



Advanced Machining Process

Editors Mohammad Yeakub Ali AKM Nurul Amin Erry Yulian Triblas Adesta

IIUM PRESS INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

Advanced Machining Process

Editors

Mohammad Yeakub Ali AKM Nurul Amin Erry Yulian Triblas Adesta

Published by: IIUM Press International Islamic University Malaysia

First Edition, 2011 ©IIUM Press, IIUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

Mohammad Yeakub Ali, AKM Nurul Amin & Erry Yulian Triblas Adesta: Advanced Machining Process

ISBN: 978-967-418-162-8

Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)

Printed By: **IIUM PRINTING SDN.BHD.** No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan Tel: +603-6188 1542 / 44 / 45 Fax: +603-6188 1543 EMAIL: iiumprinting@yahoo.com

Advanced Machining Process

Table of Contents

Preface	ii
Acknowledgement	iii
Copyright	iv
PART 1: ELECTRO DISCHARGE MACHINING	1
Chapter 1 Tool Wear rate during Electrical Discharge Machining (EDM) with Eccentric Electrode	2
Ahsan Ali Khan, Affendi Bin Saad and Mohd Zulfadli Isma Bin Mohd Isa	
Chapter 2 Wear Ratio and Work Surface Finish during Electrical Discharge Machining (EDM) with Eccentric Electrode Ahsan Ali Khan, Affendi Bin Saad and Mohd Zulfadli Isma Bin Mohd Isa	7
Chapter 3	12
Role of Current, Voltage and Spark on-time on Electrode Material Migration during EDM	
Ahsan Ali Khan, Nurul Shima Mohd Noh	
Chapter4 A Study on Material Removal Rate during EDM with Tantalum Carbide-Copper Compacted Electrode Ahsan Ali Khan, Mohammad Azhadi Bin Mohammad Hambiyah and Mohd Faiz Bin Nazi Nadin	18
Chapter 5	23
Features of EDM of Mild Steel with Ta-Cu Powder Compacted Electrodes	45
Ahsan Ali Khan, Mohammad Azhadi Bin Mohammad Hambiyah and Mohd Faiz Bin Nazi Nadin	
Chapter 6	28
Relationship between Machining Variables and Process Characteristics during Wire EDM	
Ahsan Ali Khan, M. B. M. Ali and N. B. M. Shaffiar	

Chapter 7	33
Influence of Machining Parameters on Surface Roughness during EDM of Mild Steel	
Ahsan Ali Khan, Erry Y.T. Adesta and Mohammad Yeakub Ali	
Chapter 8	38
Machining of Ceramic Materials: A Review Abdus Sabur, Md. Abdul Maleque and Mohammad Yeakub Ali	
Chapter 9	44
Formation of Micro-cracks and Recast Layer during EDM of Mild Steel using Copper Electrodes	
Ahsan Ali Khan, Erry Y.T. Adesta and Mohammad Yeakub Ali	
Chapter 10	49
Features of Electrode Wear during EDM of Mild Steel with TaC-Cu Powder Compacted Electrodes	• /
Ahsan Ali Khan, Mohd Faiz Bin Nazi Nadin and Mohammad Azhadi Bin Mohammad Hambiyah	
Chapter 11	54
Influence of Current, Spark On-time and Off-time on Electrode Wear during EDM of Mild Steel	
Ahsan Ali Khan, Mohd Faiz Bin Nazi Nadin and Mohammad Azhadi Bin Mohammad Hambiyah	
Chapter 12	59
A Comparative study on Work Surface Hardness EDMed by Ta-C Powder Compacted and Copper Electrodes	
Ahsan Ali Khan. Mohd Faiz Bin Nazi Nadin and Mohammad Azhadi Bin Mohammad Hambiyah	
Chapter 13	65
An Introduction to Electrical Discharge Machining	
Ahsan Ali Khan and Mohammed Baba Ndaliman	
Chapter 14	70
Developments in EDM Process Variables	70
Ahsan Ali Khan, Mohammed Baba Ndaliman and Mohammad Yeakub Ali	

PART 2:	MICROMACHINING	76
Chapter 15		77
	Focused Ion Beam Micromachining: Technology and Application Israd Hakim Jaafar, Nur Atiqah, Asfana Banu, Mohammad Yeakub Ali	
Chapter 16		83
	Finish Cut of Titanium Alloy using Micro Electro Discharge Milling for Nano Surface Finish	
	Mohammad Yeakub Ali, Muhamad Faizal, Asfana Banu, and Nur Atikah	
Chapter 17		89
	Investigation of MRR for Finish Cut of Titanium Alloy using Micro Electro Discharge Milling	
	Mohammad Yeakub Ali, Mohd Saifuddin, Nur Atiqah, and Asfana Banu	
Chapter 18		95
	Investigation of TWR for Finish Cut of Titanium Alloy using Micro Electro Discharge Milling	
	Mohammad Yeakub Ali, Mohd Saifuddin, Nur Atiqah, and Asfana Banu	
Chapter 19		101
	Investigation of Chip Formation and Minimum Chip Thickness in Micro/Meso Milling: Methodology and Design of Experiment Mohammad Yeakub Ali, Noor Adila Mansor and Siti Hamizah Mass Duki	
Chapter 20		107
	Micro/Meso Milling of Aluminium Alloy 1100: Analysis and Modelling of Minimum Chip Thickness	
Chapter 21	Mohammad Yeakub Ali, Noor Adila Mansor and Siti Hamizah Mass Duki	113
Chapter 21	Effect of Micro End Milling Tool Diameter on Minimum Chip Thickness	115
	Mohammad Yeakub Ali, Noor Adila Mansor and Siti Hamizah Mass Duki	
Chapter 22	2 Micro Wire Electrical Discharge Machining of Tungsten Carbide:	119
	Methodology and Procedure Mohammad Yeakub Ali, Ahmad Chaaban Elabtah and Musah Jamal Alrefaie	
Chapter 23	3	124
	Micro Wire Electrical Discharge Machining of Tungsten Carbide: Analysis of Surface Roughness	
	Mohammad Yeakub Ali, Ahmad Chaaban Elabtah and Musab Jamal Alrefaie	
Chapter 24	4	130
	Micro Wire Electrical Discharge Machining of Tungsten Carbide: Analysis of Material Removal Rate	
	Mohammad Yeakub Ali, Musab Jamal Alrefaie and Ahmad Chaaban Elabtah	
Chapter 25	5 Micro Electro Discharge Machining of Micro Pillar Array: Process	136

Chapter 25	136
Micro Electro Discharge Machining of Micro Pillar Array: Process	
Development	
Mohammad Yeakub Ali, Wan Emira Azaty and Nor Suriza	
Chapter 26	142
Micro Electro Discharge Machining of Micro Pillar Array: Analysis of Surface Finish	
Mohammad Yeakub Ali, Wan Emira Azaty and Nor Suriza	
Chapter 27	148
Micro Electro Discharge Machining of Micropillar Array: Analysis of Material Removal Rate	
Mohammad Yeakub Ali, Nor Suriza and Wan Emira Azaty	
Chapter 28	154
Vibration Issue in Micro End Milling	
Mohammad Yeakub Ali, Muhamad Lutfi and Mohamad Ismail Fahmi	
Chapter 29	159
Fabrication of Micro Filter by Electro Discharge Machining Abdus Sabur and Mohammad Yeakub Ali	

PART 3:	PRECISION MACHINING 16	55
Chapter 30 Hi	igh Speed Milling of Mould Steel using 1.5mm-diameter End-mills Mohamed Konneh, Khairunnisa Ahmad and Rose Fazleen	166
	ecision Grinding of Silicon C arbide using 46 μm Grain Diamond p Wheel Mohamed Konneh and Ahmad Fauzan	172
	ecision Grinding of Silicon Carbide using 76 μm Grain Diamond up Wheel Mohamed Konneh and Mohd Shukur Zawawi	178
	ecision Grinding of Silicon Carbide using 107 μm Grain Diamond up Wheel <i>Mohamed Konneh and Mohd Fadzil</i>	184
	vestigation of Surface Integrity during Precision Grinding of licon Carbide using Diamond Grinding Pins Mohamed Konneh, Mohamad Lutfi and Mohamad Shahrilnizam	190
	Comparative Study on Flank Wear and Work Surface Finish during gh Speed Milling of Cast Iron with Different Carbide Tools Ahsan Ali Khan, Zuraida Aman Nor Rasid and Izausmawati Yusof	196

Machining of Ceramic Materials: A Review

Abdus Sabur , Md. Abdul Maleque and Mohammad Yeakub Ali Faculty of Engineering – International Islamic University Malaysia 🖂 : asabur72@yahoo.com

Keywords: Ceramics, Laser beam machining, Electro discharge machining.

Abstract. The use of ceramics in industrial and engineering applications is increasing rapidly due to its extraordinary properties like high hardness, law thermal conductivity, resistance to oxidation. Machining operations for fabricating ceramic parts are difficult and most of the traditional machining techniques are not suitable to process ceramic materials. Conventional machining process like diamond grinding can be used for finishing operation. Nonconventional techniques like electro discharge machining, laser beam machining, ultrasonic machining are now frequently used for producing new parts and components from ceramics. Researchers are still trying to develop the appropriate machining conditions for processing ceramic materials. In this chapter, general properties of ceramics, problems associated with the machining, the machining techniques to process ceramic materials into useful products and some relative advantages and disadvantages of the machining processes are discussed in short.

Introduction

Ceramics are composed of metallic and non-metallic elements. The covalent and ionic bonds of elements make the ceramics much stronger than metals. The word "ceramic" comes from the Greek word *keramikos* means clay products or from *keramos means* potter's clay [1]. The most primitive use of ceramics was in pottery objects. They were made either from clay itself or mixed with other materials, hardened in fire. Later ceramics were glazed and fired to create a coloured, smooth surface. Ceramics have been used for many years in automotive spark plugs as an electrical insulator and for high temperature strength. Ceramics now include domestic, industrial and building products and art objects. Examples include cutting tools, self-lubricating bearings, turbine blades, internal combustion engines, heat exchangers, ballistic armour, ceramic composite automotive brakes, diesel particulate filters, a wide variety of prosthetic products, piezo-ceramic sensors. [1,5].

General Properties of Ceramics

It is a solid material prepared from its ingredients by heat and subsequent cooling. Ceramic have crystalline or partly crystalline structure. Sometimes it may be amorphous (e.g., a glass). But most common ceramics are crystalline. Ceramics have some excellent chemical and physical properties that have made it very attractive to the manufacturers. The properties are: