The Living Fossil (Horseshoe crab)

Kamaruzzaman Yunus Akbar John Ahmed Jalal Khan Chowdhury Zaleha Kassim

IIUM PRESS

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

The Living Fossil (Horseshoe crab)

Editors,

Kamaruzzaman Yunus

Akbar John

Ahmed Jalal Khan Chowdhury

Zaleha Kassim

Published by: IIUM Press International Islamic University Malaysia

First Edition, 2011 CHUM Press, HUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia Cataloguing-in-Publication Data

Kamaruzzaman Yunus

The Living Fossil (Horseshoe crab)
Kamaruzzaman Yunus
Include index
Bibliography: p.
ISBN

ISBN: 978-967-418-042-3

Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)

Printed by:
IRUM PRINTING SDN.BHD.
No. 1, Jalan Industri Batu Caves 1/3
Taman Perindustrian Batu Caves
Batu Caves Centre Point
68100 Batu Caves
Selangor Darul Ehsan

Table of Contents

Chapte	ers Titles	Page No
1.	Global distribution and Taxonomy of extant horseshoe crabs	(5410/18557)
	Limiting factors on the global distribution of horseshoe crabs.	(= 1.5 / 10 = FA)
3.	Site selection and nesting behaviour of horseshoe crabs with spanning polyphemus	•
	Distribution of horseshoe crabs at their nesting grounds, East of Malaysia	
5.	Hydrology of horseshoe crab nesting ground at Pahang coast -	Part 1 (3575/18563) ₃₅
6.	Hydrology of horseshoe crab nesting ground at Pahang coast -	Part 2 (3575/18566) 47
	Physicochemical parameters relationship at the horseshoe crab grounds of Pahang coast, Malaysia	•
	Macrobenthic diversity at the Horseshoc Crab nesting ground, Pahang, Malaysia – Part 1	
	Macrobenthic diversity at the Horseshoe Crab nesting ground, Pahang, Malaysia – Part 2	
10.	Macrobenthic diversity at the Horseshoe Crab nesting ground, Pahang, Malaysia – Part 1	Pekan station,
	Macrobenthic diversity at the Horseshoe Crab nesting ground, Pahang, Malaysia – Part 2	
12.	Influence of physicochemical parameters on the macrobenthic abundance in horseshoe crab nesting grounds, East coast of Pe	diversity and (5410/19574) ninsular Malaysia127
	In-vitro study on the effect of salinity on the hatching success of the Horseshoe crab eggs	•
	Effects of salinity on the early growth of Tachypleus gigas larv	

15. Sediment characteristics of horseshoe crabs nesting Pahang, Malaysia	
16. Sediment Profiling of the Estuarine Nesting Grou	
East Peninsular Malaysia	165
17. Bioaccumulation of some essential metal concent horseshoe crabs (<i>Tachypleus gigas</i>)	•
18. Cu and Cd Bioaccumulation in Malaysian Horses	shoe Crab (5410 / 19595)
19. Metal concentration in horseshoe crab nesting gro	
Pahang coast, Malaysia	(5410/18586) 193
20. Bionomics of Malaysian horseshoe crabs <i>Tachyp</i>	leus gigas (54 - 1 19778 203
21. Feeding Ecology of Mangrove horseshoe crab Co	arcinoscorpius rotundicauda213
22. Emerging interest on DNA barcoding technology high-tech biodiversity studies using COI gene as	• •
23. Can DNA barcode accurately delineate living fos and its different developmental stages?	
24. Revision on the molecular phylogeny of horsesho	
25. Revision on the molecular phylogeny of horsesho	pe crabs - Part 2. (54:0/19720) 267
26. Genetic Diversity of <i>Tachypleus gigas</i> Population peninsular Malaysia	
27. Does continental drift influence in the genetic var horseshoe crab population?	(3575/19727) 287
28. Evolution of horseshoe crabs – paleontological ar	(3575/19731) and Molecular viewpoint297
29. Factors involving in the clot formation of horsesh	oc crab blood (5410/19711)307
30. Methods for bacterial endotoxin quantification in	
horseshoe crab blood studies	(5410/19740) 317
horseshoe crab blood studies	(5410/19144) ian Horseshoe crab blood325
32. Characterization of <i>Tachypleus</i> Amebocyte Lysat	te (TAL) (3575/1975 4) 333

33. Environmental and Pharmaceutical applications of Amebocy	tes Lysate	
(LAL/TAL) from Horseshoe crabs	(5410/1 9751)	343
34. Tachypleus gigas mortality due biomedical bleeding process		
35. Conservation measures on horseshoe crab population – A glo	obal view <i>(5410/19759</i>	2 .359
Glossarv		.369

CHAPTER - 26

Genetic Diversity of *Tachypleus gigas* Population from West coast of peninsular Malaysia

¹Rozihan, M., ²Akbar John, B., ²Jalal, K.C.A.

¹Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.

²Institute of Oceanography and Maritime studies (INOCEM), Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200,

Kuantan Pahang, Malaysia

Abstract

A detailed investigation was carried out to determine the genetic structure and haplotype diversity of Malaysian horseshoe crab (Tachypleus gigas [Muller, 1785]) distributed along the west coast of Peninsular Malaysia. Mitochondrial DNA (AT rich region = 369bp) analysis showed that T. gigas had 13 haplotypes along the Malaysian west coast of which 4 were unique to Selangor samples while 3 were unique to Johor sample and 1 each were unique to other two stations respectively. Highest haplotype diversity (h) was observed among the Selangor samples (0.873 ± 0.071) followed by Langkawi, Johor and Kedah samples with 0.833 ± 0.222 , 0.752 ± 0.071 0.066 and 0.733 ± 0.155 values respectively. Over all haplotype diversity of T. gigas in west coast of Malaysia was observed to be 0.797 ± 0.129 . Pair wise haplotype frequency (F_{ST}) value were statistically significant (P < 0.05) for all the groups except for Langkawi/Kedah samples indicating higher gene flow (Lower haplotype diversity) among these two populations. Average nucleotide diversity (π) was higher in Selangor samples (0.0083 \pm 0.001) followed by Johor (0.0063 ± 0.0011) and it was almost similar in Langkawi (0.0045 ± 0.0012) and Kedah $(0.0040 \pm$ 0.0008) samples which indicated higher polymorphic sites in Selangor and Johor samples while it was lower in Langkawi and Kedah samples. In addition phylogenetic analysis clearly clustered T. gigas samples from T. tridentatus samples indicating good phylogenetic signals in mtDNA AT rich region. Overall, findings from this study have important implications for proper management and conservation of this living fossil along the west coast of Peninsular Malaysia.