>
6	Simulation Setup of Empty and Water Filled Cylindrical Shell Buckling
7	Simulation Results of Empty and Water Filled Cylindrical Shell Buckling
8	Experimental and Simulation Results of Cylindrical Shell Buckling
9	Buckling and Crush Analysis of Light Weight Structure
10	Analysis of Lightweight Structural Tubes for Crashworthy Car Body
Secti	on 2 Impact
11	Pipe Whip Impact
12	Experimental Setup of Pipe Whip Impact

13	Experimental Results of Pipe Whip Impact
14	Simulation Setup of Pipe Whip Impact
15	Simulation Results of Pipe Whip Impact at 55° Angle
16	Simulation Results of Pipe Whip Impact at 90° Angle
17	Failure Mechanism of PC Armor Plates with PMMA Sacrificial Layer Subjected to Impact93 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli
18	Damage of Polycarbonate Armor Plate Subjected to Impact 106 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli
19	Finite Element to Predict Damage of a Polycarbonate Armor Plate Subjected to Impact
20	Energy Absorbing Capability of Materials Subjected to Impact Under Gravity Loading
21	Damage Assessment of Liquid Filled Container Subjected to Free Fall on Rigid Steel Plate
22	Numerical Analysis of Materials Energy Absorbing Capability Under Gravity Loading Impact 134 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli
23	Numerical Assessment of Liquid Filled Container Subjected to Free Fall on Rigid Steel Plate 141 Qasim H. Shah, Hasan M. Abid, Adib B. Rosli
Secti	ion 3 Design and Manufacturing
24	Overview of the Powder Metallurgy Process
25	Mechanical Properties of Sintered Aluminum Alloy Compacts
26	Numerical Simulation of Green Compacts161 Meftah Hrairi, Asmu'i Hussin
27	Experimental Studies of Dieless Forming
28	Study of Spot Welding Process
29	General Framework for Inverse Identification of Consecutive Parameters

Mejtah Hrairi

30	Inverse Parameter Identification of Elastic and Inelastic Constitutive Material Models 18 <i>Meftah Hrairi</i>	33
31	Enhancing Magnetic Particle Testing of Automotive Parts	39
32	Design and Fabrication of the Testing Model of the Vehicle Structure Test System	96
33	Design Analysis of Laminated Composite Ladder Chassis Frame of Light Truck	02
34 Kaharu	Design and Development of Driving System for Disabled Driver	08
Sectio	on 4 Liquid Sloshing	
35	Liquid Sloshing	15
36	Experimental Study of Liquid Slosh Dynamics in a Half Filled Cylindrical Tank	20
37	Experimental Results of Liquid Slosh in a Cylindrical Tank with Different Fill Levels	26
38	Simulation Model of 3D Liquid Slosh in a Partially Filled Cylindrical Tank	33
39	Simulation Results of Liquid Slosh in a Partially Filled Cylindrical Tank	38
40	Numerical and Experimental Results of Liquid Slosh in a Partially Filled Cylindrical Tank	42
Index.		47

18

DAMAGE OF POLYCARBONATE ARMOR PLATE SUBJECTED TO IMPACT

Qasim H. Shah, Hasan M.Abid, Adib B. Rosli

1. INTRODUCTION

Due to its good impact resistance properties the polycarbonate material is used in helmets [1] and bullet proof armored vehicles. Polycarbonate (PC) is also under investigation for the development and manufacture of sandwiched panels for bullet proof vests and armored systems where alternate layers of Polymethyl Methacrylate Acrylic (PMMA) and Polycarbonate are used to mitigate the damage caused by high velocity projectiles [2, 3]. Due to their light weight, economical, and easy manufacturing processes the usage of polymers is on the rise in various industries. The response of rectangular plates subjected to blast loading was reported by [4, 5] where the authors explored the response of quadrangular stiffened steel plates. The effects of localized and uniform blast loading on various stiffener locations were studied. It was found that if the stiffeners were located at a localized blast loading position the deformation of the target plate was minimized but it resulted in tearing failure of the plate near the stiffener edges. The effect of large and close range explosions on circular armor plates have been reported very recently where the scaling of the dynamic response has been studied [6]. Numerical studies on the response of armor systems made up of PC and PMMA were reported [5] where smooth particle hydrodynamics (SPH) was used to simulate the response of PC and PMMA layers and it has been found that many existing material models can reproduce a close range results at the initial stage of simulations. Further numerical results based upon the experiments [7] have been reported by [8] where the effects of varying support configurations have been investigated on the